首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combinatorial nature of genetic recombination can potentially provide organisms with immediate access to many more positions in sequence space than can be reached by mutation alone. Recombination features particularly prominently in the evolution of a diverse range of viruses. Despite rapid progress having been made in the characterization of discrete recombination events for many species, little is currently known about either gross patterns of recombination across related virus families or the underlying processes that determine genome-wide recombination breakpoint distributions observable in nature. It has been hypothesized that the networks of coevolved molecular interactions that define the epistatic architectures of virus genomes might be damaged by recombination and therefore that selection strongly influences observable recombination patterns. For recombinants to thrive in nature, it is probably important that the portions of their genomes that they have inherited from different parents work well together. Here we describe a comparative analysis of recombination breakpoint distributions within the genomes of diverse single-stranded DNA (ssDNA) virus families. We show that whereas nonrandom breakpoint distributions in ssDNA virus genomes are partially attributable to mechanistic aspects of the recombination process, there is also a significant tendency for recombination breakpoints to fall either outside or on the peripheries of genes. In particular, we found significantly fewer recombination breakpoints within structural protein genes than within other gene types. Collectively, these results imply that natural selection acting against viruses expressing recombinant proteins is a major determinant of nonrandom recombination breakpoint distributions observable in most ssDNA virus families.Genetic recombination is a ubiquitous biological process that is both central to DNA repair pathways (10, 57) and an important evolutionary mechanism. By generating novel combinations of preexisting nucleotide polymorphisms, recombination can potentially accelerate evolution by increasing the population-wide genetic diversity upon which adaptive selection relies. Recombination can paradoxically also prevent the progressive accumulation of harmful mutations within individual genomes (18, 35, 53). Whereas its ability to defend high-fitness genomes from mutational decay possibly underlies the evolutionary value of sexuality in higher organisms, in many microbial species where pseudosexual genetic exchange is permissible among even highly divergent genomes, recombination can enable access to evolutionary innovations that would otherwise be inaccessible by mutation alone.Such interspecies recombination is fairly common in many virus families (8, 17, 27, 44, 82). It is becoming clear, however, that as with mutation events, most recombination events between distantly related genomes are maladaptive (5, 13, 38, 50, 63, 80). As genetic distances between parental genomes increase, so too does the probability of fitness defects in their recombinant offspring (16, 51). The viability of recombinants is apparently largely dependent on how severely recombination disrupts coevolved intragenome interaction networks (16, 32, 51). These networks include interacting nucleotide sequences that form secondary structures, sequence-specific protein-DNA interactions, interprotein interactions, and amino acid-amino acid interactions within protein three-dimensional folds.One virus family where such interaction networks appear to have a large impact on patterns of natural interspecies recombination are the single-stranded DNA (ssDNA) geminiviruses. As with other ssDNA viruses, recombination is very common among the species of this family (62, 84). Partially conserved recombination hot and cold spots have been detected in different genera (39, 81) and are apparently caused by both differential mechanistic predispositions of genome regions to recombination and natural selection disfavoring the survival of recombinants with disrupted intragenome interaction networks (38, 51).Genome organization and rolling circle replication (RCR)—the mechanism by which geminiviruses and many other ssDNA viruses replicate (9, 67, 79; see reference 24 for a review)—seem to have a large influence on basal recombination rates in different parts of geminivirus genomes (20, 33, 39, 61, 81). To initiate RCR, virion-strand ssDNA molecules are converted by host-mediated pathways into double-stranded “replicative-form” (RF) DNAs (34, 67). Initiated by a virus-encoded replication-associated protein (Rep) at a well-defined virion-strand replication origin (v-ori), new virion strands are synthesized on the complementary strand of RF DNAs (28, 73, 74) by host DNA polymerases. Virion-strand replication is concomitant with the displacement of old virion strands, which, once complete, yields covalently closed ssDNA molecules which are either encapsidated or converted into additional RF DNAs. Genome-wide basal recombination rates in ssDNA viruses are probably strongly influenced by the specific characteristics of host DNA polymerases that enable RCR. Interruption of RCR has been implicated directly in geminivirus recombination (40) and is most likely responsible for increased basal recombination rates both within genes transcribed in the opposite direction from that of virion-strand replication (40, 71) and at the v-ori (1, 9, 20, 69, 74).Whereas most ssDNA virus families replicate via either a rolling circle mechanism (the Nanoviridae, Microviridae, and Geminiviridae) (3, 23, 24, 31, 59, 67, 74) or a related rolling hairpin mechanism (the Parvoviridae) (25, 76), among the Circoviridae only the Circovirus genus is known to use RCR (45). Although the Gyrovirus genus (the other member of the Circoviridae) and the anelloviruses (a currently unclassified ssDNA virus group) might also use RCR, it is currently unknown whether they do or not (78). Additionally, some members of the Begomovirus genus of the Geminiviridae either have a second genome component, called DNA-B, or are associated with satellite ssDNA molecules called DNA-1 and DNA-Beta, all of which also replicate by RCR (1, 47, 68).Recombination is known to occur in the parvoviruses (19, 43, 70), microviruses (66), anelloviruses (40, 46), circoviruses (11, 26, 60), nanoviruses (30), geminivirus DNA-B components, and geminivirus satellite molecules (2, 62). Given that most, if not all, of these ssDNA replicons are evolutionarily related to and share many biological features with the geminiviruses (22, 31, 36), it is of interest to determine whether conserved recombination patterns observed in the geminiviruses (61, 81) are evident in these other groups. To date, no comparative analyses have ever been performed with different ssDNA virus families to identify, for example, possible influences of genome organization on recombination breakpoint distributions found in these viruses.Here we compare recombination frequencies and recombination breakpoint distributions in most currently described ssDNA viruses and satellite molecules and identify a number of sequence exchange patterns that are broadly conserved across this entire group.  相似文献   

2.
3.
4.
Norovirus GII/4 is a leading cause of acute viral gastroenteritis in humans. We examined here how the GII/4 virus evolves to generate and sustain new epidemics in humans, using 199 near-full-length GII/4 genome sequences and 11 genome segment clones from human stool specimens collected at 19 sites in Japan between May 2006 and February 2009. Phylogenetic studies demonstrated outbreaks of 7 monophyletic GII/4 subtypes, among which a single subtype, termed 2006b, had continually predominated. Phylogenetic-tree, bootscanning-plot, and informative-site analyses revealed that 4 of the 7 GII/4 subtypes were mosaics of recently prevalent GII/4 subtypes and 1 was made up of the GII/4 and GII/12 genotypes. Notably, single putative recombination breakpoints with the highest statistical significance were constantly located around the border of open reading frame 1 (ORF1) and ORF2 (P ≤ 0.000001), suggesting outgrowth of specific recombinant viruses in the outbreaks. The GII/4 subtypes had many unique amino acids at the time of their outbreaks, especially in the N-term, 3A-like, and capsid proteins. Unique amino acids in the capsids were preferentially positioned on the outer surface loops of the protruding P2 domain and more abundant in the dominant subtypes. These findings suggest that intersubtype genome recombination at the ORF1/2 boundary region is a common mechanism that realizes independent and concurrent changes on the virion surface and in viral replication proteins for the persistence of norovirus GII/4 in human populations.Norovirus (NoV) is a nonenveloped RNA virus that belongs to the family Caliciviridae and can cause acute gastroenteritis in humans. The NoV genome is a single-stranded, positive-sense, polyadenylated RNA that encodes three open reading frames, ORF1, ORF2, and ORF3 (68). ORF1 encodes a long polypeptide (∼200 kDa) that is cleaved in the cells by the viral proteinase (3Cpro) into six proteins (4). These proteins function in NoV replication in host cells (19). ORF2 encodes a viral capsid protein, VP1. The capsid gene evolved at a rate of 4.3 × 10−3 nucleotide substitutions/site/year (7), which is comparable to the substitution rates of the envelope and capsid genes of human immunodeficiency virus (30). The capsid protein of NoV consists of a shell (S) and two protruding (P) domains: P1 and P2 (47). The S domain is relatively conserved within the same genetic lineages of NoVs (38) and is responsible for the assembly of VP1 (6). The P1 subdomain is also relatively conserved (38) and has a role in enhancing the stability of virus particles (6). The P2 domain is positioned at the most exposed surface of the virus particle (47) and forms binding clefts for putative infection receptors, such as human histo-blood group antigens (HBGA) (8, 13, 14, 60). The P2 domain also contains epitopes for neutralizing antibodies (27, 33) and is consistently highly variable even within the same genetic lineage of NoVs (38). ORF3 encodes a VP2 protein that is suggested to be a minor structural component of virus particles (18) and to be responsible for the expression and stabilization of VP1 (5).Thus far, the NoVs found in nature are classified into five genogroups (GI to GV) and multiple genotypes on the basis of the phylogeny of capsid sequences (71). Among them, genogroup II genotype 4 (GII/4), which was present in humans in the mid-1970s (7), is now the leading cause of NoV-associated acute gastroenteritis in humans (54). The GII/4 is further subclassifiable into phylogenetically distinct subtypes (32, 38, 53). Notably, the emergence and spread of a new GII/4 subtype with multiple amino acid substitutions on the capsid surface are often associated with greater magnitudes of NoV epidemics (53, 54). In 2006 and 2007, a GII/4 subtype, termed 2006b, prevailed globally over preexisting GII/4 subtypes in association with increased numbers of nonbacterial acute gastroenteritis cases in many countries, including Japan (32, 38, 53). The 2006b subtype has multiple unique amino acid substitutions that occur most preferentially in the protruding subdomain of the capsid, the P2 subdomain (32, 38, 53). Together with information on human population immunity against NoV GII/4 subtypes (12, 32), it has been postulated that the accumulation of P2 mutations gives rise to antigenic drift and plays a key role in new epidemics of NoV GII/4 in humans (32, 38, 53).Genetic recombination is common in RNA viruses (67). In NoV, recombination was first suggested by the phylogenetic analysis of an NoV genome segment clone: a discordant branching order was noted with the trees of the 3Dpol and capsid coding regions (21). Subsequently, many studies have reported the phylogenetic discordance using sequences from various epidemic sites in different study periods (1, 10, 11, 16, 17, 22, 25, 40, 41, 44-46, 49, 51, 57, 63, 64, 66). These results suggest that genome recombination frequently occurs among distinct lineages of NoV variants in vivo. However, the studies were done primarily with direct sequencing data of the short genome portion, and information on the cloned genome segment or full-length genome sequences is very limited (21, 25). Therefore, we lack an overview of the structural and temporal dynamics of viral genomes during NoV epidemics, and it remains unclear whether NoV mosaicism plays a role in these events.To clarify these issues, we collected 199 near-full-length genome sequences of GII/4 from NoV outbreaks over three recent years in Japan, divided them into monophyletic subtypes, analyzed the temporal and geographical distribution of the subtypes, collected phylogenetic evidence for the viral genome mosaicism of the subtypes, identified putative recombination breakpoints in the genomes, and isolated mosaic genome segments from the stool specimens. We also performed computer-assisted sequence and structural analyses with the identified subtypes to address the relationship between the numbers of P2 domain mutations at the times of the outbreaks and the magnitudes of the epidemics. The obtained data suggest that intersubtype genome recombination at the ORF1/2 boundary region is common in the new GII/4 outbreaks and promotes the effective acquisition of mutation sets of heterogeneous capsid surface and viral replication proteins.  相似文献   

5.
Previously we described Tomato bushy stunt virus (TBSV) vectors, which retained their capsid protein gene and were engineered with magnesium chelatase (ChlH) and phytoene desaturase (PDS) gene sequences from Nicotiana benthamiana. Upon plant infection, these vectors eventually lost the inserted sequences, presumably as a result of recombination. Here, we modified the same vectors to also contain the plant miR171 or miR159 target sequences immediately 3′ of the silencing inserts. We inoculated N. benthamiana plants and sequenced recombinant RNAs recovered from noninoculated upper leaves. We found that while some of the recombinant RNAs retained the microRNA (miRNA) target sites, most retained only the 3′ 10 and 13 nucleotides of the two original plant miRNA target sequences, indicating in planta miRNA-guided RNA-induced silencing complex cleavage of the recombinant TBSV RNAs. In addition, recovered RNAs also contained various fragments of the original sequence (ChlH and PDS) upstream of the miRNA cleavage site, suggesting that the 3′ portion of the miRNA-cleaved TBSV RNAs served as a template for negative-strand RNA synthesis by the TBSV RNA-dependent RNA polymerase (RdRp), followed by template switching by the RdRp and continued RNA synthesis resulting in loss of nonessential nucleotides.Several plant viruses have been developed as tools for various biotechnology applications, including expression platforms for protein production in plants (1, 2, 6) and as gene silencing systems as part of reverse genetics approaches toward understanding host plant gene function (4, 5). For both of these applications, nonviral sequences conferring the desired function are cloned into the virus genome in order to be expressed during replication in plants. One advantage of using viruses engineered with nonviral sequences is flexibility in manipulating these “extra” sequences, which are not essential for viral replication or movement (1). However, recombinant viruses also tend to lose these sequences, causing instability at the insertion site and resulting in loss of function of the recombinant viral vector. The relatively high error rates of viral replicases (7, 14, 24) and the propensity for recombination events (9) contribute to the instability often seen with some viral vector systems.Recombination events in RNA viruses typically result in joining of two noncontiguous RNA segments (16). These could be sequences from two separate RNA molecules or distant regions of the same molecule. Retention by viruses of favorable sequences is selection driven and eliminates sequences that are unnecessary or negatively affect fitness (11, 31), hence making recombination critical to virus evolution (13, 29). Although phylogenetic analyses predict that recombination events have affected evolution for essentially all groups of RNA viruses (3), some viruses appear to be more prone to recombination than others. For example, plant-infecting supergroup II viruses of the family Tombusviridae appear to undergo frequent recombination, as is supported by the many well-characterized defective-interfering (DI) RNAs of Tomato bushy stunt virus (TBSV) (10, 30). The TBSV DI RNAs, derived entirely from the parental viral RNA, are not replication competent alone and depend on the parent virus to replicate them in trans. Recent developments of in vitro systems (19, 21) have further enhanced dissection of recombination mechanisms giving rise to TBSV DI RNAs.Of the proposed mechanisms for viral recombination (12, 20), the copy choice or template-switching mechanism is the most widely reported (8, 16, 18). This occurs when the viral replicase and its attached nascent polynucleotide chain switches viral RNA templates (or jumps locations on the same template) when making cRNA. Some properties for preferred donor/acceptor sites (sequences in the RNA molecule at which viral replicase switches from one template to another) are known for various RNA viruses (3, 20, 27), suggesting that recombination is not entirely random.The previously described TBSV vectors were efficient silencers of host genes but only while the inserted sequences were retained (23). Thus, optimizing viral vectors requires a better understanding of factors responsible for recombination and consequent loss of insert sequences. In order to address possible recombination mechanisms, we used previously characterized sequence-specific microRNA (miRNA)-guided cleavage determinants as parts of our TBSV vectors. We introduced the miRNA target site sequences for miR171 or miR159 3′ to the silencing inserts of our TBSV vectors (23). After plant inoculation, we analyzed recombinant virus sequences, determining specific recombination patterns, and demonstrated miRNA-mediated recombination events in vivo for the recombinant TBSV vectors. We also showed miRNA-guided RNA-induced silencing complex (RISC)-mediated cleavage for recombinant TBSV RNA and evidence supporting the TBSV RNA-dependent RNA polymerase (RdRp) switching templates during cRNA synthesis.  相似文献   

6.
Despite the identification of severe acute respiratory syndrome-related coronavirus (SARSr-CoV) in Rhinolophus Chinese horseshoe bats (SARSr-Rh-BatCoV) in China, the evolutionary and possible recombination origin of SARSr-CoV remains undetermined. We carried out the first study to investigate the migration pattern and SARSr-Rh-BatCoV genome epidemiology in Chinese horseshoe bats during a 4-year period. Of 1,401 Chinese horseshoe bats from Hong Kong and Guangdong, China, that were sampled, SARSr-Rh-BatCoV was detected in alimentary specimens from 130 (9.3%) bats, with peak activity during spring. A tagging exercise of 511 bats showed migration distances from 1.86 to 17 km. Bats carrying SARSr-Rh-BatCoV appeared healthy, with viral clearance occurring between 2 weeks and 4 months. However, lower body weights were observed in bats positive for SARSr-Rh-BatCoV, but not Rh-BatCoV HKU2. Complete genome sequencing of 10 SARSr-Rh-BatCoV strains showed frequent recombination between different strains. Moreover, recombination was detected between SARSr-Rh-BatCoV Rp3 from Guangxi, China, and Rf1 from Hubei, China, in the possible generation of civet SARSr-CoV SZ3, with a breakpoint at the nsp16/spike region. Molecular clock analysis showed that SARSr-CoVs were newly emerged viruses with the time of the most recent common ancestor (tMRCA) at 1972, which diverged between civet and bat strains in 1995. The present data suggest that SARSr-Rh-BatCoV causes acute, self-limiting infection in horseshoe bats, which serve as a reservoir for recombination between strains from different geographical locations within reachable foraging range. Civet SARSr-CoV is likely a recombinant virus arising from SARSr-CoV strains closely related to SARSr-Rh-BatCoV Rp3 and Rf1. Such frequent recombination, coupled with rapid evolution especially in ORF7b/ORF8 region, in these animals may have accounted for the cross-species transmission and emergence of SARS.Coronaviruses can infect a wide variety of animals, causing respiratory, enteric, hepatic, and neurological diseases with different degrees of severity. On the basis of genotypic and serological characteristics, coronaviruses were classified into three distinct groups (2, 20, 54). Among coronaviruses that infect humans, human coronavirus 229E (HCoV-229E) and human coronavirus NL63 (HCoV-NL63) belong to group 1 coronaviruses and human coronavirus OC43 (HCoV-OC43), and human coronavirus HKU1 (HCoV-HKU1) belong to group 2 coronaviruses, whereas severe acute respiratory syndrome-related coronavirus (SARSr-CoV) has been classified as a group 2b coronavirus, distantly related to group 2a, and the recently discovered group 2c and 2d coronaviruses (6, 8, 10, 18, 31, 38, 43, 46, 49, 50). Recently, the Coronavirus Study Group of the International Committee for Taxonomy of Viruses has proposed renaming the traditional group 1, 2, and 3 coronaviruses Alphacoronavirus, Betacoronavirus, and Gammacoronavirus, respectively (http://talk.ictvonline.org/media/p/1230.aspx).Among all coronaviruses, SARSr-CoV has caused the most severe disease in humans, with over 700 fatalities since the SARS epidemic in 2003. Although the identification of SARSr-CoV in Himalayan palm civets and raccoon dogs in live animal markets in southern China suggested that wild animals could be the origin of SARS (11), the presence of the virus in only market or farmed civets, but not civets in the wild, and the rapid evolution of SARSr-CoV genomes in market civets suggested that these caged animals were only intermediate hosts (24, 39, 42, 52). Since bats are commonly found and served in wild animal markets and restaurants in Guangdong, China (47), we have previously carried out a study of bats from the region and identified a SARSr-CoV in Rhinolophus Chinese horseshoe bats (SARSr-Rh-BatCoV) (21). Similar viruses have also been found in three other species of horseshoe bats in mainland China (25), supporting the hypothesis that horseshoe bats are a reservoir of SARSr-CoV. Recently, viruses closely related to SARSr-Rh-BatCoV in China were also reported in Chaerophon bats from Africa, although only partial RNA-dependent RNA polymerase (RdRp) sequences were available (41). In addition, more than 10 previously unrecognized coronaviruses of huge diversity have since been identified in bats from China and other countries (1, 3, 5, 9, 22, 27, 32, 33, 40, 46, 51), suggesting that bats play an important role in the ecology and evolution of coronaviruses.As a result of the unique mechanism of viral replication, coronaviruses have a high frequency of recombination (20). Such a high recombination rate, coupled with the infidelity of the polymerases of RNA viruses, may allow them to adapt to new hosts and ecological niches (12, 48). Recombination in coronaviruses was first recognized between different strains of murine hepatitis virus (MHV) and subsequently in other coronaviruses, such as infectious bronchitis virus, between MHV and bovine coronavirus, and between feline coronavirus type I and canine coronavirus generating feline coronavirus type II (12, 16, 17, 23). Recently, by complete genome analysis of 22 strains of HCoV-HKU1, we have also documented for the first time that natural recombination events in a human coronavirus can give rise to three different genotypes (48).Although previous studies have attempted to study the possible evolutionary and recombination origin of SARSr-CoV, no definite conclusion can be made on whether the viruses from bats are the direct ancestor of SARSr-CoV in civets and humans, given the paucity of available strains and genome sequences. To better define the epidemiology and evolution of SARSr-Rh-BatCoV in China and their role as a recombination origin of SARSr-CoV in civets, we carried out a 4-year study on coronaviruses in Chinese horseshoe bats in Hong Kong and Guangdong Province of southern China. Bat tagging was also performed to study the migration pattern of bats and viral persistence. The complete genomes of 10 strains of SARSr-Rh-BatCoV obtained at different time were sequenced and compared to previously sequenced genomes. With the availability of this larger set of genome sequences for more accurate analysis, recombination and molecular clock analyses were performed to elucidate the evolutionary origin and time of interspecies transmission of SARSr-CoV.  相似文献   

7.
Bluetongue (BT), caused by Bluetongue virus (BTV), is an economically important disease affecting sheep, deer, cattle, and goats. Since 1998, a series of BT outbreaks have spread across much of southern and central Europe. To study why the epidemiology of the virus happens to change, it is important to fully know the mechanisms resulting in its genetic diversity. Gene mutation and segment reassortment have been considered as the key forces driving the evolution of BTV. However, it is still unknown whether intragenic recombination can occur and contribute to the process in the virus. We present here several BTV groups containing mosaic genes to reveal that intragenic recombination can take place between the virus strains and play a potential role in bringing novel BTV lineages.Bluetongue (BT) is an economically significant disease that seriously threatens sheep, some species of deer, and to a lesser extent cattle and goats. As a vector-borne viral disease of ruminants, BT is endemic in tropical and subtropical countries (46). However, a series of BT outbreaks have spread across much of southern and central Europe since 1998 (29). Thus, it is of great importance to fully understand the molecular basis driving the change of its epidemiology so as to prevent or limit future BT pandemics.Bluetongue virus (BTV), the pathogen of BT, belongs to the Orbivirus genus of the Reoviridae family (46). The virus has a segmented double-stranded RNA (dsRNA) genome that is packaged in a nonenveloped, icosahedral particle (46). Its 10 dsRNA segments encode 11 proteins, VP1 to VP7 (encoded by segments 1, 2, 3, 4, 6, 9, and 7, respectively), NS1 to SN3 (encoded by segments 5, 8, and 10, respectively), and NS3A (encoded by segment 10) (46). Two structural proteins, VP2 and VP5, form the outer layer of the virion particle and are responsible for cell attachment and virus entry (18, 31, 32), neutralizing epitope (14, 21), and virus virulence (36). Both of them are highly variable and generate 24 serotypes of the virus (44). The inner layers contain VP1, VP3, VP4, VP6, and VP7, and form the “core” of the BTV capsid. VP1 and VP6 are involved in RNA replication as the RNA-dependent RNA polymerase (54) and helicase/NTPase, respectively (49). VP7 forms the surface of the core and functions during the entry of the core into insect cells (44) and also can react with “core neutralizing” antibodies as a major serogroup-specific antigen (32, 44). These core proteins and two nonstructural proteins, NS1 and NS2, are thought to be relatively conservative, so that antigenic cross-reaction can take place between different BTV strains and serotypes, whereas NS3/N3a is more variable than the other nonstructural or core proteins (46).The genetic diversity and variation in sequences of different BTV genome segments were initially identified by RNA oligonucleotide fingerprint analysis of BTV field samples (47). Until now, reassortment and dynamic gene mutation, regarded as the key factors responsible for the genetic diversity of BTV, have been studied in details (46). The two mechanisms can result in both genetic drift and genetic shift and contribute to BTV evolution (47). It has been revealed that high-frequency genome segment reassortment occurs readily between different BTV serotypes (16). Thus, segment reassortment is an important factor in generation of genetic diversity in orbivirus populations in nature (45). In addition, it has been shown that homologous recombination can also play a role in the genetic diversity and evolution of some RNA viruses (24, 33) and bring on virulent variants of these viruses at last (8, 56). Although homologous recombination has been observed in rotavirus, a member of the Reoviridae (39, 40), it is still unknown whether the intragenic recombination can occur and play a role in the generation of genetic diversity in orbivirus populations.To determine whether homologous recombination shaped the evolution of BTV and to provide some insights into the recombination itself in the virus, we analyzed roughly 690 complete segments of BTV deposited in GenBank to see whether some of them underwent intragenic recombination event. Several BTV groups isolated at different time points and in different countries were found containing the same (or similar) mosaic segments, demonstrating that intragenic recombination had occurred in the field and that these viruses with mosaic segments had become prevailing strains. That is, intragenic recombination can play a potential role in generating genetic diversity of BTV and exert its influence on the change of BTV epidemiology.  相似文献   

8.
9.
The relationship between virus evolution and recombination in species B human enteroviruses was investigated through large-scale genetic analysis of echovirus type 9 (E9) and E11 isolates (n = 85 and 116) from 16 European, African, and Asian countries between 1995 and 2008. Cluster 1 E9 isolates and genotype D5 and A E11 isolates showed evidence of frequent recombination between the VP1 and 3Dpol regions, the latter falling into 23 (E9) and 43 (E11) clades interspersed phylogenetically with 46 3Dpol clades of E30 and with those of other species B serotypes. Remarkably, only 2 of the 112 3Dpol clades were shared by more than one serotype (E11 and E30), demonstrating an extremely large and genetically heterogeneous recombination pool of species B nonstructural-region variants. The likelihood of recombination increased with geographical separation and time, and both were correlated with VP1 divergence, whose substitution rates allowed recombination half-lives of 1.3, 9.8, and 3.1 years, respectively, for E9, E11, and E30 to be calculated. These marked differences in recombination dynamics matched epidemiological patterns of periodic epidemic cycles of 2 to 3 (E9) and 5 to 6 (E30) years and the longer-term endemic pattern of E11 infections. Phylotemporal analysis using a Bayesian Markov chain Monte Carlo method, which placed recombination events within the evolutionary reconstruction of VP1, showed a close relationship with VP1 lineage expansion, with defined recombination events that correlated with their epidemiological periodicity. Whether recombination events contribute directly to changes in transmissibility that drive epidemic behavior or occur stochastically during periodic population bottlenecks is an unresolved issue vital to future understanding of enterovirus molecular epidemiology and pathogenesis.Human enteroviruses (HEV) are single-stranded, positive-sense RNA viruses in the virus family Picornaviridae. Infections with these viruses are enterically transmitted and normally cause subclinical or mild symptoms, but they are also capable of causing a wide array of often severe disease presentations, including aseptic meningitis, encephalitis, and acute flaccid paralysis. Echovirus type 9 (E9) and E11 are serotypes of species B enteroviruses and are among the most common etiological agents of aseptic meningitis (14). The first epidemiological study of E9 investigated isolates obtained from sick children in 1995 (24). E9 is chiefly associated with mild infections affecting children over the age of 5 years and teenagers, although it can cause more severe syndromes in neonates and immunosuppressed patients (14). E11 infections, which predominantly affect infants less than 1 year old, have been associated with large outbreaks of uveitis in infants (15, 21), sepsis, and other neonatal systemic illnesses with high mortality rates (14, 23).Circulating strains and genotypes of E9 (2, 8, 11, 14) and E11 (4, 7, 21) have been characterized in many different countries through analysis of the structural genome regions, principally VP1. In common with other mammalian RNA viruses, both E9 and E11 show rapid accumulation of nucleotide substitutions over time, but their epidemiologies are distinct. E9 is associated with widespread, large-scale seasonal outbreaks and displays a regular epidemic pattern of outbreaks occurring approximately every 3 years (8, 14). Outbreaks of E11 are less common, occur irregularly, and often last for several years (14, 25).In contrast to time-related diversification observed in the capsid-encoding regions of the HEV genome, nonstructural region genes are subject to frequent recombination (7, 18, 19, 26, 30), leading to the concept of separate, modular evolution of the structural and nonstructural regions of the HEV genome (20). Recombination in the nonstructural gene region of HEV is limited to members of the same species (27). In a recent large-scale investigation of echovirus type 30 (E30) molecular epidemiology, phylogenetic analysis of the 3Dpol region revealed the existence of a number of discrete, bootstrap-supported clades, allowing circulating E30 variants to be classified into a series of distinct recombinant forms (RFs) (22). Individual RFs became very rapidly disseminated over large geographical distances through repeated cycles of emergence, dominance, and disappearance in a 3- to 5-year cycle.In the current study, we carried out parallel investigations of the molecular epidemiology and evolution of clinically presenting isolates of E9 and E11 collected in 16 countries in Europe, central Asia, Southeast Asia, and West Africa over a 14-year period. By comprehensive sequencing of these isolates in the structural (VP1) and nonstructural (3Dpol) genome regions, it was possible to explore the dynamics of sequence diversification and recombination. The turnover of individual recombinant groups and the phylogeographical correlates of recombination were determined and compared to those of E30, providing new insights into the nature of the global spread of these important viral pathogens and the role of recombination in enteroviral evolution.  相似文献   

10.
Controlling the loading of Rad51 onto DNA is important for governing when and how homologous recombination is used. Here we use a combination of genetic assays and indirect immunofluorescence to show that the F-box DNA helicase (Fbh1) functions in direct opposition to the Rad52 orthologue Rad22 to curb Rad51 loading onto DNA in fission yeast. Surprisingly, this activity is unnecessary for limiting spontaneous direct-repeat recombination. Instead it appears to play an important role in preventing recombination when replication forks are blocked and/or broken. When overexpressed, Fbh1 specifically reduces replication fork block-induced recombination, as well as the number of Rad51 nuclear foci that are induced by replicative stress. These abilities are dependent on its DNA helicase/translocase activity, suggesting that Fbh1 exerts its control on recombination by acting as a Rad51 disruptase. In accord with this, overexpression of Fbh1 also suppresses the high levels of recombinant formation and Rad51 accumulation at a site-specific replication fork barrier in a strain lacking the Rad51 disruptase Srs2. Similarly overexpression of Srs2 suppresses replication fork block-induced gene conversion events in an fbh1Δ mutant, although an inability to suppress deletion events suggests that Fbh1 has a distinct functionality, which is not readily substituted by Srs2.Homologous recombination (HR) is often described as a double-edged sword: it can maintain genome stability by promoting DNA repair, while its injudicious action can disturb genome stability by causing gross chromosome rearrangement (GCR) or loss of heterozygosity (LOH). Both GCR and LOH are potential precursors of diseases such as cancer, and consequently there is need to control when and how HR is used.A key step in most HR is the loading of the Rad51 recombinase onto single-stranded DNA (ssDNA), which forms a nucleoprotein filament (nucleofilament) that catalyzes the pairing of homologous DNAs and subsequent strand invasion (32). This is a critical point at which recombination can be regulated through the removal of the Rad51 filament (60). Early removal can prevent strand invasion altogether, freeing the DNA for alternative processing. Later removal may limit unnecessary filament growth, free the 3′-OH of the invading strand to prime DNA synthesis, and ultimately enable ejection of the invading strand, which is important for the repair of double-strand breaks (DSBs) by synthesis-dependent strand annealing (SDSA). SDSA avoids the formation of Holliday junctions that can be resolved into reciprocal exchange products (crossovers), which may result in GCR or LOH if the recombination is ectopic or allelic, respectively.One enzyme that appears to be able to control Rad51 in the aforementioned manner is the yeast superfamily 1 DNA helicase Srs2 (42). In Saccharomyces cerevisiae, Srs2 is recruited to stalled replication forks by the SUMOylation of PCNA, and there it appears to block Rad51-dependent HR in favor of Rad6- and Rad18-dependent postreplication repair (1, 2, 35, 50, 53, 58). In vitro Srs2 can strip Rad51 from ssDNA via its DNA translocase activity (31, 62) and therefore probably controls HR at stalled replication forks by acting as a Rad51 disruptase. In accord with this, chromatin immunoprecipitation analysis has shown that Rad51 is enriched at or near replication forks in an srs2 mutant (50). Srs2 also plays an important role in crossover avoidance during DSB repair, where it is thought to promote SDSA by both disrupting Rad51 nucleofilaments and dissociating displacement (D) loops (20, 27).Srs2 is conserved in the fission yeast Schizosaccharomyces pombe (19, 43, 63) and has a close relative in bacteria called UvrD, which can similarly control HR by disrupting RecA nucleofilaments (61). However, an obvious homologue in mammals has not been detected. Recently, two mammalian members of the RecQ DNA helicase family, BLM and RECQL5, were shown to disrupt Rad51 nucleofilaments in vitro (11, 25), although in the case of BLM, this activity appears to be relatively weak (5, 55). Nevertheless these data have led to speculation that both BLM and RECQL5 might perform a function similar to that of Srs2 in vivo (6). Certainly mutational inactivation of either helicase results in elevated levels of HR and genome instability, with an associated increased rate of cancer (23, 25). However, BLM and RECQL5 are not the only potential Rad51 disruptases in mammals; a relative of Srs2 and UvrD called FBH1 was recently implicated in this role by genetic studies of its orthologue in S. pombe and by its ability to partially compensate for the loss of Srs2 in S. cerevisiae, which, unlike S. pombe, lacks an FBH1 orthologue (15). FBH1 is so named because of an F box near its N terminus—a feature that makes it unique among DNA helicases (28). The F box is important for its interaction with SKP1 and therefore the formation of an E3 ubiquitin ligase SCF (SKP1-Cul1-F-box protein) complex (29). The targets of this complex are currently unknown. In S. pombe, mutations within Fbh1''s F-box block interaction with Skp1 and prevent Fbh1 from localizing to the nucleus and forming damage-induced foci therein (57). Fbh1''s role in constraining Rad51 activity in S. pombe is evidenced by the increase in spontaneous Rad51 foci and accumulation of UV irradiation-induced Rad51-dependent recombination intermediates in an fbh1Δ mutant (47). Moreover, loss of both Fbh1 and Srs2 in S. pombe results in a synergistic reduction in cell viability, and like Srs2, Fbh1 is essential for viability in the absence of the S. pombe RecQ family DNA helicase Rqh1, which processes recombination intermediates (47, 48). In both cases the synthetic interaction is suppressed by deleting rad51, suggesting that Fbh1 works in parallel with Srs2 and Rqh1 to prevent the formation of toxic recombination intermediates. In yeast, Rad51-mediated recombination is dependent on Rad52 (Rad22 in S. pombe), which is believed to promote the nucleation of Rad51 onto DNA that is coated with the ssDNA binding protein replication protein A (RPA) (18, 32). Intriguingly, the genotoxin sensitivity and recombination deficiency of a rad22 mutant are suppressed in a Rad51-dependent manner by deleting fbh1 (48). This suggests that Fbh1 and Rad22 act in opposing ways to modulate the assembly of the Rad51 nucleofilament. Although current data indicate a role for Fbh1 in controlling HR, the only evidence so far that Fbh1 limits recombinant formation is in chicken DT40 cells, for which a modest increase in sister chromatid exchange has been noted when FBH1 is deleted (30).Here we present in vivo evidence suggesting that Fbh1 does indeed act as a Rad51 disruptase, which is dependent on its DNA helicase/translocase activity. We confirm predictions that this activity works in opposition to Rad22 for the loading of Rad51 onto DNA and show that Fbh1''s modulation of Rad51 activity, while not essential for limiting spontaneous direct-repeat recombination, is critical for preventing recombination at blocked replication forks. Finally, we highlight similarities and differences between Fbh1 and Srs2, based on their mutant phenotypes and relative abilities to suppress recombination when overexpressed. Overall our data affirm that Fbh1 is one of the principal modulators of Rad51 activity in fission yeast and therefore may play a similar role in vertebrates.  相似文献   

11.
Synaptonemal complex (SC) proteins Hop1 and Mek1 have been proposed to promote homologous recombination in meiosis of Saccharomyces cerevisiae by establishment of a barrier against sister chromatid recombination. Therefore, it is interesting to know whether the homologous proteins play a similar role in Schizosaccharomyces pombe. Unequal sister chromatid recombination (USCR) was found to be increased in hop1 and mek1 single and double deletion mutants in assays for intrachromosomal recombination (ICR). Meiotic intergenic (crossover) and intragenic (conversion) recombination between homologous chromosomes was reduced. Double-strand break (DSB) levels were also lowered. Notably, deletion of hop1 restored DSB repair in rad50S meiosis. This may indicate altered DSB repair kinetics in hop1 and mek1 deletion strains. A hypothesis is advanced proposing transient inhibition of DSB processing by Hop1 and Mek1 and thus providing more time for repair by interaction with the homologous chromosome. Loss of Hop1 and Mek1 would then result in faster repair and more interaction with the sister chromatid. Thus, in S. pombe meiosis, where an excess of sister Holliday junction over homologous Holliday junction formation has been demonstrated, Hop1 and Mek1 possibly enhance homolog interactions to ensure wild-type level of crossover formation rather than inhibiting sister chromatid interactions.Sexual reproduction in eukaryotes involves formation of haploid gametes from diploid cells by one round of DNA replication, pairing of the homologous chromosomes, and recombination and then by the two meiotic divisions (53). In fungi the gametes differentiate into haploid spores, which germinate to form vegetative cells. Crossover (CO) formation between homologous chromosomes and DNA repair processes between sister chromatids are required for spore viability (10, 55, 58).In vegetative cells homologous recombination (HR) is important for repair of DNA damage and stalled replication forks, with the sister chromatid as the preferred partner (28). Many of the enzymes involved in mitotic HR also contribute to meiotic recombination. In addition, meiosis-specific cytological structures and enzymes enhance recombination frequency (meiotic induction) and shift partner preference from sister chromatids to homologous chromosomes (3, 47, 64, 74). In detail the steps of HR vary between different types of sequence organization (allelic versus sister versus ectopic), between different types of DNA damage, between meiotic and mitotic cells, and between species (10, 55, 58).Meiotic recombination, including CO formation, is initiated by DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae and other eukaryotes, DSBs are formed by Spo11. Many cofactors are required (29). The Schizosaccharomyces pombe homolog is Rec12, also requiring auxiliary factors whose elimination leads to loss of meiotic DSB formation (12). The 5′ single-strand ends at DSBs are processed by nucleases. In S. cerevisiae the MRX complex made up by the proteins Rad50, Mre11, and Xrs2 is required for this resection, as well as for DSB formation. The corresponding MRN complex of S. pombe (Rad50, Rad32, and Nbs1) is not required for DSB formation but is essential for DSB repair (43, 72). Deletion of rad50, rad32, or ctp1 (homologous to SAE2/COM1 in S. cerevisiae and CtIP in humans) leads to very low spore viability. These proteins are also essential for DSB processing (23, 24, 32, 43, 60, 62).Free DNA 3′ ends at DSBs are recruited for invasion of a sister or homologous chromatid by the strand transfer proteins Rad51 and Dmc1, again involving many accessory proteins (16). This results in the central intermediates of HR: heteroduplex DNA consisting of single strands originating from different chromatids and Holliday junctions (HJs). In S. cerevisiae HJs form preferably between homologs with a two- to sixfold excess over intersister HJs (64). Surprisingly, meiotic HJs form with about a fourfold excess between sisters in S. pombe (11). Eventually the intermediates are resolved into crossover (CO) and noncrossover (NCO) events. COs show exchange of the flanking sequences of the two chromatids involved and usually carry a patch of conversion (unilateral transfer of DNA sequences from one chromatid to its interacting partner) near the DSB site. NCOs are conversion events without associated COs (22). In S. pombe loss of core HR functions leads to very low spore viability: deletion of rad51 but not of dmc1 (20), double mutation of rad54 and rdh54 (7), inactivation of the endonuclease activity encoded by mus81 and eme1 (5, 52), and combined deletion of rad22 and rti1 (homologs of RAD52 of S. cerevisiae). But, differently from the other core functions, Rad22 and Rti1 are not required for CO and NCO (50).Early in meiotic prophase of many eukaryotes, axial elements (called lateral elements in later stages) form along sister chromatids, and pairing of homologous chromosomes is initiated, leading to juxtaposition of the homologous chromosomes along their whole length in the synaptonemal complex (SC) (54). In S. pombe no SC is formed, but linear elements (LEs), resembling axial elements of other eukaryotes, are formed. LEs do not form continuously along the chromosomes (1) but load the proteins Rec10, Hop1, and Mek1 (36, 44, 57), which are homologs of, or at least related, to the S. cerevisiae proteins Red1, Hop1, and Mek1, respectively, localizing to axial/lateral elements (2, 67). Hop1 carries a HORMA domain, also present in proteins associating with axial elements and regulating the progress of recombination in higher eukaryotes: Arabidopsis thaliana (61), Caenorhabditis elegans (9, 41), and mammals (18).In S. cerevisiae localization of Hop1 and Mek1 (meiosis-specific protein kinase) to axial elements is dependent on Red1 (2, 67). Mutation of the three S. cerevisiae genes results in reduction of DSB formation, CO and conversion frequencies, and spore viability (26, 31, 59). Direct comparison of unequal sister chromatid recombination (USCR) frequencies in an assay excluding the scoring of intrachromatid recombination (ICR) revealed no increase in the hop1 null mutant but about fourfold increases in the red1 and mek1 null mutants (69). The S. cerevisiae Hop1, Red1, and Mek1 proteins are involved in biasing meiotic DSB repair to occur between homologous chromosomes rather than between sister chromatids (47). Activated Mek1 kinase is required for the inhibition of sister chromatid-mediated DSB repair by Rad51, when the DMC1 gene is deleted and the meiotic recombination checkpoint is activated (4, 27, 38, 47). For Mek1 activation, phosphorylation of Hop1 by the Mec1/Tel1 kinases is also required (6).Less is known about the S. pombe proteins. Hop1 of S. pombe was identified as a nonsignificant hit by sequence comparison with full-length S. cerevisiae Hop1 and contains an N-terminal HORMA domain and a central zinc finger motif like Hop1 in S. cerevisiae. In addition they share a short homology block toward the C terminus (36). The Mek1 protein of S. pombe shares 34% identity and 54% similarity with its S. cerevisiae counterpart along the whole sequence. It contains an FHA domain in the N-terminal part like the other members of its family of checkpoint kinases and is involved in regulation of the meiotic cell cycle (57). Hop1 and Mek1 are strongly expressed in meiosis but not expressed or only slightly expressed in vegetative cells (42, 57). In prophase both proteins localize to LEs as defined by colocalization with the LE component Rec10 (36). Deletion of the distant RED1 homolog rec10 abolishes LE formation (36, 44) and strongly reduces meiotic recombination (17, 70). Rec10, but not Hop1 and Mek1, is required for localization of Rec7 (a distant homolog of S. cerevisiae Rec114) to meiotic chromosomes (34). Rec7 and Rec10 are required for Rec12 activity (12, 29).Obtaining information on the functions of Hop1 and Mek1 in S. pombe was the aim of the work presented here, especially on their possible roles in homolog versus sister discrimination for DSB repair. Deletion mutants have been studied with respect to spore viability and the frequencies of CO and conversion. They have also been assessed for genetic recombination events between sister chromatids in the known PS1 assay (63) and the newly developed VL1 assay (for details, see Fig. Fig.3).3). Physical analysis of DSB formation and repair has been performed in meiotic time course experiments. It is proposed that S. pombe Hop1 and Mek1 are promoting interactions between homologous chromosomes rather than inhibiting interactions between sister chromatids.Open in a separate windowFIG. 3.PS1 and VL1 assay systems for intrachromosomal recombination. Strains with constructs carrying repeated DNA sequences have been assayed for prototroph formation either by intrachromatid recombination (ICR, yielding prototrophs only in PS1) or by unequal sister chromatid recombination (USCR, in PS1 and VL1). Crosses of the constructs were performed with strains carrying a deletion of the ade6 gene to exclude other homologous recombination events. (A) The PS1 assay involves copies of the ade6 gene inactivated by either the hot spot mutation M26 or the mutation 469. The repeated sequences are separated by the ura4+ marker (63). ICR (left) or USCR (right) between the repeated sequences can lead to formation of adenine prototrophs that have lost the ura4+ marker by crossover (CO) or single-strand annealing (SSA) events. Adenine prototrophs maintaining the ura4+ marker can derive from noncrossover (NCO) events. Both types of pairing may lead to CO or NCO products. (B) The newly constructed VL1 assay (see the supplemental material) involves different truncations of the ade6 gene separated by the hygR marker (also called hphMX6), conferring hygromycin resistance. The left truncation carries a 3′ portion of ade6; the right truncation carries a 5′ portion of ade6. While the gray parts of the truncations are not overlapping, the white sections of 500-bp length are of almost identical sequence, allowing for homologous pairing. CO and SSA products resulting from ICR retain only the central portion of ade6 and remain auxotrophic. Adenine prototrophic CO and NCO products resulting from USCR both retain hygromycin resistance. Note that NCO events may arise through loop formation of one sister chromatid and pairing with a single block (500 bp) of the repeated ade6 sequence (39).  相似文献   

12.
13.
Transmission of group B Streptococcus (GBS) from mothers to neonates during childbirth is a leading cause of neonatal sepsis and meningitis. Although subtyping tools have identified specific GBS phylogenetic lineages that are important in neonatal disease, little is known about the genetic diversity of these lineages or the roles that recombination and selection play in the generation of emergent genotypes. Here, we examined genetic variation, selection, and recombination in seven multilocus sequence typing (MLST) loci from 94 invasive, colonizing, and bovine strains representing 38 GBS sequence types and performed DNA sequencing and PCR-based restriction fragment length polymorphism analysis of several putative virulence genes to identify gene content differences between genotypes. Despite the low level of diversity in the MLST loci, a neighbor net analysis revealed a variable range of genetic exchange among the seven clonal complexes (CCs) identified, suggesting that recombination is partly responsible for the diversity observed between genotypes. Recombination is also important for several virulence genes, as some gene alleles had evidence for lateral gene exchange across divergent genotypes. The CC-17 lineage, which is associated with neonatal disease, is relatively homogeneous and therefore appears to have diverged independently with an exclusive set of virulence characteristics. These data suggest that different GBS genetic backgrounds have distinct virulence gene profiles that may be important for disease pathogenesis. Such profiles could be used as markers for the rapid detection of strains with an increased propensity to cause neonatal disease and may be considered useful vaccine targets.Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia, and meningitis (51) and causes infections in pregnant women, nonpregnant adults, and the elderly with underlying medical conditions. Maternal GBS colonization is a main risk factor for neonatal disease, and roughly 20 to 40% of pregnant women are colonized (14, 23). Colonization rates of up to 31% and 34% have been documented in young men (4) and nonpregnant women (4, 42), respectively, whereas a rate of 22% has been observed in individuals over 65 years of age (18). GBS has also been identified as the cause of bovine mastitis in up to 45% of symptomatic bovines (30). Nine distinct polysaccharide capsule types (serotypes) are known, and the serotype distribution varies by population.The genetic diversity of GBS populations has been studied using a variety of different methods, including restriction fragment length polymorphism (RFLP) (24), ribotyping (5, 25), pulsed-field gel electrophoresis (49), multilocus enzyme electrophoresis (MLEE) (45), random amplification of polymorphic DNA (36), restriction digestion pattern (RDP) typing (53), and multilocus sequence typing (MLST) (28). By utilizing methods that focus on conserved genetic changes within GBS strains, virulent GBS clones that have diversified genetically can be identified. Both MLEE and MLST can distinguish the major GBS serotype III clones associated with neonatal invasive disease as sequence type 17 (ST-17) in the MLST system (28, 29, 38) or electrophoretic type 1 in the MLEE system (45). This clone is also evident in the RDP system as RDP-III (53).A recent study of 75 GBS strains representing different sources and STs reported that the ST-17 lineage is relatively homogeneous and contains a unique set of surface proteins (9). Homogeneity within a GBS lineage that is significantly associated with neonatal disease is likely important for disease pathogenesis, though few studies have been conducted to identify specific differences in virulence characteristics between lineages. Similarly, the roles of selection and recombination in the generation of STs, as well as known virulence genes, have only recently been explored and require further investigation (9a). Here, we assess the genomic diversity of GBS strains representing a variety of common clonal genotypes, examine evidence for selection and recombination, and evaluate the extent of DNA polymorphism and allelic variation in several putative virulence genes.  相似文献   

14.
15.
Genetic transformation of Sulfolobus acidocaldarius by a multiply marked pyrE gene provided a high-resolution assay of homologous recombination in a hyperthermophilic archaeon. Analysis of 100 Pyr+ transformants revealed that this recombination system could transfer each of 23 nonselected base pair substitutions to the recipient chromosome along with the selected marker. In 30% of the recombinants, donor markers were transferred as multiple blocks. In at least 40% of the recombinants, donor markers separated by 5 or 6 bp segregated from each other, whereas similar markers separated by 2 bp did not segregate. Among intermarker intervals, the frequency of recombination tract endpoints varied 40-fold, but in contrast to other recombination systems, it did not correlate with the length of the interval. The average length of donor tracts (161 bp) and the frequent generation of multiple tracts seemed generally consistent with the genetic properties observed previously in S. acidocaldarius conjugation. The efficiency with which short intervals of diverged pyrE sequence were incorporated into the genome raises questions about the threat of ectopic recombination in Sulfolobus spp. mediated by this apparently efficient yet permissive system.All cells and some viruses encode systems of homologous recombination (HR) which support the successful replication of their genomes. In eukaryotic cells, HR systems repair double-strand breaks and ensure proper chromosome segregation during meiosis (1, 2, 17). Double-strand break repair by eukaryotic HR has been studied intensively in yeast, where it has been shown to cause the net transfer of a short section of sequence from the intact DNA to the broken DNA in a unilateral, i.e., nonreciprocal, manner. Outside this central zone, the flanking segments of the two DNAs may also be exchanged, generating a crossover. The relative yields of noncrossover versus crossover events vary in different situations, and this appears to reflect the different ways in which displacement loops formed by strand invasion are ultimately resolved (1, 17, 36).In bacteria, HR helps reassemble replication forks disrupted by encounters with various DNA lesions (6, 20, 27). For practical reasons, however, genetic assays of bacterial HR typically follow the process of replacing a segment of a recipient chromosome or plasmid with a corresponding (i.e., homologous) donor DNA segment introduced into the cell. This “ends-out” mode of HR underlies the classical techniques of genetic mapping and strain construction of Escherichia coli and other bacteria. It also occurs in natural populations and contributes to genome evolution, as indicated by the “mosaic” patterns of sequence polymorphisms documented in various E. coli lineages (28). Thus, the functional properties of the host HR system combine with those of the DNA transfer systems to influence the rate of genetic exchange and the nature (including the abundance and average length) of the homologous DNA segments incorporated as a result.The importance of HR for genetic exchange and genome stability raises questions about its role in microorganisms highly diverged from model microbial species and adapted to extreme environments. Many archaea meet these criteria, but HR has not been examined extensively in archaea, particularly with respect to functional properties in vivo. The archaeal homologues of the RecA and Rad51/Dmc1 proteins, termed “RadA,” share a distinct motif structure which more closely resembles the eukaryotic than the bacterial consensus (32). In vitro, the RadA proteins of various hyperthermophilic archaea have been shown to bind single-stranded DNA (ssDNA) preferentially, thereby forming nucleoprotein filaments. This binding has been reported to stimulate ATP hydrolysis, displacement loop formation, and strand exchange (19, 26, 34). Evidence for HR in vivo includes observations that DNA of Pyrococcus and related archaea fragmented by gamma irradiation reassembles quickly in vivo (8) and that Sulfolobus species can be genetically transformed by linear DNA (7, 16, 22). In other archaea (methanogens and extreme halophiles), small, nonreplicating, circular DNAs have been observed to integrate into recipient genomes by reciprocal crossovers (11), and deletion of the radA gene of the extreme halophile Haloferax volcanii has demonstrated that the protein is essential for HR in that species but not for viability (37).In Sulfolobus spp., which grow optimally at about pH 3 and 80°C (12), auxotrophic mutants provide sensitive assays of recombination at particular chromosomal loci. Several studies suggest that in Sulfolobus acidocaldarius, many of these events require only short DNA segments. In conjugation assays, for example, more than 90% of randomly chosen pairs of 5-fluoroorotic acid (FOA)-resistant S. acidocaldarius mutants generated Pyr+ recombinants (31), despite the fact that about 95% of such mutations normally arise in the 594-bp pyrE coding sequence (14). Furthermore, when pyrE mutations of known positions were tested in pairwise combinations, the relative yield of recombinants did not decrease significantly until the separation became less than about 50 bp, indicating that donor sequences were transferred to the recipient chromosome as small segments (18).Although these results reveal genetic consequences of conjugation in S. acidocaldarius, they do not clarify whether these consequences primarily reflect the DNA transfer process or, alternatively, subsequent HR. For example, transfer of short DNA fragments from a donor cell to a recipient cell seems able to explain both the facile resolution of very closely spaced pyrE mutations (31) and the inefficient replacement of large pyrE deletions (18) in S. acidocaldarius conjugation. However, other Sulfolobus spp. transfer relatively large conjugative plasmids between cells (33), so a similar transfer capability must be considered for S. acidocaldarius. In that case, the observed “short-patch” nature of the exchanges would reflect processing of longer intervals of transferred DNA by the HR system to yield short replacement tracts; this would resemble noncrossover events in eukaryotic double-strand break repair (1, 17, 36) or the patches of DNA incorporated by transformation of Helicobacter pylori (21, 25). An apparent failure of circular DNA containing a full-length pyrE gene with a promoter to integrate into the S. acidocaldarius genome by a single reciprocal crossover raises other questions. Despite protection of the circular DNA against the host restriction system and scoring by PCR within several generations of transformation, no sequences of the nonreplicating vector could be detected in any of a number of independent transformants (22). Possible explanations include an extremely high frequency of reciprocal crossovers, leading to stochastic elimination of the nonselectable vector sequences within a short time, or an intrinsically nonreciprocal mode of the initial recombination, which simply copied the functional pyrE sequence onto the host chromosome. While the mechanistic basis remains unresolved, the observations themselves combine with the presence of unusual DNA enzymes (10) and the absence of otherwise conserved DNA repair proteins (13) to suggest that HR and related DNA transactions of Sulfolobus spp. and other hyperthermophilic archaea may have unusual functional features.As an important step toward understanding Sulfolobus HR in molecular terms, we developed a quantitative assay to analyze individual recombination events in S. acidocaldarius to high resolution. The results show that this HR process transfers markers from a short donor DNA to the recipient genome to generate a diversity of configurations in which both the length and number of replacement tracts vary widely. In addition, the HR system exhibited limited genetic linkage and readily resolved certain markers spaced only 5 or 6 bp apart.  相似文献   

16.
17.
Genetic manipulation of mycobacteria still represents a serious challenge due to the lack of tools and selection markers. In this report, we describe the development of an intrinsically unstable excisable cassette for introduction of unmarked mutations in both Mycobacterium smegmatis and Mycobacterium tuberculosis.Mycobacterium tuberculosis causes about 2 million deaths worldwide every year (15). Over the last few years, M. tuberculosis pathogenesis characterization at a molecular level required the development of efficient genetic tools for recombination and mutagenesis. The employment of replicating temperature-sensitive and suicide plasmids (14), specialized transducing mycobacteriophages (1, 9), and a recombineering system based on two exogenous recombinases (24) improved the ability to obtain mycobacterial mutants by homologous recombination. However, the availability of only few selection markers represents a real problem when multiple knockouts are required for the study of redundant gene families in mycobacteria. A way to circumvent this problem is by the production of unmarked mutations, which can be obtained by homologous recombination and selection for sequential crossing-over events using both positive and negative markers for counterselection of the different allelic exchange events (13), or by a different approach relying on sequence-specific recombination systems allowing the excision of the positive selection marker after it has been used to select for the recombination event (19).Three different sequence-specific recombinase systems have been successfully used with mycobacteria: the TnpR/res system of the γδ transposon (1), the Flp/FRT system of Saccharomyces cerevisiae (18, 20), and the LoxP/cre systems from bacteriophage P1 (11, 19). While the Flp/FRT and the Lox/cre systems were shown to work efficiently in both slow- and fast-growing mycobacteria, the Tnp/res system was proved to be efficient only in fast-growing species. All of these systems require a first step during which the expression of an exogenous resolvase or recombinase from a replicative plasmid allows the excision of the resistant marker and a second step to eliminate the replicative plasmid, making the procedure very time-consuming, particularly when working with slow-growing mycobacteria.Recently, a new sequence-specific recombinase system based on the endogenous Xer recombinases (Xer-cise) was shown to be amenable for genetic manipulation and construction of unmarked deletion mutants in Escherichia coli and Bacillus subtilis (4). In this system, the antibiotic resistance cassette, flanked by dif sites, is intrinsically unstable since the endogenous recombinases XerC and XerD recognize and resolve the dif sites that border the cassette. This method, relying on endogenous recombinases, does not require the introduction and the subsequent removal of replicating plasmids carrying exogenous genes, making it extremely simple and practical.E. coli XerC and XerD recombinases are essential for chromosome segregation during cell division, as their role is to resolve chromosome dimers to monomers recognizing the 28-bp dif sequence present at the replication terminus region (8). The Xer site-specific recombination system is very well conserved in prokaryotes with circular chromosomes, and homologues of XerC and XerD have been identified among Gram-negative and Gram-positive bacteria (16).In this report, we adapted the Xer-cise technique to mycobacteria, demonstrating that it can be employed as a practical and efficient genetic tool for manipulating both M. tuberculosis and Mycobacterium smegmatis.  相似文献   

18.
Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), a recently identified coronavirus of novel Betacoronavirus subgroup D, from Leschenault''s rousette, was previously found to display marked sequence polymorphism among genomes of four strains. Among 10 bats with complete RNA-dependent RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes sequenced, three and two sequence clades for all three genes were codetected in two and five bats, respectively, suggesting the coexistence of two or three distinct genotypes of Ro-BatCoV HKU9 in the same bat. Complete genome sequencing of the distinct genotypes from two bats, using degenerate/genome-specific primers with overlapping sequences confirmed by specific PCR, supported the coexistence of at least two distinct genomes in each bat. Recombination analysis using eight Ro-BatCoV HKU9 genomes showed possible recombination events between strains from different bat individuals, which may have allowed for the generation of different genotypes. Western blot assays using recombinant N proteins of Ro-BatCoV HKU9, Betacoronavirus subgroup A (HCoV-HKU1), subgroup B (SARSr-Rh-BatCoV), and subgroup C (Ty-BatCoV HKU4 and Pi-BatCoV HKU5) coronaviruses were subgroup specific, supporting their classification as separate subgroups under Betacoronavirus. Antibodies were detected in 75 (43%) of 175 and 224 (64%) of 350 tested serum samples from Leschenault''s rousette bats by Ro-BatCoV HKU9 N-protein-based Western blot and enzyme immunoassays, respectively. This is the first report describing coinfection of different coronavirus genotypes in bats and coronavirus genotypes of diverse nucleotide variation in the same host. Such unique phenomena, and the unusual instability of ORF7a, are likely due to recombination which may have been facilitated by the dense roosting behavior and long foraging range of Leschenault''s rousette.Coronaviruses infect a wide variety of animals in which they can cause respiratory, enteric, hepatic, and neurological diseases of various severities. Based on genotypic and serological characterization, coronaviruses were traditionally classified into three distinct groups, groups 1, 2, and 3 (3, 27, 59). Recently, the Coronavirus Study Group of the International Committee for Taxonomy of Viruses has renamed the traditional group 1, 2, and 3 coronaviruses as Alphacoronavirus, Betacoronavirus, and Gammacoronavirus, respectively (http://talk.ictvonline.org/media/p/1230.aspx). Coronaviruses are known to have a high frequency of recombination as a result of their unique mechanism of viral replication (27). Such tendency for recombination and high mutation rates may allow them to adapt to new hosts and ecological niches (24, 47, 52).The severe acute respiratory syndrome (SARS) epidemic has boosted interest in the study of coronaviruses in humans and animals (21, 34, 38, 41, 54). In the past few years, there has been a dramatic increase in the number of newly described human and animal coronaviruses (2, 4, 5, 8-10, 15-20, 23, 25, 28, 30, 32, 35, 36, 39, 43, 45, 50, 51, 53, 56, 58). Two novel human coronaviruses, human coronavirus NL63 (HCoV-NL63) and human coronavirus HKU1 (HCoV-HKU1), belonging to Alphacoronavirus and Betacoronavirus, respectively, have been discovered, in addition to the human coronavirus OC43 (HCoV-OC43), human coronavirus 229E (HCoV-229E), and SARS coronavirus (SARS-CoV) (17, 29, 45, 53, 55). We have also previously described the discovery of a diversity of novel coronaviruses in wild bats and birds in China, including SARSr-Rh-BatCoV, belonging to Betacoronavirus subgroup B, from Chinese horseshoe bats (30, 48, 56). Among these novel coronaviruses, three avian coronaviruses were found to belong to a novel subgroup of Gammacoronavirus (Gammacoronavirus subgroup C), while three bat coronaviruses were found to belong to two novel subgroups of Betacoronavirus (Betacoronavirus subgroups C and D) (48, 50). Based on the presence of the huge diversity of coronaviruses in Alphacoronavirus and Betacoronavirus among various bat species, bats are likely the reservoir for the ancestor of these two coronavirus genera (47).During our genome analysis of these novel coronaviruses, one of them, Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), belonging to Betacoronavirus subgroup D, which was identified in Leschenault''s rousette bats, was found to display marked nucleotide and amino acid sequence polymorphism among the four strains with complete genome sequences (50). In our study on HCoV-HKU1, it has been shown that such sequence polymorphisms may indicate the presence of different genotypes (52). By complete genome sequence analysis of the potentially different genotypes of HCoV-HKU1, we have demonstrated for the first time natural recombination in a human coronavirus, resulting in the generation of at least three genotypes (52). We have also recently shown that recombination between different strains of SARSr-Rh-BatCoV from different regions of China may have given rise to the emergence of civet SARSr-CoV (31). To investigate the presence of different genotypes of Ro-BatCoV HKU9, the complete RNA-dependent RNA polymerase (RdRp) (corresponding to nsp12), spike (S), and nucleocapsid (N) gene sequences of Ro-BatCoV HKU9 from 10 additional bats were determined. Since sequence analysis showed the possible coexistence of different genotypes in seven bat individuals, complete genome sequencing of these distinct genotypes from two bats was carried out to investigate for possible recombination events among the different genotypes. In addition, serological characterization of Ro-BatCoV HKU9 was also performed by Western blot and enzyme immunoassays using recombinant Ro-BatCoV HKU9 nucleocapsid proteins and recombinant nucleocapsid proteins of Betacoronavirus subgroup A, B, and C coronaviruses to determine possible cross-reactivity among the different Betacoronavirus subgroups and the seroepidemiology of Ro-BatCoV HKU9 in Leschenault''s rousette bats.  相似文献   

19.
20.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号