首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease". Stimulation of the offspring immune response during development is known to influence growth and behavioral phenotype. However, the potential for maternal antibodies to block the behavioral effects of immune activation during the neonatal period has not been assessed. We challenged female zebra finches (Taeniopygia guttata) prior to egg laying and then challenged offspring during the nestling and juvenile periods with one of two antigens (keyhole limpet hemocyanin (KLH) or lipopolysaccharide (LPS)). We then tested the effects of maternal and neonatal immune challenges on offspring growth rates and neophobia and learning ability of offspring during adulthood. Neonatal immune challenge depressed growth rates. Neophobia of adult offspring was influenced by a combination of maternal treatment, offspring treatment, and offspring sex. Males challenged with LPS during the nestling and juvenile periods had reduced learning performance in a novel foraging task; however, female learning was not impacted. Offspring challenged with the same antigen as mothers exhibited similar growth suppression and behavioral changes as offspring challenged with a novel antigen. Thus, developmental immune challenges have long-term effects on the growth and behavioral phenotype of offspring. We found limited evidence that matching of maternal and offspring challenges reduces the effects of immune challenge in the altricial zebra finch. This may be a result of rapid catabolism of maternal antibodies in altricial birds. Our results emphasize the need to address sex differences in the long-term effects of developmental immune challenge and suggest that neonatal immune activation may be one proximate mechanism underlying differences in adult behavior.  相似文献   

2.

Background

Dexamethasone (DEX), a synthetic glucocorticoid, is commonly used to prevent or lessen the morbidity of chronic lung disease in preterm infants. However, evidence is now increasing that this clinical practice negatively affects somatic growth and may result in long-lasting neurodevelopmental deficits. We therefore hypothesized that supporting normal somatic growth may overcome the lasting adverse effects of neonatal DEX treatment on hippocampal function.

Methodology/Principal Findings

To test this hypothesis, we developed a rat model using a schedule of tapering doses of DEX similar to that used in premature infants and examined whether the lasting influence of neonatal DEX treatment on hippocampal synaptic plasticity and memory performance are correlated with the deficits in somatic growth. We confirmed that neonatal DEX treatment switched the direction of synaptic plasticity in hippocampal CA1 region, favoring low-frequency stimulation- and group I metabotropic glutamate receptor agonist (S)-3,5,-dihydroxyphenylglycine-induced long-term depression (LTD), and opposing the induction of long-term potentiation (LTP) by high-frequency stimulation in the adolescent period. The effects of DEX on LTP and LTD were correlated with an increase in the autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at threonine-286 and a decrease in the protein phosphatase 1 expression. Neonatal DEX treatment resulted in a disruption of memory retention subjected to object recognition task and passive avoidance learning. The adverse effects of neonatal DEX treatment on hippocampal synaptic plasticity and memory performance of the animals from litters culled to 4 pups were significantly less than those for the 8-pup litters. However, there was no significant difference in maternal care between groups.

Conclusion/Significance

Our results demonstrate that growth retardation plays a crucial role in DEX-induced long-lasting influence of hippocampal function. Our findings suggest that therapeutic strategies designed to support normal development and somatic growth may exert beneficial effects to reduce lasting adverse effects following neonatal DEX treatment.  相似文献   

3.
Intestinal function in young animals is influenced by maternal factors, such as alterations in the maternal diet. Glucagon-like peptide 2 (GLP-2) enhances intestinal growth and absorption in mature animals. Glucocorticosteroids induce intestinal maturation in neonates and increase sugar uptake in adult animals. It is not known if maternally administered GLP-2 or glucocorticosteroids have persistent effects on intestinal transport in the offspring. This study was undertaken to determine (1) the influence of maternal GLP-2, dexamethasone (DEX) and GLP-2+DEX on intestinal sugar uptake in postweaning offspring and (2) if alterations in uptake are due to variations in intestinal morphology, sugar transporter abundance or the abundance of selected signals. Nursing rat dams were treated during pregnancy and lactation with GLP-2 (0.1 mug/g per day sc), DEX (0.128 microg/g per day sc), GLP-2+DEX or placebo. The offspring were sacrificed 4 weeks after weaning, and glucose and fructose uptake was determined using an in vitro intestinal ring uptake technique. sodium-dependent glucose transporter, glucose transporter (GLUT) 5, GLUT2, sodium potassium adenosine triphosphatase and selected signals were assessed by immunohistochemistry. The treatments did not affect body weights or intestinal morphology. GLP-2 and GLP-2+DEX increased jejunal fructose uptake, and GLP-2+DEX increased the jejunal and ileal maximal transport rate for glucose uptake. Protein kinase B and mammalian target of rapamycin abundance were also increased, while transporter abundance was unchanged. We speculate that these alterations in sugar uptake may be due to changes in the intrinsic activity of the transporters mediated by the phosphatidylinositol-3-kinase pathway. These alterations in uptake may have nutritional implications for the offspring of mothers who may be treated with GLP-2 or glucocorticosteroids.  相似文献   

4.
In the field as well as in the laboratory, human-generated stress responses are reduced in adult animals previously habituated to humans in comparison to non-habituated individuals. In birds, yolk steroid levels vary with maternal environment and condition. We tested the hypothesis that the experience of female birds with humans could affect yolk steroids levels and offspring phenotype. Two groups of Japanese quail, one habituated to humans (H) and a second non-habituated (NH), were exposed daily to brief human disturbances. We analysed egg quality, offspring growth, and offspring emotional reactivity. NH females produced eggs with less androgens (testosterone and androstenedione) and more immunoreactive progesterone compared to birds habituated to humans. NH females produced eggs with less yolk, heavier shell and chicks hatching later and being smaller as compared to habituated individuals. A lower emotional reactivity was found in young of NH females compared to young of H females. Thus, human disturbance of the mother triggered different effects on chick phenotype depending on previous experience of mother birds with humans. In addition, we describe for the first time the influence of environmental stimuli on yolk immunoreactive progesterone levels. Our results show that a relatively minor difference in behavioral habituation may have substantial effects on eggs and offspring. This has obvious implications for keeping and handling laboratory animals, for conservation biology and for animal welfare.  相似文献   

5.
Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases.  相似文献   

6.
Prenatal stress can affect foetal neurodevelopment and result in increased risk of depression in adulthood. It promotes increased maternal hypothalamo–pituitary–adrenal gland (HPA) secretion of glucocorticoid (GC), leading to increased foetal and maternal GC receptor activity. Prenatal GC receptor activity is also increased during prenatal treatment with dexamethasone (DEX), which is commonly prescribed as a prophylactic treatment of preterm delivery associated morbid symptoms. Here, we exposed pregnant Wistar rats to 0.1 mg/kg/d DEX during the last week of pregnancy and performed cross-fostering at birth. In the adult offspring we then studied the effects of prenatal DEX exposure per se and the effects of rearing by a dam exposed to prenatal DEX. Offspring were assessed in the following paradigms testing biobehavioural processes that are altered in depression: progressive ratio schedule of reinforcement (anhedonia), Porsolt forced swim test (behavioural despair), US pre-exposure active avoidance (learned helplessness), Morris water maze (spatial memory) and HPA axis activity (altered HPA function). Responsiveness to a physical stressor in terms of HPA activity was increased in male offspring exposed prenatally to DEX. Despite this increased HPA axis reactivity, we observed no alteration of the assessed behaviours in offspring exposed prenatally to DEX. We observed impairment in spatial memory in offspring reared by DEX exposed dams, independently of prenatal treatment. This study does not support the hypothesis that prenatal DEX exposure leads to depression-like symptoms in rats, despite the observed sex-specific programming effect on HPA axis. It does however emphasise the importance of rearing environment on adult cognitive performances.  相似文献   

7.
Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring''s dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring''s dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.  相似文献   

8.
Mounting epidemiologic and scientific evidence indicates that many psychiatric disorders originate from a complex interplay between genetics and early life experiences, particularly in the womb. Despite decades of research, our understanding of the precise prenatal and perinatal experiences that increase susceptibility to neurodevelopmental disorders remains incomplete. Sleep apnea (SA) is increasingly common during pregnancy and is characterized by recurrent partial or complete cessations in breathing during sleep. SA causes pathological drops in blood oxygen levels (intermittent hypoxia, IH), often hundreds of times each night. Although SA is known to cause adverse pregnancy and neonatal outcomes, the long-term consequences of maternal SA during pregnancy on brain-based behavioral outcomes and associated neuronal functioning in the offspring remain unknown. We developed a rat model of maternal SA during pregnancy by exposing dams to IH, a hallmark feature of SA, during gestational days 10 to 21 and investigated the consequences on the offspring’s forebrain synaptic structure, synaptic function, and behavioral phenotypes across multiples stages of development. Our findings represent a rare example of prenatal factors causing sexually dimorphic behavioral phenotypes associated with excessive (rather than reduced) synapse numbers and implicate hyperactivity of the mammalian target of rapamycin (mTOR) pathway in contributing to the behavioral aberrations. These findings have implications for neuropsychiatric disorders typified by superfluous synapse maintenance that are believed to result, at least in part, from largely unknown insults to the maternal environment.

Correlative data in humans has hinted at an association between maternal sleep apnea during pregnancy and altered neuronal function in offspring. This study shows that in a rat model of sleep apnea, maternal gestational intermittent hypoxia leads to sex-specific changes in neuronal structure and function in offspring, accompanied by impaired behavioral phenotypes.  相似文献   

9.
In birds, the magnitude of the adrenocortical stress response can be down‐regulated during specific life‐history stages. Such modulation likely occurs when the effects of mounting robust corticosterone (Cort) elevations interfere with the normal progression of critical lifecycle activities (e.g. development, molt, migration, reproduction). The developmental hypothesis posits that altricial birds should display a ‘stress hyporesponsive period’ during the early post‐natal life stages, characterized by reduced adrenocortical stress responses compared to adult birds and a gradual age‐related increase. Such modulation would allow avoiding the potential deleterious effects that long‐term elevations of circulating Cort might exert on growth and development, when the physiological and behavioral abilities to cope with disturbance are limited. Two proximate hypotheses have been proposed to explain this age‐dependent pattern of Cort secretion. The ‘maturation hypothesis’ proposes a progressive age‐related growth, maturation and enhanced sensitivity to sensory input of the Hypothalamic‐Pituitary‐Adrenal (HPA) axis tissues, whereas the ‘negative feedback attenuation hypothesis’ proposes a gradual attenuation in the intensity of the negative feedback in the HPA axis. Here we tested these hypotheses by experimentally inducing negative feedback on the HPA axis via dexamethasone (DEX) treatment in nestling white storks Ciconia ciconia. Nestling age positively affected stress‐induced plasma Cort (STRESS‐Cort) levels during experimental handling and restraint, thus supporting the developmental hypothesis. DEX treatment significantly reduced STRESS‐Cort levels compared to saline (SAL) treatment, thus eliciting the expected negative feedback on the HPA axis. However, inter‐ and intra‐individual comparisons indicated no age effects on the intensity of the negative feedback exerted by DEX. Our results do not support the negative feedback attenuation hypothesis and suggest that progressive maturation of the HPA axis tissues is the proximate mechanism responsible for age‐related changes in the stress response during avian post‐natal development. We encourage further tests of the proposed proximate mechanisms during migration, breeding and molt.  相似文献   

10.
This article is part of a Special Issue “SBN 2014”.Maternal obesity, metabolic state, and diet during gestation have profound effects on offspring development. The prevalence of neurodevelopmental and mental health disorders has risen rapidly in the last several decades in parallel with the rise in obesity rates. Evidence from epidemiological studies indicates that maternal obesity and metabolic complications increase the risk of offspring developing behavioral disorders such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASD), and schizophrenia. Animal models show that a maternal diet high in fat similarly disrupts behavioral programming of offspring, with animals showing social impairments, increased anxiety and depressive behaviors, reduced cognitive development, and hyperactivity. Maternal obesity, metabolic conditions, and high fat diet consumption increase maternal leptin, insulin, glucose, triglycerides, and inflammatory cytokines. This leads to increased risk of placental dysfunction, and altered fetal neuroendocrine development. Changes in brain development that likely contribute to the increased risk of behavioral and mental health disorders include increased inflammation in the brain, as well as alterations in the serotonergic system, dopaminergic system and hypothalamic–pituitary–adrenal (HPA) axis.  相似文献   

11.
Early life experiences are important for the development of neurobiobehavioral mechanisms and subsequent establishment of mental functions. In experimental animals, early life experiences can be studied using the maternal separation model. Maternal separation has been described to induce neurobiological changes and thus affect brain function, mental state and behavior. We have established a protocol in order to study the effects of repeated short and prolonged periods of maternal separation during the postnatal period on adult neurochemistry, voluntary ethanol intake and behavior. In the present experiment, we focus on the long-term effects of maternal separation on exploration and risk assessment behavior as well corticosteroid secretion. Rat pups were assigned to 15 min (MS15) or 360 min (MS360) of daily maternal separation and normal animal facility rearing (AFR) during postnatal days 1-21. To establish the adult behavioral profile in male rats, three tests were used: the Concentric Square Field (CSF), the Open Field (OF) and the Elevated Plus-maze (EPM). No differences between the three experimental groups were found in the traditional OF and EPM tests. The CSF test indicated that the MS360 rats were more explorative and expressed an altered risk assessment and risk-taking profile. In response to a restraint stress, MS360 rats had a blunted corticosterone release in contrast to MS15 and AFR rats. In contrast to previous results, the outcome of the present investigation does not support the notion that a prolonged period of maternal separation results in an adult phenotype characterized by an increased emotional reactivity.  相似文献   

12.
《Hormones and behavior》2007,51(5):736-747
Early life experiences are important for the development of neurobiobehavioral mechanisms and subsequent establishment of mental functions. In experimental animals, early life experiences can be studied using the maternal separation model. Maternal separation has been described to induce neurobiological changes and thus affect brain function, mental state and behavior. We have established a protocol in order to study the effects of repeated short and prolonged periods of maternal separation during the postnatal period on adult neurochemistry, voluntary ethanol intake and behavior. In the present experiment, we focus on the long-term effects of maternal separation on exploration and risk assessment behavior as well corticosteroid secretion. Rat pups were assigned to 15 min (MS15) or 360 min (MS360) of daily maternal separation and normal animal facility rearing (AFR) during postnatal days 1–21. To establish the adult behavioral profile in male rats, three tests were used: the Concentric Square Field (CSF), the Open Field (OF) and the Elevated Plus-maze (EPM). No differences between the three experimental groups were found in the traditional OF and EPM tests. The CSF test indicated that the MS360 rats were more explorative and expressed an altered risk assessment and risk-taking profile. In response to a restraint stress, MS360 rats had a blunted corticosterone release in contrast to MS15 and AFR rats. In contrast to previous results, the outcome of the present investigation does not support the notion that a prolonged period of maternal separation results in an adult phenotype characterized by an increased emotional reactivity.  相似文献   

13.
Mice lacking the serotonin receptor 1A (Htr1a knockout, Htr1a KO ) show increased innate and conditioned anxiety. This phenotype depends on functional receptor activity during the third through fifth weeks of life and thus appears to be the result of long-term changes in brain function as a consequence of an early deficit in serotonin signaling. To evaluate whether this phenotype can be influenced by early environmental factors, we subjected Htr1a knockout mice to postnatal handling, a procedure known to reduce anxiety-like behavior and stress responses in adulthood. Offspring of heterozygous Htr1a knockout mice were separated from their mother and exposed 15 min each day from postnatal day 1 (PD1) to PD14 to clean bedding. Control animals were left undisturbed. Maternal behavior was observed during the first 13 days of life. Adult male offspring were tested in the open field, social approach and resident–intruder tests and assessed for corticosterone response to restraint stress. Knockout mice showed increased anxiety in the open field and in the social approach test as well as an enhanced corticosterone response to stress. However, while no effect of postnatal handling was seen in wild-type mice, handling reduced anxiety-like behavior in the social interaction test and the corticosterone response to stress in knockout mice. These findings extend the anxiety phenotype of Htr1a KO mice to include social anxiety and demonstrate that this phenotype can be moderated by early environmental factors.  相似文献   

14.
Early-life environmental events can induce profound long-lasting changes in several behavioral and neuroendocrine systems. The neonatal handling procedure, which involves repeated brief maternal separations followed by experimental manipulations, reduces stress responses and sexual behavior in adult rats. The purpose of this study was to analyze the effects of neonatal handling on social behaviors of male and female rats in adulthood, as manifest by the results of social memory and social interaction tests. The number of oxytocin (OT) and vasopressin (VP) neurons in the paraventricular (PVN) and supraoptic (SON) nuclei of hypothalamus were also analyzed. The results did not demonstrate impairment of social memory. Notwithstanding, handling did reduce social investigative interaction and increase aggressive behavior in males, but did not do so in females. Furthermore, in both males and females, handling was linked with reduced number of OT-neurons in the parvocellular region of the PVN, while no differences were detected in the magnocellular PVN or the SON. On the other hand, handled males exhibited increased number of VP-neurons in the magnocellular zone of the PVN. We may conclude that the repeated brief maternal separations can reduce affiliative social behavior in adult male rats. Moreover, the disruption of the mother-infant relationship caused by the handling procedure induced long-lasting morphological changes in critical neuroendocrine areas that are involved in social bonding in mammals.  相似文献   

15.
Estrogen impacts performance on tasks of learning and memory, although there are inconsistencies in the direction and magnitude of the reported effects. Contributory factors to the inconsistencies may be methodological differences associated with different regimens of treatment. The goal of the present experiment was to assess the effect of increased handling, such as that commonly associated with pharmacological or other experimental manipulations, on the ability of estrogen to influence working memory performance. Young adult rats were ovariectomized and implanted with capsules containing either cholesterol or 25% estradiol diluted in cholesterol. Half of each hormone treatment group received standard handling, which consisted of handling required to carry out experimental procedures and half received increased handling, which consisted of standard handling as well as 2 min of additional daily handling by the experimenter. Animals were trained daily on a working memory task on an eight-arm radial maze for 24 days of acquisition and for eight additional daily trials in which delays of either 1 min or 3 h were imposed between the fourth and fifth arm choices. Animals that received increased handling exhibited significantly enhanced performance during acquisition and delay trials compared to those that received standard handling. Estradiol significantly enhanced performance during delay trials in animals that received standard handling but had no effect in animals that received increased handling. These results suggest that the amount of handling that animals receive as part of experimental procedures may obscure the memory enhancing effects of estradiol replacement on certain tasks of cognition.  相似文献   

16.
张明  蔡景霞 《动物学研究》2006,27(4):344-350
采用split-litter法对仔鼠进行分组和处理,共5组NTS组(未经实验人员抓握和标记),PND2—9TS组和PND10—17TS组(分别在仔鼠出生后的2—9天、10—17天,每天短暂抓握和标记仔鼠),PND2—9MS组和PND10—17MS组(分别在仔鼠出生后的2—9天、10—17天,除了按TS组相同方式抓握并在不同部位标记外,每天把仔鼠与母鼠分离1h)。待雌鼠成年后,进行明/暗箱测试和一次性被动回避反应测试。结果发现与NTS组相比,PND2—9TS组和PND10—17TS组的雌鼠在明/暗箱测试中停留于明室的累计时间明显较长,在被动回避作业中的重测试潜伏期也明显较长,表明新生期的触觉刺激经历减少雌性大鼠成年后在新异环境中的焦虑,并改善情绪记忆。与相应TS组相比,MS处理组的所有行为指标都无显著性差异,说明短时间母婴分离对雌鼠成年后的焦虑和情绪记忆无明显影响。结果提示,新生期的触觉刺激和母婴分离经历对仔鼠神经系统的发育产生不同的长期效应。  相似文献   

17.
Summary 1. The stress response system is shaped by genetic factors and life experiences, of which the effect of a neonatal life event is among the most persistent. Here we report studies focused on the nature-nurture question using rat lines genetically selected for extreme differences in dopamine phenotype as well as rats exposed as infants to the traumatic experience of maternal deprivation.2. As key to the endocrine and behavioural adaptations occurring in these two animal models the hormone corticosterone (CORT) is considered. The stress hormone exerts slow and persistent genomic control over neuronal activity underlying the stress response system via high affinity mineralocorticoid (MR) and glucocorticoid receptors (GR). This action is exerted in a coordinate manner and involves after stress due to the rising CORT levels progressive activation of both receptor types.3. Short periods of maternal separation (neonatal handling) trigger subsequently enhanced maternal care and sensory stimulation. However, a prolonged period (24h) of depriving the infant of maternal care disrupts the stress hyporesponsive period (SHRP) and causes an inappropriate rise in CORT. During development exposure to CORT and to sensory stimulation has long-lasting consequences for organization of the stress response system.4. We find that these factors embodied by mother-pup interaction are critical for dopamine phenotype, CORT receptor dynamics and neuroendocrine regulation in adult life. The findings provide a conceptual framework to study dopamine-related psychopathology against a background of genetic predisposition, early life events, stress hormones and brain development.  相似文献   

18.
We assessed the importance of three behavioral processes on the fitness of individual females as mediated via maternal care in matrilineally organized social groups of spotted hyenas Crocuta crocuta. These were maternal choice of foraging tactic, the maintenance of individual dominance rank (social status) within the adult female hierarchy, and the behavioral support provided by mothers to their daughters when daughters acquired their position in the adult female hierarchy. The effects of all behavioral processes were closely linked. Maternal care was dependent on maternal social status because high ranking females had priority of access to food, and individual maternal choice of foraging tactic was frequency – and social status-dependent when medium prey abundance provided an opportunity for such a choice. At medium prey abundance, low ranking females went on costly long distance commuting trips to forage on migratory herds outside the group territory, whereas high ranking females fed on kills within the group territory. As a consequence, offspring of high ranking females grew faster, had a higher chance of survival to adulthood, and thus high ranking females had a higher lifetime reproductive success. Daughters of high ranking females usually acquired a social status immediately below that of their mother provided they enjoyed the effective support from their mothers as coalition partners, and they gave birth to their first litter at an earlier age than daughters of low ranking mothers. Spotted hyenas are therefore an example of the silver-spoon effect. This study shows that the frequency-dependent outcome of behavioral processes can be a key determinant of maternal reproductive success in social carnivores and have a profound influence on the reproductive career prospects of offspring.  相似文献   

19.
Maternal stress and undernutrition can occur together and expose the fetus to high glucocorticoid (GLC) levels during this vulnerable period. To determine the consequences of GLC exposure on fetal skeletal muscle independently of maternal food intake, groups of timed-pregnant Sprague-Dawley rats (n = 7/group) were studied: ad libitum food intake (control, CON); ad libitum food intake with 1 mg dexamethasone/l drinking water from embryonic day (ED)13 to ED21 (DEX); pair-fed (PF) to DEX from ED13 to ED21. On ED22, dams were injected with [(3)H]phenylalanine for measurements of fetal leg muscle and diaphragm fractional protein synthesis rates (FSR). Fetal muscles were analyzed for protein and RNA contents, [(3)H]phenylalanine incorporation, and MuRF1 and atrogin-1 (MAFbx) mRNA expression. Fetal liver tyrosine aminotransferase (TAT) expression was quantified to assess fetal exposure to GLCs. DEX treatment reduced maternal food intake by 13% (P < 0.001) and significantly reduced placental mass relative to CON and PF dams. Liver TAT expression was elevated only in DEX fetuses (P < 0.01). DEX muscle protein masses were 56% and 70% than those of CON (P < 0.01) and PF (P < 0.05) fetuses, respectively; PF muscles were 80% of CON (P < 0.01). Muscle FSR decreased by 35% in DEX fetuses (P < 0.001) but were not different between PF and CON. Only atrogin-1 expression was increased in DEX fetus muscles. We conclude that high maternal GLC levels and inadequate maternal food intake impair fetal skeletal muscle growth, most likely through different mechanisms. When combined, the effects of decreased maternal intake and maternal GLC intake on fetal muscle growth are additive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号