首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans.Human respiratory syncytial virus (RSV) is a highly infectious member of the paramyxovirus family causing upper and lower respiratory tract infections in humans. Serious acute RSV infections, including fatal cases of bronchiolitis and pneumonia, occur particularly in premature infants, immunocompromised adults, and patients with pre-existing chronic lung diseases or underlying heart defects (11, 12, 14, 39, 46, 56). In young children, RSV is the most common respiratory tract pathogen, accounting for approximately 50% of hospitalizations due to lower respiratory tract infections (21). In population-based surveillance studies for hospitalization in Europe, RSV was identified in 42 to 45% of enrolled children younger than 2 years with lower respiratory tract infections, and the rate of hospitalization due to RSV-induced respiratory illnesses was estimated at 3 to 6% among industrialized nations (45). Children with severe RSV infections suffer from oxygen deficiency with cyanosis and require intensive medical care. Furthermore, RSV infection in childhood is suspected to be a risk factor for development of asthma (36, 41, 43, 59). The urgent need for an RSV vaccine is further demonstrated by a study showing that levels of disease burden, mortality, and morbidity caused by RSV infections in the elderly are comparable to those induced by nonpandemic influenza A infections (11). However, the immunization of children with a formalin-inactivated (FI) RSV vaccine in the 1960s resulted in a more severe clinical illness, with two fatal cases, than in nonvaccinated infants following RSV infection, pointing out the difficulties in developing a safe and efficacious RSV vaccine (7, 29). It was shown previously that the enhanced disease severity and the development of pulmonary eosinophilia are mainly attributable to an excessive Th2-polarized immune response (15, 35, 57). Furthermore, the lack of high-affinity antibodies after poor Toll-like receptor stimulation has been suggested to be a key factor of the enhanced disease induced by FI RSV vaccination and subsequent RSV infection shown recently (8). However, the enhanced disease induced by FI RSV could partially be reversed by the chemical reduction of the carbonyl groups produced by prior treatment with aldehyde (34).Passive transfer of a neutralizing monoclonal antibody directed against RSV F (palivizumab) results in significant reduction of hospitalization rate due to RSV infection in children and preterm infants (16, 25), making RSV F a promising vaccine candidate for active immunization. Besides being a target for neutralizing antibodies, RSV F additionally contains cytotoxic-T-cell epitopes (1, 37). Moreover, RSV F based DNA vaccines induced encouraging immune responses of a balanced Th1/Th2 type in mice, as pulmonary eosinophilia and disease-enhancing effects were not observed after viral challenge (4, 5, 19, 31, 52). Additionally, RSV F is highly conserved between the two antigenic subgroups of RSV, which allows generation of cross-reactive antibodies after immunization (26).We recently showed that vaccination with codon-optimized RSV F expression plasmids induced improved humoral immune responses in mice compared to vaccination with wild-type cDNA expression plasmids (52). Consequently, viral load was reduced 13-fold in mice immunized with full-length RSV F and 170-fold in mice immunized with the soluble form of RSV F following RSV challenge in comparison to nonimmunized mice. Based on these results, we inserted the codon-optimized open reading frame (ORF) of both full-length RSV F and its soluble form into a replication-deficient adenoviral serotype 5 vector (AdV), generating AdV-F and AdV-Fsol, respectively, to further enhance the immunogenicity and efficiency of the delivered RSV F transgenes. AdVs were chosen because these viral vectors have been extensively studied and have proven their potential as vaccine vectors in multiple successful preclinical studies (reviewed in references 47, 24, and 51). AdVs are also potent inducers of both humoral and cellular immune responses in animal models and in humans (48, 49, 55). Furthermore, convenience of vector design, ease of handling and a robust antigen expression make AdVs a promising vaccine delivery platform. Another main advantage is their natural tropism for mucosal surfaces, which makes adenoviral vaccines convenient for the purpose of immunization against respiratory pathogens that preferentially initiate infection at the mucosal site (40).However, AdV vaccines expressing the wild-type RSV F protein were tested in several animal models without achieving convincing protection against RSV challenge (13, 22, 23). This might be due to poor RSV F expression levels caused by premature polyadenylation, which could be overcome by codon optimization (53). Hence, here we used the codon-optimized RSV F based AdVs AdV-F and AdV-Fsol and evaluated their potential as RSV vaccines, showing greatly improved vaccine efficacy.  相似文献   

2.
We examined whether prophylactically administered anti-respiratory syncytial virus (anti-RSV) G monoclonal antibody (MAb) would decrease the pulmonary inflammation associated with primary RSV infection and formalin-inactivated RSV (FI-RSV)-enhanced disease in mice. MAb 131-2G administration 1 day prior to primary infection reduced the pulmonary inflammatory response and the level of RSV replication. Further, intact or F(ab′)2 forms of MAb 131-2G administered 1 day prior to infection in FI-RSV-vaccinated mice reduced enhanced inflammation and disease. This study shows that an anti-RSV G protein MAb might provide prophylaxis against both primary infection and FI-RSV-associated enhanced disease. It is possible that antibodies with similar reactivities might prevent enhanced disease and improve the safety of nonlive virus vaccines.Respiratory syncytial virus (RSV) infection in infants and young children causes substantial bronchiolitis and pneumonia (11, 27, 28, 40) resulting in 40,000 to 125,000 hospitalizations in the United States each year (27). RSV is also a prominent cause of respiratory illness in older children; those of any age with compromised cardiac, pulmonary, or immune systems; and the elderly (6, 7, 11, 17, 18, 39). Despite extensive efforts toward vaccine development (3, 5, 8, 20, 30, 38), none is yet available. Currently, only preventive measures are available that focus on infection control to decrease transmission and prophylactic administration of a humanized IgG monoclonal antibody (MAb) directed against the F protein of RSV (palivizumab) that is recommended for high-risk infants and young children (4, 7, 17). To date, no treatment has been highly effective for active RSV infection (17, 21).The first candidate vaccine, a formalin-inactivated RSV (FI-RSV) vaccine developed in the 1960s, not only failed to protect against disease but led to severe RSV-associated lower respiratory tract infection in young vaccine recipients upon subsequent natural infection (8, 16). The experience with FI-RSV has limited nonlive RSV vaccine development for the RSV-naïve infant and young child. Understanding the factors contributing to disease pathogenesis and FI-RSV vaccine-enhanced disease may identify ways to prevent such a response and to help achieve a safe and effective vaccine.The RSV G, or attachment, protein has been implicated in the pathogenesis of disease after primary infection and FI-RSV-enhanced disease (2, 26, 31). The central conserved region of the G protein contains four evolutionarily conserved cysteines in a cysteine noose structure, within which lies a CX3C chemokine motif (9, 29, 34). The G protein CX3C motif is also immunoactive, as suggested by studies with the mouse model that show that G protein CX3C motif interaction with CX3CR1 alters pulmonary inflammation (41), RSV-specific T-cell responses (12), FI-RSV vaccine-enhanced disease, and expression of the neurokinin substance P (14) and also depresses respiratory rates (32). Recent studies demonstrated that therapeutic treatment with a murine anti-RSV G protein monoclonal antibody (MAb 131-2G) which blocks binding to CX3CR1 can reduce pulmonary inflammation associated with primary infection (13, 23). These findings led us to hypothesize that prophylactic administration of this anti-RSV G monoclonal antibody may also diminish pulmonary inflammation associated with RSV infection in naïve and in FI-RSV-vaccinated mice. In this study, we evaluate the impact of prophylactic administration of MAb 131-2G on the pulmonary inflammatory response to primary infection and to RSV challenge following FI-RSV immunization in mice.  相似文献   

3.
Respiratory syncytial virus (RSV) infection causes substantial morbidity and some deaths in the young and elderly worldwide. There is no safe and effective vaccine available, although it is possible to reduce the hospitalization rate for high-risk children by anti-RSV antibody prophylaxis. RSV has been shown to modify the immune response to infection, a feature linked in part to RSV G protein CX3C chemokine mimicry. This study determined if vaccination with G protein polypeptides or peptides spanning the central conserved region of the G protein could induce antibodies that blocked G protein CX3C-CX3CR1 interaction and disease pathogenesis mediated by RSV infection. The results show that mice vaccinated with G protein peptides or polypeptides containing the CX3C motif generate antibodies that inhibit G protein CX3C-CX3CR1 binding and chemotaxis, reduce lung virus titers, and prevent body weight loss and pulmonary inflammation. The results suggest that RSV vaccines that induce antibodies that block G protein CX3C-CX3CR1 interaction may offer a new, safe, and efficacious RSV vaccine strategy.Human respiratory syncytial virus (RSV) is an important and ubiquitous respiratory virus causing serious lower respiratory tract diseases in infants and young children and substantial morbidity and mortality in the elderly and immunocompromised (7, 11, 20, 21). Despite substantial efforts to develop safe and effective RSV vaccines, none have been successful. The first RSV candidate vaccine, a formalin-inactivated alum-precipitated RSV (FI-RSV) preparation, did not confer protection and was associated with a greater risk of serious disease with subsequent natural infection (9, 60). Live attenuated and inactivated whole virus vaccine candidates have also failed to protect, as they were either insufficiently attenuated or demonstrated the potential for enhanced pulmonary disease upon subsequent RSV infection (6, 37, 39, 41, 45). Similarly, subunit vaccine candidates, such as purified F protein and a prokaryotically expressed fusion protein comprising a fragment of the RSV G protein (residues 130 to 230) fused by its N terminus to the albumin binding domain of streptococcal protein G (designated BBG2Na), have been shown to be inadequate (8, 33, 37, 41). The specific reasons for RSV vaccine failure remain to be answered but could be related to RSV-mediated circumvention of immunity and, more broadly, to the lack of durable immunity elicited in response to natural RSV infection, as people of all ages may experience repeated infections and disease throughout life (3, 41, 45).Evidence indicates that the RSV F protein is important in inducing protective immunity (19, 38), but studies evaluating a BBG2Na vaccine candidate in combination with different adjuvants and by different routes of administration have shown a role for G protein in protection against RSV in rodents (4, 10, 17, 32, 43, 44, 49, 51). The structural elements of the G protein fragment in the BBG2Na vaccine candidate implicated in protective efficacy were mapped, and five different B-cell epitopes were determined, i.e., residues 145 to 159, 164 to 176, 171 to 187, 172 to 187, and 190 to 204 (44, 48). Interestingly, immunogenicity of peptides with residues 145 to 159 was dependent on the orientation of the covalent peptide coupling to the carrier proteins, as mice vaccinated with C-terminally coupled peptides developed protective antibody titers, whereas mice vaccinated with N-terminal peptides did not. The focus of the BBG2Na vaccine studies centered on development of protective neutralizing antibodies, and the studies showed that vaccination or priming with the G protein fragment in BBG2Na did not induce signs of enhanced pulmonary pathology (17, 42, 46, 50).Despite the strong evidence that G protein peptides and polypeptides can induce protective immunity, the G protein has also been implicated in disease pathogenesis (30, 40, 41, 54). One of the disease mechanisms linked to the G protein is CX3C chemokine mimicry (56). RSV G protein has marked similarities to fractalkine, the only known CX3C chemokine, including similarities in structural features (56). Both G protein and fractalkine exist as membrane-bound and secreted forms, and both contain a CX3C chemokine motif that can bind to the fractalkine receptor, CX3CR1 (15, 27). Fractalkine functions to recruit immune cells to sites of inflammation, in particular, CX3CR1+ leukocytes, which include subsets of NK cells and CD4+ and CD8+ T cells (23). RSV G protein has been shown to have fractalkine-like leukocyte chemotactic activity in vitro (56). In vivo, RSV G protein acts as a fractalkine antagonist, modulating the immune response to infection by inhibiting fractalkine-mediated responses by altering the trafficking of CX3CR1+ cells and modifying the magnitude and cadence of cytokine and chemokine expression (23, 55). Infection of mice with a mutant RSV lacking the CX3C motif leads to a substantial increase of pulmonary NK cells and CD4+ and CD8+ cells compared to infection with wild-type RSV (23). This suggests that G protein CX3C-CX3CR1 interaction contributes to immune evasion and may contribute to disease pathogenesis. Thus, G protein CX3C interaction with CX3CR1 is an important target for disease intervention strategies against RSV infection.In the present study, we investigated a new RSV vaccine strategy, using G protein polypeptide and peptide vaccination to generate antibodies reactive to the central conserved cysteine noose region of the G protein to block G protein CX3C motif interaction with CX3CR1. We hypothesize that vaccines inducing G protein-CX3CR1 blocking antibodies will prevent much of the RSV G protein-mediated immune modulation and disease pathogenesis. Our results show that antibodies induced by the central conserved noose region of the G protein block G protein binding to CX3CR1, prevent body weight loss indicative of disease pathogenesis, decrease pulmonary inflammation, and decrease lung virus titers compared to antibodies reactive to N- and C-terminal regions of the G protein. These results suggest that a vaccine strategy to induce G protein CX3C-CX3CR1 blocking antibodies may be useful to prevent G protein-mediated immune modulation and disease pathogenesis.  相似文献   

4.
5.
6.
Respiratory syncytial virus (RSV) is a common respiratory viral infection in children which is associated with immune dysregulation and subsequent induction and exacerbations of asthma. We recently reported that treatment of primary human epithelial cells (PHBE cells) with transforming growth factor β (TGF-β) enhanced RSV replication. Here, we report that the enhancement of RSV replication is mediated by induction of cell cycle arrest. These data were confirmed by using pharmacologic inhibitors of cell cycle progression, which significantly enhanced RSV replication. Our data also showed that RSV infection alone resulted in cell cycle arrest in A549 and PHBE cells. Interestingly, our data showed that RSV infection induced the expression of TGF-β in epithelial cells. Blocking of TGF-β with anti-TGF-β antibody or use of a specific TGF-β receptor signaling inhibitor resulted in rescue of the RSV-induced cell cycle arrest, suggesting an autocrine mechanism. Collectively, our data demonstrate that RSV regulates the cell cycle through TGF-β in order to enhance its replication. These findings identify a novel pathway for upregulation of virus replication and suggest a plausible mechanism for association of RSV with immune dysregulation and asthma.Respiratory syncytial virus (RSV) is a single-stranded RNA virus and is a common cause of severe respiratory infections in children. RSV predominantly infects lung epithelial cells, inducing bronchiolitis, and in high-risk individuals it can cause lung fibrosis, airway hyperresponsiveness, mucus secretion, and edema. Interestingly, there is substantial evidence to show that RSV infection induces a dysregulation of the immune response (13, 14, 24, 28, 49). However, the molecular underpinnings of this immune dysregulation are not yet completely understood.It has been established that through its interaction with the immune system, RSV is associated with development and exacerbations of asthma, which is a chronic inflammatory respiratory disease (17, 18, 36, 41). In comparison to healthy individuals, those with asthma have an exaggerated inflammatory response during respiratory virus infections. Despite many studies reporting the involvement of RSV with asthma development and exacerbations, the underlining mechanisms are not yet fully delineated.Previously, we reported that transforming growth factor β (TGF-β) treatment enhanced RSV replication (30). TGF-β is a pleiotropic cytokine with diverse effects on T-cell differentiation and immune regulation and potent anti-inflammatory functions (21, 27, 33, 45). In the lung microenvironment TGF-β inhibits cell proliferation, induces mucus secretion, and regulates airway fibrosis and remodeling (2, 5, 6, 20, 23, 34, 39, 46), all of which are hallmarks of chronic asthma. Specifically, it has been reported that TGF-β expression is elevated in bronchoalveolar lavage fluids and lung tissue of asthmatic patients (9, 32, 48).In addition, genetic studies have found an association between asthma phenotype and TGF-β (19, 26, 38, 43). These studies have identified several single-nucleotide polymorphisms (C509T, T869C, and G915C) in the promoter and coding region of TGF-β that contributed to the increase in gene expression and are significantly associated with childhood wheezing, asthma diagnosis, and asthma severity. Despite this correlation between TGF-β and asthma, the interaction between this key cytokine and respiratory viral infection is poorly understood.A well-known function of TGF-β is the regulation of cell cycle progression. Activation of TGF-β-induced signaling pathways promotes cell cycle arrest in both the G0/G1 and G2/M phases of the cell cycle (7, 8, 25, 29, 40, 42, 44). In the current study, our data showed that TGF-β induction of cell cycle arrest was beneficial to RSV replication. The association of cell cycle arrest with RSV replication was determined by using three different pharmacological inhibitors of cell cycle progression, which enhanced RSV replication. Interestingly, RSV infection alone resulted in secretion of active TGF-β. Treatment of epithelial cells with anti-TGF-β or a specific inhibitor of TGF-β receptor (TGF-βR) signaling resulted in a reduction in RSV replication.In the current study, our data uncover a new pathway for virus regulation of the cell cycle. These findings support our hypothesis that RSV regulates and utilizes TGF-β in lung epithelium to enhance its replication, which may contribute to the physiological changes in the lung leading to immune dysregulation, asthma development, and exacerbations.  相似文献   

7.
8.
9.
CD4 T cells have been shown to play an important role in the immunity and immunopathogenesis of respiratory syncytial virus (RSV) infection. We identified two novel CD4 T-cell epitopes in the RSV M and M2 proteins with core sequences M213-223 (FKYIKPQSQFI) and M227-37 (YFEWPPHALLV). Peptides containing the epitopes stimulated RSV-specific CD4 T cells to produce gamma interferon (IFN-γ), interleukin 2 (IL-2), and other Th1- and Th2-type cytokines in an I-Ab-restricted pattern. Construction of fluorochrome-conjugated peptide-I-Ab class II tetramers revealed RSV M- and M2-specific CD4 T-cell responses in RSV-infected mice in a hierarchical pattern. Peptide-activated CD4 T cells from lungs were more activated and differentiated, and had greater IFN-γ expression, than CD4 T cells from the spleen, which, in contrast, produced greater levels of IL-2. In addition, M209-223 peptide-activated CD4 T cells reduced IFN-γ and IL-2 production in M- and M2-specific CD8 T-cell responses to Db-M187-195 and Kd-M282-90 peptides more than M225-39 peptide-stimulated CD4 T cells. This correlated with the fact that I-Ab-M209-223 tetramer-positive cells responding to primary RSV infection had a much higher frequency of FoxP3 expression than I-Ab-M226-39 tetramer-positive CD4 T cells, suggesting that the M-specific CD4 T-cell response has greater regulatory function. Characterization of epitope-specific CD4 T cells by novel fluorochrome-conjugated peptide-I-Ab tetramers allows detailed analysis of their roles in RSV pathogenesis and immunity.CD4 T lymphocytes play an important role in the resolution of primary viral infections and the prevention of reinfection by regulating a variety of humoral and cellular immune responses. CD4 T cells provide cytokines and other molecules to support the differentiation and expansion of antigen-specific CD8 T cells, which are major effectors for both virus clearance and immunopathology during primary infection with respiratory syncytial virus (RSV) (3, 17, 42, 43). CD4 T-cell help is mandatory for an effective B-cell response (14), which is necessary for producing neutralizing antibodies that prevent secondary RSV infection (12, 18, 21). A concurrent CD4 T-cell response also promotes the maintenance of CD8 T-cell surveillance and effector capacity (9). Previous studies have shown that interleukin 2 (IL-2) from CD4 T cells can restore CD8 T-cell function in lungs (10) and that IL-2 supplementation can increase the production of gamma interferon (IFN-γ) by CD8 T cells upon peptide stimulation in vitro (45).While CD4 T cells are important for providing support to host immunity, they have also been associated with immunopathogenesis by playing a key role in the Th2-biased T-cell response (34, 46), which may be the common mechanism of enhanced lung pathology and other disease syndromes shown in murine studies (2, 16, 17, 19, 35). Earlier studies showed the positive association of formalin-inactivated RSV (FI-RSV) immunization-mediated enhanced illness upon subsequent natural RSV infection with a Th2-biased CD4 T-cell response (19, 44). Th2-orientated CD4 T cells elicit severe pneumonia with extensive eosinophilic infiltrates in the lungs of FI-RSV-immunized mice (13, 24, 48). Patients with severe RSV disease showed an elevated Th2/Th1 cytokine ratio in nasal secretions and peripheral blood mononuclear cells (27, 29, 31, 38). Increased disease severity has also been associated with polymorphisms in Th2-related cytokine genes, such as the IL-4, IL-4 receptor, and IL-13 genes (11, 23, 36). Th2 cytokines from CD4 T cells can also diminish the CD8 T-cell response and delay viral clearance (4, 8).The evaluation of CD4 T-cell responses in viral infection is particularly relevant in the RSV model because of the association of RSV and allergic inflammation, which is largely mediated by CD4 T cells. Understanding the influence of CD4 T cells on CD8 T-cell responses and other immunological effector mechanisms is central to understanding RSV pathogenesis and developing preventive vaccine strategies for RSV. Our lab and others have demonstrated that CD8 T cells target RSV M and M2 proteins with cytolytic effector activities (28, 30, 39). In this study, we found that both RSV M and M2 proteins also contain CD4 T-cell epitopes. These epitopes have 11-mer amino acid core sequences and are associated with the major histocompatibility complex (MHC) class II molecule I-Ab. Fluorochrome-conjugated peptide-I-Ab molecule tetrameric complexes can identify RSV M- and M2-specific CD4 T cells from CB6F1 mice following RSV infection in a hierarchical pattern. Peptides containing the epitopes can stimulate CD4 T cells from RSV M or M2 DNA-immunized and virus-challenged mice and can lead to the production of IFN-γ, IL-2, and other Th1- and Th2-type cytokines that can modulate the CD8 T-cell response to RSV M and M2. We also found that CD4 T cells from the lungs and spleens of immunized mice have different phenotype and cytokine profiles upon in vitro stimulation. These observations suggest a regulatory role for CD4 T cells in the host response to RSV infection. The development of novel MHC class II tetramer reagents allows the characterization of epitope-specific CD4 T-cell responses to RSV and will enable the investigation of basic mechanisms by which CD4 T cells affect pathogenesis and immunity to viral infections.  相似文献   

10.
11.
Human respiratory syncytial virus (RSV) contains a heavily glycosylated 90-kDa attachment glycoprotein (G). Infection of HEp-2 and Vero cells in culture depends largely on virion G protein binding to cell surface glycosaminoglycans (GAGs). This GAG-dependent phenotype has been described for RSV grown in HEp-2 cells, but we have found that it is greatly reduced by a single passage in Vero cells. Virions produced from Vero cells primarily display a 55-kDa G glycoprotein. This smaller G protein represents a post-Golgi compartment form that is lacking its C terminus, indicating that the C terminus is required for GAG dependency. Vero cell-grown virus infected primary well-differentiated human airway epithelial (HAE) cell cultures 600-fold less efficiently than did HEp-2 cell-grown virus, indicating that the C terminus of the G protein is also required for virus attachment to this model of the in vivo target cells. This reduced infectivity for HAE cell cultures is not likely to be due to the loss of GAG attachment since heparan sulfate, the primary GAG used by RSV for attachment to HEp-2 cells, is not detectable at the apical surface of HAE cell cultures where RSV enters. Growing RSV stocks in Vero cells could dramatically reduce the initial infection of the respiratory tract in animal models or in volunteers receiving attenuated virus vaccines, thereby reducing the efficiency of infection or the efficacy of the vaccine.Human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus in the family Paramyxoviridae, subfamily Pneumovirinae. RSV causes mild respiratory disease in all age groups, but the disease can be severe or fatal in infants and the elderly (4, 9, 11). Initial attempts to produce a killed vaccine were not successful, resulting instead in enhanced disease upon infection (26, 41). Efforts to produce a live attenuated vaccine are ongoing (6, 7, 51).RSV produces three glycoproteins which are important for infection. The largest glycoprotein (G) is involved in attachment to the host cell (35), the fusion (F) glycoprotein mediates virion membrane fusion with the target cell membrane (2), and the small hydrophobic (SH) glycoprotein may attenuate apoptosis (15). The F protein is the only glycoprotein that is absolutely required for infection of cultured immortalized cells (27, 45) and syncytium formation, the most obvious cytopathic effect of RSV in immortalized cell culture. Although the G protein is not absolutely required for infection, it enhances infection and syncytium formation (45). The G protein attaches to cultured, immortalized cell lines (35) primarily via glycosaminoglycans (GAGs) on the cell surface (13, 22, 23, 30). GAGs are repeating disaccharide units of hexuronic acid and hexosamine that form unbranched polysaccharide chains and are found on the surface of most mammalian cells. The GAG type that appears most important for RSV infection of HEp-2 cells is heparan sulfate (HS) (23, 30).The G protein is a type II integral membrane protein with its N terminus on the cytoplasmic side of the membrane and its C terminus as the extracellular ectodomain (49). An unglycosylated region in the center of the protein contains four cysteines held together by disulfide bonds in a cysteine noose (19, 24, 33), followed, to the C-terminal side, by a predicted heparin-binding domain (HBD) (12, 13). The 32-kDa G protein, while in the endoplasmic reticulum (ER), is modified by the addition of multiple N-linked carbohydrate chains, depending on the strain. These N-linked additions would increase the molecular mass of G to 45 to 60 kDa. Previous reports have found G protein forms of this size in cells and in virions at low levels (5, 20, 21, 50). All of these reports suggest that these smaller forms of the G protein are partially glycosylated processing intermediates.Maturation of the N-linked carbohydrates of the G protein occurs in the Golgi compartment, where a large number of O-linked carbohydrate chains are added, resulting in an 84- to 92-kDa mature protein (14, 32, 35, 49). This size variation of the G protein is probably due, in part, to the difficulty in sizing heavily glycosylated molecules and variations in molecular mass markers.The G protein shares no homology with the glycoproteins of paramyxoviruses outside the Pneumovirinae subfamily. The high serine and threonine content and the high O-linked glycosylation levels are similar to those found in mucins. The amount of O-linked glycosylation is partially dependent on the cell type used to produce the virus (18).In the present study, we examined virus produced in HEp-2 and Vero cells, which are both commonly used to grow RSV in the laboratory, for dependence on GAGs by the ability to infect cells expressing GAG or deficient in GAG expression. We also examined the ability of the viruses to infect primary, well-differentiated human airway epithelial (HAE) cell cultures. In both systems, infectivity was greatly dependent upon the cell line used to grow the virus. Biochemical characterization of purified virus grown in these two cell lines revealed a smaller form of the RSV G protein in virions from Vero cells. Using C terminus-specific antibodies and a six-His tag at the C terminus of the G protein, we determined that the smaller G protein form was lacking its C terminus. These results highlight the importance of the C-terminal portion of the G protein and suggest that the cell line used to produce a virus can alter its infectivity.  相似文献   

12.
Severe primary respiratory syncytial virus (RSV) infections are characterized by bronchiolitis accompanied by wheezing. Controversy exists as to whether infants suffer from virus-induced lung pathology or from excessive immune responses. Furthermore, detailed knowledge about the development of primary T-cell responses to viral infections in infants is lacking. We studied the dynamics of innate neutrophil and adaptive T-cell responses in peripheral blood in relation to theviral load and parameters of disease in infants admitted to the intensive care unit with severe RSV infection. Analysis of primary T-cell responses showed substantial CD8+ T-cell activation, which peaked during convalescence. A strong neutrophil response, characterized by mobilization of bone marrow-derived neutrophil precursors, preceded the peak in T-cell activation. The kinetics of this neutrophil response followed the peak of clinical symptoms and the viral load with a 2- to 3-day delay. From the sequence of events, we conclude that CD8+ T-cell responses, initiated during primary RSV infections, are unlikely to contribute to disease when it is most severe. The mobilization of precursor neutrophils might reflect the strong neutrophil influx into the airways, which is a characteristic feature during RSV infections and might be an integral pathogenic process in the disease.Viral infections are characterized by a dynamic interplay between the pathogen and defensive innate and adaptive immune responses of the host (35, 38). Upon infection, virus-specific structural components are recognized by pattern recognition receptors of the host, which triggers a mechanism aimed at the suppression of virus replication and eventually virus elimination. Each virus has a characteristic signature of triggering innate immune receptors and methods to counteract immune responses of the host, which ultimately results in an immune response tailored to the particular properties of the infecting virus (6).Most insights into the sequence of events occurring during viral infections have been obtained from animal experiments, where the immunological control of viral infections can be studied in detail. In many murine models, the crucial role of CD8+ T cells in complete elimination of the virus during acute infections has been well established (9, 20, 27). However, both virus-induced damage and immune pathology might contribute to the disease, depending on the type of viral infection and/or the intensity of the innate and adaptive immune responses triggered (10, 20, 37, 41, 49, 60).Primary infections with respiratory syncytial virus (RSV) can cause severe bronchiolitis and pneumonia in infants (24). For RSV, the mouse is not a good model to study primary disease because the virus replicates poorly in murine cells. Hence, to obtain insight into the mechanism of disease caused by RSV, infection studies in humans or nonhuman primate models are needed. We and others have shown that RSV infection causes a strong influx of neutrophils into the airways (15, 25, 48). In addition, we have recently shown that substantial virus-specific CD8+ T-cell responses can be elicited in infants with severe RSV infections (25). However, it is still a controversial issue whether the severe manifestations of lower respiratory tract disease are caused directly by the virus or by innate and/or adaptive immune responses triggered by RSV (8, 20, 31, 57). In our previous work, we found no relation between the severity of disease and the number of virus-specific CD8+ T cells in peripheral blood (25). Moreover, a direct role of the viral load or different viral strains in disease severity has not been established convincingly (11, 59).Data on the development of primary T-cell responses in infants (<6 months old) during acute viral infections and after vaccinations are sparse. It is generally accepted that the infant immune system is immature and less effective than that of older children or adults. This has been shown by lower activation and/or Th2-polarized adaptive immune responses (1, 2, 58). For RSV-induced disease, it has been suggested that a Th2-biased immune response might be correlated with disease (39, 45, 50), but this idea has been challenged by others (4, 7, 12).Currently, there is no RSV vaccine, and the only preventive treatment available is a humanized neutralizing antibody specific for the fusion protein of RSV that is administered to high-risk groups and is effective in about 60% of children (29). Immune-suppressive or antiviral treatments during severe RSV disease have marginal to no effect (3, 23, 55). Insights into the kinetics of the viral load and disease course in relation to activation of the innate and adaptive immune response will shed light on factors that are attributed to severe RSV-induced disease and will possibly provide leads for the development of curative treatment. We therefore monitored the dynamics of these parameters in infants admitted to the pediatric intensive care unit (ICU) with severe primary RSV infections. During primary RSV infection, the peak values of the viral load and disease severity were followed by the exhaustion of the peripheral blood neutrophil pool, indicating a strong innate immune response closely associated with the peak of disease. We further showed that this natural respiratory infection elicited a strong primary CD8+ T-cell response in the very young patients (<3 months). This T-cell response was undetectable at the moment of hospitalization, when the infants were severely ill, and peaked at convalescence. Therefore, severe primary RSV disease does not seem to be caused by inadequate or exaggerated T-cell responses but is most likely initiated by viral damage followed by intense innate immune processes.  相似文献   

13.
The envelope (Env) glycoproteins of HIV and other lentiviruses possess neutralization and other protective epitopes, yet all attempts to induce protective immunity using Env as the only immunogen have either failed or afforded minimal levels of protection. In a novel prime-boost approach, specific-pathogen-free cats were primed with a plasmid expressing Env of feline immunodeficiency virus (FIV) and feline granulocyte-macrophage colony-stimulating factor and then boosted with their own T lymphocytes transduced ex vivo to produce the same Env and interleukin 15 (3 × 106 to 10 × 106 viable cells/cat). After the boost, the vaccinees developed elevated immune responses, including virus-neutralizing antibodies (NA). Challenge with an ex vivo preparation of FIV readily infected all eight control cats (four mock vaccinated and four naïve) and produced a marked decline in the proportion of peripheral CD4 T cells. In contrast, five of seven vaccinees showed little or no traces of infection, and the remaining two had reduced viral loads and underwent no changes in proportions of CD4 T cells. Interestingly, the viral loads of the vaccinees were inversely correlated to the titers of NA. The findings support the concept that Env is a valuable immunogen but needs to be administered in a way that permits the expression of its full protective potential.Despite years of intense research, a truly protective AIDS vaccine is far away. Suboptimal immunogenicity, inadequate antigen presentation, and inappropriate immune system activation are believed to have contributed to these disappointing results. However, several lines of evidence suggest that the control or prevention of infection is possible. For example, despite repeated exposures, some individuals escape infection or delay disease progression after being infected (1, 14, 15). Furthermore, passively infused neutralizing antibodies (NA) (28, 42, 51) or endogenously expressed NA derivatives (29) have been shown to provide protection against intravenous simian immunodeficiency virus challenge. On the other hand, data from several vaccine experiments suggest that cellular immunity is an important factor for protection (6, 32). Therefore, while immune protection against human immunodeficiency virus (HIV) and other lentiviruses appears feasible, the strategies for eliciting it remain elusive.Because of its crucial role in viral replication and infectivity, the HIV envelope (Env) is an attractive immunogen and has been included in nearly all vaccine formulations tested so far (28, 30, 31). Env surface (SU) and transmembrane glycoproteins (gp) are actively targeted by the immune system (9, 10, 47), and Env-specific antibodies and cytotoxic T lymphocytes (CTLs) are produced early in infection. The appearance of these effectors also coincides with the decline of viremia during the acute phase of infection (30, 32). Individuals who control HIV infection in the absence of antiretroviral therapy have Env-specific NA and CTL responses that are effective against a wide spectrum of viral strains (14, 23, 35, 52, 60). At least some of the potentially protective epitopes in Env appear to interact with the cellular receptors during viral entry and are therefore highly conserved among isolates (31, 33, 39, 63). However, these epitopes have complex secondary and tertiary structures and are only transiently exposed by the structural changes that occur during the interaction between Env and its receptors (10, 11, 28). As a consequence, these epitopes are usually concealed from the immune system, and this may explain, at least in part, why Env-based vaccines have failed to show protective efficacy. Indeed, data from previous studies suggested that protection may be most effectively triggered by nascent viral proteins (22, 28, 30, 48, 62).We have conducted a proof-of-concept study to evaluate whether presenting Env to the immune system in a manner as close as possible to what occurs in the context of a natural infection may confer some protective advantage. The study was carried out with feline immunodeficiency virus (FIV), a lentivirus similar to HIV that establishes persistent infections and causes an AIDS-like disease in domestic cats. As far as it is understood, FIV evades immune surveillance through mechanisms similar to those exploited by HIV, and attempts to develop an effective FIV vaccine have met with difficulties similar to those encountered with AIDS vaccines (25, 37, 66). In particular, attempts to use FIV Env as a protective immunogen have repeatedly failed (13, 38, 58). Here we report the result of one experiment in which specific-pathogen-free (SPF) cats primed with a DNA immunogen encoding FIV Env and feline granulocyte-macrophage colony-stimulating factor (GM-CSF) and boosted with viable, autologous T lymphocytes ex vivo that were transduced to express Env and feline interleukin 15 (IL-15) showed a remarkable level of protection against challenge with ex vivo FIV. Consistent with recent findings indicating the importance of NA in controlling lentiviral infections (1, 59, 63), among the immunological parameters investigated, only the titers of NA correlated inversely with protection. Collectively, the findings support the notion that Env is a valuable vaccine immunogen but needs to be administered in a way that permits the expression of its full protective potential.  相似文献   

14.
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.The smallpox vaccine, live vaccinia virus (VACV), is frequently considered the gold standard of human vaccines and has been enormously effective in preventing smallpox disease. The smallpox vaccine led to the worldwide eradication of the disease via massive vaccination campaigns in the 1960s and 1970s, one of the greatest successes of modern medicine (30). However, despite the efficacy of the smallpox vaccine, the mechanisms of protection remain unclear. Understanding those mechanisms is key for developing immunologically sound vaccinology principles that can be applied to the design of future vaccines for other infectious diseases (3, 101).Clinical studies of fatal human cases of smallpox disease (variola virus infection) have shown that neutralizing antibody titers were either low or absent in patient serum (24, 68). In contrast, neutralizing antibody titers for the VACV intracellular mature virion (MV or IMV) were correlated with protection of vaccinees against smallpox (68). VACV immune globulin (VIG) (human polyclonal antibodies) is a promising treatment against smallpox (47), since it was able to reduce the number of smallpox cases ∼80% among variola-exposed individuals in four case-controlled clinical studies (43, 47, 52, 53, 69). In animal studies, neutralizing antibodies are crucial for protecting primates and mice against pathogenic poxviruses (3, 7, 17, 21, 27, 35, 61, 66, 85).The specificities and the functions of protective antipoxvirus antibodies have been areas of intensive research, and the mechanics of poxvirus neutralization have been debated for years. There are several interesting features and problems associated with the antibody response to variola virus and related poxviruses, including the large size of the viral particles and the various abundances of many distinct surface proteins (18, 75, 91, 93). Furthermore, poxviruses have two distinct virion forms, intracellular MV and extracellular enveloped virions (EV or EEV), each with a unique biology. Most importantly, MV and EV virions share no surface proteins (18, 93), and therefore, there is no single neutralizing antibody that can neutralize both virion forms. As such, an understanding of virion structure is required to develop knowledge regarding the targets of protective antibodies.Neutralizing antibodies confer protection mainly through the recognition of antigens on the surface of a virus. A number of groups have discovered neutralizing antibody targets of poxviruses in animals and humans (3). The relative roles of antibodies against MV and EV in protective immunity still remain somewhat unclear. There are compelling data that antibodies against MV (21, 35, 39, 66, 85, 90, 91) or EV (7, 16, 17, 36, 66, 91) are sufficient for protection, and a combination of antibodies against both targets is most protective (66). It remains controversial whether antibodies to one virion form are more important than those to the other (3, 61, 66). The most abundant viral particles are MV, which accumulate in infected cells and are released as cells die (75). Neutralization of MV is relatively well characterized (3, 8, 21, 35). EV, while less abundant, are critical for viral spread and virulence in vivo (93, 108). Neutralization of EV has remained more enigmatic (3).B5R (also known as B5 or WR187), one of five known EV-specific proteins, is highly conserved among different strains of VACV and in other orthopoxviruses (28, 49). B5 was identified as a protective antigen by Galmiche et al., and the available evidence indicated that the protection was mediated by anti-B5 antibodies (36). Since then, a series of studies have examined B5 as a potential recombinant vaccine antigen or as a target of therapeutic monoclonal antibodies (MAbs) (1, 2, 7, 17, 40, 46, 66, 91, 110). It is known that humans immunized with the smallpox vaccine make antibodies against B5 (5, 22, 62, 82). It is also known that animals receiving the smallpox vaccine generate antibodies against B5 (7, 20, 27, 70). Furthermore, previous neutralization assays have indicated that antibodies generated against B5 are primarily responsible for neutralization of VACV EV (5, 83). Recently Chen at al. generated chimpanzee-human fusion MAbs against B5 and showed that the MAbs can protect mice from lethal challenge with virulent VACV (17). We recently reported, in connection with a study using murine monoclonal antibodies, that neutralization of EV is highly complement dependent and the ability of anti-B5 MAbs to protect in vivo correlated with their ability to neutralize EV in a complement-dependent manner (7).The focus of the study described here was to elucidate the mechanisms of EV neutralization, focusing on the human antibody response to B5. Our overall goal is to understand underlying immunobiological and virological parameters that determine the emergence of protective antiviral immune responses in humans.  相似文献   

15.
The respiratory syncytial virus (RSV) matrix (M) protein is localized in the nucleus of infected cells early in infection but is mostly cytoplasmic late in infection. We have previously shown that M localizes in the nucleus through the action of the importin β1 nuclear import receptor. Here, we establish for the first time that M''s ability to shuttle to the cytoplasm is due to the action of the nuclear export receptor Crm1, as shown in infected cells, and in cells transfected to express green fluorescent protein (GFP)-M fusion proteins. Specific inhibition of Crm1-mediated nuclear export by leptomycin B increased M nuclear accumulation. Analysis of truncated and point-mutated M derivatives indicated that Crm1-dependent nuclear export of M is attributable to a nuclear export signal (NES) within residues 194 to 206. Importantly, inhibition of M nuclear export resulted in reduced virus production, and a recombinant RSV carrying a mutated NES could not be rescued by reverse genetics. That this is likely to be due to the inability of a nuclear export deficient M to localize to regions of virus assembly is indicated by the fact that a nuclear-export-deficient GFP-M fails to localize to regions of virus assembly when expressed in cells infected with wild-type RSV. Together, our data suggest that Crm1-dependent nuclear export of M is central to RSV infection, representing the first report of such a mechanism for a paramyxovirus M protein and with important implications for related paramyxoviruses.The Pneumovirus respiratory syncytial virus (RSV) within the Paramyxoviridae family is the most common cause of lower-respiratory-tract disease in infants (7). The negative-sense single-strand RNA genome of RSV encodes two nonstructural and nine structural proteins, comprising the envelope glycoproteins (F, G, and SH), the nucleocapsid proteins (N, P, and L), the nucleocapsid-associated proteins (M2-1 and M2-2), and the matrix (M) protein (1, 7, 11). Previously, we have shown that M protein localizes in the nucleus at early stages of infection, but later in infection it is localized mainly in the cytoplasm, in association with nucleocapsid-containing cytoplasmic inclusions (13, 16). The M proteins of other negative-strand viruses, such as Sendai virus, Newcastle disease virus, and vesicular stomatitis virus (VSV), have also been observed in the nucleus at early stages of infection (32, 40, 48). Interestingly, the M proteins of all of these viruses, including RSV, play major roles in virus assembly, which take place in the cytoplasm and at the cell membrane (11, 12, 24, 34, 36, 39), but the mechanisms by which trafficking between the nucleus and cytoplasm occurs are unknown.The importin β family member Crm1 (exportin 1) is known to mediate nuclear export of proteins bearing leucine-rich nuclear export signals (NES) (8, 9, 18, 19, 37, 42, 43), such as the human immunodeficiency virus type 1 Rev protein (4). In the case of the influenza virus matrix (M1) protein, binding to the influenza virus nuclear export protein, which possesses a Crm1-recognized NES, appears to be responsible for its export from the nucleus, bound to the influenza virus RNA (3).We have recently shown that RSV M localizes in the nucleus through a conventional nuclear import pathway dependent on the nuclear import receptor importin β1 (IMPβ1) and the guanine nucleotide-binding protein Ran (14). In the present study, we show for the first time that RSV M possesses a Crm1-dependent nuclear export pathway, based on experiments using the specific inhibitor leptomycin B (LMB) (25), both in RSV-infected cells and in green fluorescent protein (GFP)-M fusion protein-expressing transfected cells. We use truncated and point-mutated M derivatives to map the Crm1-recognized NES within the M sequence and show that Crm1-dependent nuclear export is critical to the RSV infectious cycle, since LMB treatment early in infection, inhibiting M export from the nucleus, reduces RSV virion production and a recombinant RSV carrying a NES mutation in M was unable to replicate, probably because M deficient in nuclear export could not localize to areas of virus assembly, as shown in RSV-infected cells transfected to express GFP-M. This is the first report of a Crm1-mediated nuclear export pathway for a paramyxovirus M protein, with implications for the trafficking and function of other paramyxovirus M proteins.  相似文献   

16.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

17.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   

18.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.Hantaviruses cause 2 human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (50). HPS and HFRS are multifactorial in nature and cause thrombocytopenia, immune and endothelial cell responses, and hypoxia, which contribute to disease (7, 11, 31, 42, 62). Although these syndromes sound quite different, they share common components which involve the ability of hantaviruses to infect endothelial cells and induce capillary permeability. Edema, which results from capillary leakage of fluid into tissues and organs, is a common finding in both HPS and HFRS patients (4, 7, 11, 31, 42, 62). In fact, both diseases can present with renal or pulmonary sequelae, and the renal or pulmonary focus of hantavirus diseases is likely to result from hantavirus infection of endothelial cells within vast glomerular and pulmonary capillary beds (4, 7, 11, 31, 42, 62). All hantaviruses predominantly infect endothelial cells which line capillaries (31, 42, 44, 61, 62), and endothelial cells have a primary role in maintaining fluid barrier functions of the vasculature (1, 12, 55). Although hantaviruses do not lyse endothelial cells (44, 61), this primary cellular target underlies hantavirus-induced changes in capillary integrity. As a result, understanding altered endothelial cell responses following hantavirus infection is fundamental to defining the mechanism of permeability induced by pathogenic hantaviruses (1, 12, 55).Pathogenic, but not nonpathogenic, hantaviruses use β3 integrins on the surface of endothelial cells and platelets for attachment (19, 21, 23, 39, 46), and β3 integrins play prominent roles in regulating vascular integrity (3, 6, 8, 24, 48). Pathogenic hantaviruses bind to basal, inactive conformations of β3 integrins (35, 46, 53) and days after infection inhibit β3 integrin-directed endothelial cell migration (20, 46). This may be the result of cell-associated virus (19, 20, 22) which keeps β3 in an inactive state but could also occur through additional regulatory processes that have yet to be defined. Interestingly, the nonpathogenic hantaviruses Prospect Hill virus (PHV) and Tula virus (TULV) fail to alter β3 integrin functions, and their entry is consistent with the use of discrete α5β1 integrins (21, 23, 36).On endothelial cells, αvβ3 integrins normally regulate permeabilizing effects of vascular endothelial growth factor receptor-2 (VEGFR2) (3, 24, 48, 51). VEGF was initially identified as an edema-causing vascular permeability factor (VPF) that is 50,000 times more potent than histamine in directing fluid across capillaries (12, 14). VEGF is responsible for disassembling adherens junctions between endothelial cells to permit cellular movement, wound repair, and angiogenesis (8, 10, 12, 13, 17, 26, 57). Extracellular domains of β3 integrins and VEGFR2 reportedly form a coprecipitable complex (3), and knocking out β3 causes capillary permeability that is augmented by VEGF addition (24, 47, 48). Pathogenic hantaviruses inhibit β3 integrin functions days after infection and similarly enhance the permeability of endothelial cells in response to VEGF (22).Adherens junctions form the primary fluid barrier of endothelial cells, and VEGFR2 responses control adherens junction disassembly (10, 17, 34, 57, 63). Vascular endothelial cadherin (VE-cadherin) is an endothelial cell-specific adherens junction protein and the primary determinant of paracellular permeability within the vascular endothelium (30, 33, 34). Activation of VEGFR2, another endothelial cell-specific protein, triggers signaling responses resulting in VE-cadherin disassembly and endocytosis, which increases the permeability of endothelial cell junctions (10, 12, 17, 34). VEGF is induced by hypoxic conditions and released by endothelial cells, platelets, and immune cells (2, 15, 38, 52). VEGF acts locally on endothelial cells through the autocrine or paracrine activation of VEGFR2, and the disassembly of endothelial cell adherens junctions increases the availability of nutrients to tissues and facilitates leukocyte trafficking and diapedesis (10, 12, 17, 55). The importance of endothelial cell barrier integrity is often in conflict with requirements for endothelial cells to move in order to permit angiogenesis and repair or cell and fluid egress, and as a result, VEGF-induced VE-cadherin responses are tightly controlled (10, 17, 18, 32, 33, 59). This limits capillary permeability while dynamically responding to a variety of endothelial cell-specific factors and conditions. However, if unregulated, this process can result in localized capillary permeability and edema (2, 9, 10, 12, 14, 17, 29, 60).Interestingly, tissue edema and hypoxia are common findings in both HPS and HFRS patients (11, 31, 62), and the ability of pathogenic hantaviruses to infect human endothelial cells provides a means for hantaviruses to directly alter normal VEGF-VE-cadherin regulation. In fact, the permeability of endothelial cells infected by pathogenic Andes virus (ANDV) or Hantaan virus (HTNV) is dramatically enhanced in response to VEGF addition (22). This response is absent from endothelial cells comparably infected with the nonpathogenic TULV and suggests that enhanced VEGF-induced endothelial cell permeability is a common underlying response of both HPS- and HFRS-causing hantaviruses (22). In these studies, we comparatively investigate responses of human endothelial cells infected with pathogenic ANDV and HTNV, as well as nonpathogenic TULV.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号