首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基因治疗一直是肿瘤生物治疗的重要策略,而以溶瘤痘苗病毒为载体的肿瘤治疗近年来受到较多关注。该文总结了目前用于恶性肿瘤治疗的痘苗病毒和基于痘苗病毒载体的基因治疗研究进展及其在各个领域的成果。  相似文献   

2.

Introduction

Cytokine-induced killer cells (CIK cells) are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment.

Methods

We combined recombinant human endostatin (rh-endostatin) and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells.

Results

Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments.

Conclusions

Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells therapy against lung carcinomas and unmask the mechanisms of the synergistic antitumor efficacy, providing a new rationale for combining antiangiogenesis therapy with immunotherapy in the treatment of lung cancer.  相似文献   

3.
Viral inhibitors of host programmed cell death (PCD) are widely believed to promote viral replication by preventing or delaying host cell death. Viral FLIPs (Fas-linked ICE-like protease [FLICE; caspase-8]-like inhibitor proteins) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. Surprisingly, transgenic expression of the viral FLIP MC159 from molluscum contagiosum virus (MCV) in mice enhanced rather than inhibited the innate immune control of vaccinia virus (VV) replication. This effect of MC159 was specifically manifested in peripheral tissues such as the visceral fat pad, but not in the spleen. VV-infected MC159 transgenic mice mounted an enhanced innate inflammatory reaction characterized by increased expression of the chemokine CCL-2/MCP-1 and infiltration of γδ T cells into peripheral tissues. Radiation chimeras revealed that MC159 expression in the parenchyma, but not in the hematopoietic compartment, is responsible for the enhanced innate inflammatory responses. The increased inflammation in peripheral tissues was not due to resistance of lymphocytes to cell death. Rather, we found that MC159 facilitated Toll-like receptor 4 (TLR4)- and tumor necrosis factor (TNF)-induced NF-κB activation. The increased NF-κB responses were mediated in part through increased binding of RIP1 to TNFRSF1A-associated via death domain (TRADD), two crucial signal adaptors for NF-κB activation. These results show that MC159 is a dual-function immune modulator that regulates host cell death as well as NF-κB responses by innate immune signaling receptors.Successful immunity against pathogenic challenges is central to the survival of all organisms. Metazoans employ a wide array of innate and adaptive immune responses to control various pathogens. In response, pathogens have developed various strategies to evade detection and elimination by the immune system. Programmed cell death (PCD) plays an important role in host defense against pathogens by directly eliminating infected cells to limit the viral factory. A role for host cell death in antiviral responses is highlighted by the identification of viral inhibitors of apoptosis (3). In addition to apoptosis, nonapoptotic PCD pathways, such as necrosis and autophagy have recently been shown to participate in host defense against pathogens (31, 44). For instance, we recently showed that genetic ablation of an essential necrosis mediator, RIP3, resulted in severely impaired innate immune responses against vaccinia virus (VV) infection characterized by the lack of virus-induced tissue necrosis and inflammation (11). In addition, certain vFLIPs (viral Fas-linked ICE-like protease [FLICE; caspase-8]-like inhibitor proteins) are potent inhibitors of programmed necrosis (6, 8). These results indicate that host PCD machineries play important roles in controlling the viral factory and dissemination of the virus within the infected host.Despite the widely accepted view that inhibition of host cell death is an important viral immune evasion strategy, relatively few in vivo studies have been performed to directly test this hypothesis. This is due partly to the lack of suitable animal models in which specific components of host apoptotic machinery are inhibited. For instance, germ line inactivation of many of the components of the PCD machinery, such as Fas-associated via death domain (FADD) and caspase-8, resulted in embryonic lethality (50, 55, 57), thus preventing in vivo virus infection studies from using these animal models. Another approach that was widely used was transgenic expression of viral apoptosis inhibitors, such as poxvirus CrmA, baculovirus p35, and vFLIPs. However, since expression of these inhibitors was restricted mostly to the lymphoid compartment (26, 28, 34, 46, 51, 54, 58), they do not permit evaluation of the role of host cell death in the parenchyma in antiviral responses. Cell death in the stromal compartment could impact the innate inflammatory reaction, cross-priming of antigens, and viral dissemination to other tissues. Because cells in the parenchyma are the primary targets for many virus infections, it is important to determine the contribution of cell death in the parenchyma in antiviral responses.The vFLIPs were first identified as inhibitors of caspase-dependent apoptosis. They share homology with caspase-8 and caspase-10 in the tandem death effector domains (DEDs) at the amino termini. However, vFLIPs lack the caspase enzyme domain at the carboxyl termini. Thus, binding of vFLIPs to FADD and caspase-8/-10 via DED-mediated homotypic interaction led to inhibition of FasL-, tumor necrosis factor (TNF)-, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis (18, 19). Importantly, certain vFLIPs, including MC159 and E8, are also potent inhibitors of programmed necrosis induced by TNF-like death cytokines (8). These results suggest that viral inhibitors could inhibit multiple host PCD pathways to avoid elimination by the host immune system.In order to determine the effect of vFLIPs on host responses against viral infections, we generated transgenic mice expressing vFLIP MC159 under the control of the ubiquitous H2-Kb promoter (53). We previously showed that transgenic expression of MC159 did not alter lymphocyte functions and development, but rather caused a mild form of lymphoproliferation that resembled that seen with the lpr mice with Fas/CD95/Apo-1 mutations (53). Here, we show that MC159 transgenic mice exhibited enhanced innate immune responses to VV infections, which led to enhanced viral clearance in peripheral tissues. Surprisingly, the enhanced control of VV production was not due to enhanced lymphocyte survival. Rather, VV-induced expression of the chemokine CCL-2/MCP-1 was highly elevated in MC159 transgenic mice and was accompanied by enhanced recruitment of γδ T cells to peripheral tissues. MC159 promotes the binding between TRADD and RIP1, two crucial signal adaptors for NF-κB activation. Consequently, MC159 transgenic fibroblasts exhibited enhanced NF-κB activation to TNF and Toll-like receptor 4 (TLR4) stimulation. These results reveal a previously unappreciated effect of MC159 on NF-κB activation and indicate that viral cell death inhibitors could impact innate immune responses through mechanisms beyond cell death regulation.  相似文献   

4.
溶瘤病毒可靶向性杀伤肿瘤细胞而不对正常细胞产生杀伤作用。近几年已开发出十余种溶瘤病毒。痘苗病毒曾在全球消灭天花行动中被广泛使用,并且有着复制速度快、免疫原性强、副作用明确等优点。痘苗病毒经过基因改造,可以选择性地在肿瘤细胞中复制并裂解细胞。目前,用于溶瘤痘苗病毒改造的主要有痘苗病毒Western Re verse株、Wyeth株、Lister株和Copenhagen株,我国使用的痘苗病毒天坛株尚未有相关报道。  相似文献   

5.
6.
The major challenges we are facing in cancer therapy with paclitaxel (PTX) are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ), an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.  相似文献   

7.
Antiangiogenic therapy is important for the treatment of gynecological cancer. However, the therapeutic benefit derived from these treatments is transient, predominantly due to the selective activation of compensatory proangiogenic pathways that lead to rapid development of resistance. We aimed to identify and target potential alternative signaling to anti-vascular endothelial growth factor (VEGF) therapy, with a view toward developing a combination of antiangiogenic agents to provide extended therapeutic benefits. We developed a preclinical in vivo phenotypic resistance model of ovarian cancer resistant to antiangiogenic therapy. We measured dynamic changes in secreted chemokines and angiogenic signaling in tumors and plasma in response to anti-VEGF treatment, as tumors advanced from the initial responsive phase to progressive disease. In tumors that progressed following sorafenib treatment, gene and protein expression levels of proangiogenic CXC chemokines and their receptors were significantly elevated, compared with responsive tumors. The chemokine (C-X-C motif) ligand 8 (CXCL8), also known as interleukin-8 (IL-8) increase was time-dependent and coincided with the dynamics of tumor progression. We used SB225002, a pharmacological inhibitor of chemokine (C-X-C motif) receptor 2 (CXCR2), to disrupt the CXC chemokine-mediated functions of ovarian cancer cells in in vitro assays of cell growth inhibition, spheroid formation, and cell migration. The combination of CXCR2 inhibitor with sorafenib led to a synergistic inhibition of cell growth in vitro, and further stabilized tumor progression following sorafenib in vivo. Our results suggest that CXCR2-mediated chemokines may represent an important compensatory pathway that promotes resistance to antiangiogenic therapy in ovarian cancer. Thus, simultaneous blockage of this proangiogenic cytokine pathway using CXCR2 inhibitors and the VEGF receptor (VEGFR) pathway could improve the outcomes of antiangiogenic therapy.  相似文献   

8.
Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor) single-chain antibody (scAb) GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients.  相似文献   

9.
目的 拯救携带OX40L的重组溶瘤流感病毒株,全面鉴定并评价其靶向杀伤肝癌细胞的效果。方法 将编码OX40L的基因片段嵌合在A/PuertoRico/8/34(PR8)的NS片段特定位置,利用反向遗传学技术(reverse genetics,RG),与PR8流感病毒的剩余7个骨架质粒pHW191-PB2、pHW192-PB1、pHW193-PA、pHW194-HA、pHW195-NP、pHW196-NA、pHW197-M共转染COSⅠ/MDCK细胞,成功拯救获得重组溶瘤流感病毒,命名为rFlu-OX40L。经血凝、TCID50方法测定病毒滴度;重组病毒纯化后电镜观察病毒形态特征及大小分布;检测MDCK细胞病毒生长曲线;MTS法检测重组病毒对肝癌细胞活力的影响;流式细胞术检测重组病毒诱导肝癌细胞死亡方式;利用肝癌荷瘤小鼠模型评价重组病毒rFlu-OX40L在动物体内的抗肿瘤效果。结果 重组溶瘤流感病毒rFlu-OX40L可在鸡胚中稳定传代,HA效价达27~8,病毒滴度可达 7~8 LgTCID50/ml;重组病毒rFlu-OX40L与流感病毒PR8生长曲线相一致,72 h达高峰;MTS结果显示,3 MOI重组病毒可显著降低肝癌细胞活力,且对正常肝细胞无明显影响,呈时间和剂量依赖性;流式细胞结果显示,重组病毒可显著诱导肝癌细胞凋亡,呈时间和剂量依赖性;利用肝癌荷瘤小鼠模型,瘤内注射重组溶瘤流感病毒rFlu-OX40L较PR8、PBS对照组,小鼠脾细胞中CD3+、CD4+、CD8+、CD45+、CD69+ T细胞数量呈现显著升高趋势。结论 携带OX40L的重组溶瘤流感病毒rFlu-OX40L在体内外均可选择性杀伤肝癌细胞,有望为肝癌的临床治疗提供新的免疫治疗策略。  相似文献   

10.
11.
Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a significant therapeutic potential in treating lymph node metastases of human PC-3 prostate carcinoma in tumor xenografts. In this study, underlying mechanisms of the virus-mediated metastases reduction were analyzed. Immunohistochemistry demonstrated that virus-treatment resulted in a drastically decrease of blood and lymph vessels, representing essential routes for PC-3 cell migration, in both tumors and metastases. Thus, GLV-1h68 drastically reduced essential routes for the metastatic spread of PC-3 cells. Furthermore, analysis of viral distribution in GLV-1h68-injected tumor-bearing mice by plaque assays, revealed significantly higher virus titers in metastases compared to solid tumors. To elucidate conditions potentially mediating the preferential viral colonization and eradication of metastases, microenvironmental components of uninfected tumors and metastases were compared by microscopic studies. These analyses revealed that PC-3 lymph node metastases showed increased vascular permeability, higher proliferation status of tumor cells as determined by BrdU- and Ki-67 assays and lesser necrosis of PC-3 cells than solid tumors. Moreover, an increased number of immune cells (MHCII+/CD68+ macrophages, MHCII+/CD19+ B lymphocytes) combined with an up-regulated expression of pro-inflammatory cytokines was observed in metastases in comparison to primary PC-3 tumors. We propose that these microenvironmental components mediated the metastatic tropism of GLV-1h68. Therefore, vaccinia virus-based oncolytic virotherapy might offer a novel treatment of metastatic prostate carcinomas in humans.  相似文献   

12.
HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targeting agent (MTA) docetaxel, in preclinical models of NSCLC. We identified a subset of NSCLC cell lines in which these drugs act in synergy to enhance cell death. Xenograft models of NSCLC demonstrated tumor growth inhibition, and in some cases, regression in response to combination treatment. Treatment with IPI-504 enhanced the antimitotic effects of docetaxel leading to the hypothesis that the mitotic checkpoint is required for the response to drug combination. Supporting this hypothesis, overriding the checkpoint with an Aurora kinase inhibitor diminished the cell death synergy of IPI-504 and docetaxel. To investigate the molecular basis of synergy, an unbiased stable isotope labeling by amino acids in cell culture (SILAC) proteomic approach was employed. Several mitotic regulators, including components of the ubiquitin ligase, anaphase promoting complex (APC/C), were specifically down-regulated in response to combination treatment. Loss of APC/C by RNAi sensitized cells to docetaxel and enhanced its antimitotic effects. Treatment with a PLK1 inhibitor (BI2536) also sensitized cells to IPI-504, indicating that combination effects may be broadly applicable to other classes of mitotic inhibitors. Our data provide a preclinical rationale for testing the combination of IPI-504 and docetaxel in NSCLC.  相似文献   

13.
痘苗病毒诱导HeLa细胞的凋亡   总被引:1,自引:0,他引:1  
痘苗病毒感染HeLa细胞后形态学上出现了较典型的细胞凋亡特征,电泳分析显示出DNA阶梯,用DNA断裂原位检测技术发现其染色质断裂主要存在于核周,与染色质凝聚位置相似。  相似文献   

14.
Lung cancer is the leading cause of cancer-related mortality worldwide. The lack of tumor specificity remains a major drawback for effective chemotherapies and results in dose-limiting toxicities. However, a ligand-mediated drug delivery system should be able to render chemotherapy more specific to tumor cells and less toxic to normal tissues. In this study, we isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC) cell lines. The targeting phage bound to several NSCLC cell lines but not to normal cells. Both the targeting phage and the synthetic peptide recognized the surgical specimens of NSCLC with a positive rate of 75% (27 of 36 specimens). In severe combined immunodeficiency (SCID) mice bearing NSCLC xenografts, the targeting phage specifically bound to tumor masses. The tumor homing ability of the targeting phage was inhibited by the cognate synthetic peptide, but not by a control or a WTY-mutated peptide. When the targeting peptide was coupled to liposomes carrying doxorubicin or vinorelbine, the therapeutic index of the chemotherapeutic agents and the survival rates of mice with human lung cancer xenografts markedly increased. Furthermore, the targeting liposomes increased drug accumulation in tumor tissues by 5.7-fold compared with free drugs and enhanced cancer cell apoptosis resulting from a higher concentration of bioavailable doxorubicin. The current study suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors or it may be used one in the diagnosis of this malignancy.  相似文献   

15.
Glioblastoma multiforme (GBM) is the most aggressive and common brain tumor in adults. Sorafenib, a multi-kinase inhibitor, has been shown to inhibit cell proliferation and induce apoptosis through inhibition of STAT3 signaling in glioblastoma cells and in intracranial gliomas. However, sorafenib also induces cell autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the therapeutic effect of sorafenib on glioblastoma is uncertain. Here, we combined sorafenib treatment in GBM cells (U373 and LN229) and tumors with the autophagy inhibitor chloroquine. We found that blockage of autophagy further inhibited cell proliferation and migration and induced cell apoptosis in vitro and in vivo. These findings suggest the possibility of combination treatment with sorafenib and autophagy inhibitors for GBM.  相似文献   

16.
The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry–based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.  相似文献   

17.
18.

Purpose

The increasing incidence of small renal tumors in an aging population with comorbidities has stimulated the development of minimally invasive treatments. This study aimed to assess the efficacy and demonstrate feasibility of multimodality imaging of intratumoral administration of holmium-166 microspheres (166HoAcAcMS). This new technique locally ablates renal tumors through high-energy beta particles, while the gamma rays allow for nuclear imaging and the paramagnetism of holmium allows for MRI.

Methods

166HoAcAcMS were administered intratumorally in orthotopic renal tumors (Balb/C mice). Post administration CT, SPECT and MRI was performed. At several time points (2 h, 1, 2, 3, 7 and 14 days) after MS administration, tumors were measured and histologically analyzed. Holmium accumulation in organs was measured using inductively coupled plasma mass spectrometry.

Results

166HoAcAcMS were successfully administered to tumor bearing mice. A striking near-complete tumor-control was observed in 166HoAcAcMS treated mice (0.10±0.01 cm3 vs. 4.15±0.3 cm3 for control tumors). Focal necrosis and inflammation was present from 24 h following treatment. Renal parenchyma outside the radiated region showed no histological alterations. Post administration CT, MRI and SPECT imaging revealed clear deposits of 166HoAcAcMS in the kidney.

Conclusions

Intratumorally administered 166HoAcAcMS has great potential as a new local treatment of renal tumors for surgically unfit patients. In addition to strong cancer control, it provides powerful multimodality imaging opportunities.  相似文献   

19.
The oncolytic potential of the attenuated mumps virus (MV) vaccine strain Leningrad-3 (L-3) was evaluated in a panel of four human metastatic melanoma cell lines. The lines were shown to be susceptible and permissive to MV infection. Efficient MV replication led to death of melanoma cells, but the effect differed among the cell lines. Possible mechanisms mediating the selectivity of MV L-3 towards the cell lines were explored. Replicative and oncolytic activity of MV was found to depend on the expression pattern of type I interferon genes. None of the melanoma cell lines showed induction of expression of the total spectrum of genes required to inhibit virus replication. Based on the results, MV L-3 was assumed to be a promising oncolytic agent for human melanoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号