首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The Asf1 and Rad6 pathways have been implicated in a number of common processes such as suppression of gross chromosomal rearrangements (GCRs), DNA repair, modification of chromatin, and proper checkpoint functions. We examined the relationship between Asf1 and different gene products implicated in postreplication repair (PRR) pathways in the suppression of GCRs, checkpoint function, sensitivity to hydroxyurea (HU) and methyl methanesulfonate (MMS), and ubiquitination of proliferating cell nuclear antigen (PCNA). We found that defects in Rad6 PRR pathway and Siz1/Srs2 homologous recombination suppression (HRS) pathway genes suppressed the increased GCR rates seen in asf1 mutants, which was independent of translesion bypass polymerases but showed an increased dependency on Dun1. Combining an asf1 deletion with different PRR mutations resulted in a synergistic increase in sensitivity to chronic HU and MMS treatment; however, these double mutants were not checkpoint defective, since they were capable of recovering from acute treatment with HU. Interestingly, we found that Asf1 and Rad6 cooperate in ubiquitination of PCNA, indicating that Rad6 and Asf1 function in parallel pathways that ubiquitinate PCNA. Our results show that ASF1 probably contributes to the maintenance of genome stability through multiple mechanisms, some of which involve the PRR and HRS pathways.DNA replication must be highly coordinated with chromatin assembly and cell division for correct propagation of genetic information and cell survival. Errors arising during DNA replication are corrected through the functions of numerous pathways including checkpoints and a diversity of DNA repair mechanisms (32, 33, 35). However, in the absence of these critical cellular responses, replication errors can lead to the accumulation of mutations and gross chromosomal rearrangements (GCRs) as well as chromosome loss, a condition generally termed genomic instability (33). Genome instability is a hallmark of many cancers as well as other human diseases (24). There are many mechanisms by which GCRs can arise, and over the last few years numerous genes and pathways have been implicated in playing a role in the suppression of GCRs in Saccharomyces cerevisiae and in some cases in the etiology of cancer (27, 28, 33, 39-47, 51, 53, 56, 58, 60), including S. cerevisiae ASF1, which encodes the main subunit of the replication coupling assembly factor (37, 62).Asf1 is involved in the deposition of histones H3 and H4 onto newly synthesized DNA during DNA replication and repair (62), and correspondingly, asf1 mutants are sensitive to chronic treatment with DNA-damaging agents (2, 30, 62). However, asf1 mutants do not appear to be repair defective and can recover from acute treatment with at least some DNA-damaging agents (2, 8, 30, 31, 54), properties similar to those described for rad9 mutants (68). In the absence of Asf1, both the DNA damage and replication checkpoints become activated during normal cell growth, and in the absence of checkpoint execution, there is a further increase in checkpoint activation in asf1 mutants (30, 46, 54). It has been suggested that asf1 mutants are defective for checkpoint shutoff and that this might account for the increased steady-state levels of checkpoint activation seen in asf1 mutants (8); however, another study has shown that asf1 mutants are not defective for checkpoint shutoff and that in fact Asf1 and the chromatin assembly factor I (CAF-I) complex act redundantly or cooperate in checkpoint shutoff (31). Furthermore, Asf1 might be involved in proper activation of the Rad53 checkpoint protein, as Asf1 physically interacts with Rad53 and this interaction is abrogated in response to exogenous DNA damage (15, 26); however, the physiological relevance of this interaction is unclear. Asf1 is also required for K56 acetylation of histone H3 by Rtt109, and both rtt109 mutants and histone H3 variants that cannot be acetylated (38) share many of the properties of asf1 mutants, suggesting that at least some of the requirement for Asf1 in response to DNA damage is mediated through Rtt109 (11, 14, 22, 61). Subsequent studies of checkpoint activation in asf1 mutants have led to the hypothesis that replication coupling assembly factor defects result in destabilization of replication forks which are then recognized by the replication checkpoint and stabilized, suggesting that the destabilized replication forks account for both the increased GCRs and increased checkpoint activation seen in asf1 mutants (30). This hypothesis is supported by other recent studies implicating Asf1 in the processing of stalled replication forks (16, 57). This role appears to be independent of CAF-I, which can cooperate with Asf1 in chromatin assembly (63). Asf1 has also been shown to function in disassembly of chromatin, suggesting other possibilities for the mechanism of action of Asf1 at the replication fork (1, 2, 34). Thus, while Asf1 is thought to be involved in progression of the replication fork, both the mechanism of action and the factors that cooperate with Asf1 in this process remain obscure.Stalled replication forks, particularly those that stall at sites of DNA damage, can be processed by homologous recombination (HR) (6) or by a mechanism known as postreplication repair (PRR) (reviewed in reference 67). There are two PRR pathways, an error-prone pathway involving translesion synthesis (TLS) by lower-fidelity polymerases and an error-free pathway thought to involve template switching (TS) (67). In S. cerevisiae, the PRR pathways are under the control of the RAD6 epistasis group (64). The error-prone pathway depends on monoubiquitination of proliferating cell nuclear antigen (PCNA) on K164 by Rad6 (an E2 ubiquitin-conjugating enzyme) by Rad18 (E3 ubiquitin ligase) (23). This results in replacement of the replicative DNA polymerase with nonessential TLS DNA polymerases, such as REV3/REV7-encoded DNA polymerase ζ (polζ) and RAD30-encoded DNA polη, which can bypass different types of replication-blocking damage (67). The error-free pathway is controlled by Rad5 (E3) and a complex consisting of Ubc13 and Mms2 (E2 and E2 variant, respectively), which add a K63-linked polyubiquitin chain to monoubiquitinated PCNA, leading to TS to the undamaged nascent sister chromatid (4, 25, 65). Furthermore, in addition to modification with ubiquitin, K164 of PCNA can also be sumoylated by Siz1, resulting in subsequent recruitment of the Srs2 helicase and inhibition of deleterious Rad51-dependent recombination events (50, 52, 55), although it is currently unclear if these are competing PCNA modifications or if both can exist on different subunits in the same PCNA trimer. A separate branch of the Rad6 pathway involving the E3 ligase Bre1 monoubiquitinates the histone H2B (29, 69) as well as Swd2 (66), which stimulates Set1-dependent methylation of K4 and Dot1-dependent methylation of K79 of histone H3 (48, 49, 66). Subsequently, K79-methylated H3 recruits Rad9 and activates the Rad53 checkpoint (19, 70). Activation of Rad53 is also bolstered by Rad6-Rad18-dependent ubiquitination of Rad17, which is part of the 9-1-1 complex that functions upstream in the checkpoint pathway (17). Finally, Rad6 complexes with the E3 Ubr1, which mediates protein degradation by the N-end rule pathway (13).Due to the role of the PRR pathways at stalled replication forks and a recent study implicating the Rad6 pathway in the suppression of GCRs (39), we examined the relationship between these ubiquitination and sumoylation pathways and the Asf1 pathway in order to gain additional insights into the function of Asf1 during DNA replication and repair. Our findings suggest that Asf1 has multiple functions that prevent replication damage or act in the cellular responses to replication damage and that these functions are modified by and interact with the PRR pathways. The TLS PRR pathway does not appear to be involved, and both a Dun1-dependent replication checkpoint and HR are important for preventing the deleterious effects of PRR and Asf1 pathway defects. We hypothesize that this newly observed cooperation between Asf1 and the PRR pathways may be required for resolving stalled replication forks, leading to suppression of GCRs and successful DNA replication.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

18.
19.
The initiator protein E1 from human papillomavirus (HPV) is a helicase essential for replication of the viral genome. E1 contains three functional domains: a C-terminal enzymatic domain that has ATPase/helicase activity, a central DNA-binding domain that recognizes specific sequences in the origin of replication, and a N-terminal region necessary for viral DNA replication in vivo but dispensable in vitro. This N-terminal portion of E1 contains a conserved nuclear export signal (NES) whose function in the viral life cycle remains unclear. In this study, we provide evidence that nuclear export of HPV31 E1 is inhibited by cyclin E/A-Cdk2 phosphorylation of two serines residues, S92 and S106, located near and within the E1 NES, respectively. Using E1 mutant proteins that are confined to the nucleus, we determined that nuclear export of E1 is not essential for transient viral DNA replication but is important for the long-term maintenance of the HPV episome in undifferentiated keratinocytes. The findings that E1 nuclear export is not required for viral DNA replication but needed for genome maintenance over multiple cell divisions raised the possibility that continuous nuclear accumulation of E1 is detrimental to cellular growth. In support of this possibility, we observed that nuclear accumulation of E1 dramatically reduces cellular proliferation by delaying cell cycle progression in S phase. On the basis of these results, we propose that nuclear export of E1 is required, at least in part, to limit accumulation of this viral helicase in the nucleus in order to prevent its detrimental effect on cellular proliferation.Human papillomaviruses (HPV) are small double-stranded DNA viruses that infect keratinocytes of the differentiating epithelium of the skin or mucosa (reviewed in references 4 and 63). Of more than 150 different HPV types identified thus far, about 25 infect the anogenital region (9). The low-risk types, such as HPV11 and HPV6, are associated with the development of genital warts, while the high-risk types, such as HPV16, -18, and -31, cause high-grade lesions that can progress to invasive cervical carcinoma (17, 38, 61).The HPV life cycle is coupled with the differentiation program that keratinocytes undergo in the epithelium. After infection of the basal cell layer of the epithelium, the virus establishes and maintains its genome as an extrachromosomal element (episome) in the nucleus of infected cells. While the viral episome is maintained at low levels in basal cells, its amplification to a high copy number is trigged in the upper layers of the epithelium by the action of the viral oncogenes E6 and E7 and the differentiation of the infected keratinocytes (reviewed in reference 21). Replication of the HPV genome relies on the viral proteins E1 and E2 and the host DNA replication machinery. Viral DNA replication is initiated by the binding of E2 to specific sites on the viral origin where it facilitates the recruitment and assembly of E1 into a double hexamer that is required to unwind DNA ahead of the bidirectional replication fork (3, 14, 15, 31, 33, 36, 43-45, 52, 60). In addition to its helicase activity, E1 interacts with several cellular replication factors, including polymerase α-primase, replication protein A (RPA), and topoisomerase I, to replicate the viral episome (5, 6, 19, 32, 35, 39).E1, which belongs to helicase superfamily III (SF3) (22, 26), can be divided into three functional regions. Its C-terminal domain has ATPase and helicase activity and can self-assemble into hexamers. It is also this domain that is contacted by E2 to recruit E1 at the origin (50, 57, 58). The middle portion of E1 encompasses the origin-binding domain (OBD) that binds and dimerizes on specific sequences in the origin (55, 56). We and others previously found that a fragment of E1 containing only the C-terminal enzymatic domain and the OBD is capable of supporting viral DNA replication in vitro but is inactive in vivo (2, 51). This suggested that the N-terminal region of E1 plays an essential regulatory function in vivo. As such, it has been shown for HPV11 E1 that this region contains a cyclin E/A-Cdk2 (cyclin-dependent kinase 2) binding motif (CBM), a bipartite nuclear localization signal (NLS) and an CRM1-dependent nuclear export signal (NES), which together regulate the nucleocytoplasmic shuttling of the protein (10, 30, 34). Specifically, it has been shown that phosphorylation of HPV11 E1 on three serine residues within its N-terminal region inhibits its nuclear export (10, 62). Interestingly, bovine papillomavirus (BPV) E1 was also shown to shuttle between the nucleus and the cytoplasm in a phosphorylation-dependent manner. In this case, however, Cdk2 phosphorylation was found to promote, rather than inhibit, the export of the viral helicase (24). This apparent discrepancy between HPV11 and BPV E1 prompted us to examine the regulation of a third E1 protein, specifically that of the high-risk HPV31.We report here that HPV31 E1 also shuttles between the nucleus and the cytoplasm through its conserved NLS and NES. We determined that nuclear export of HPV31 E1 is dependent on the CRM1 export pathway and is inhibited by Cdk2 phosphorylation of serines 92 and 106. We also found that nuclear export of E1 is not required for transient viral DNA replication and thus investigated its role in viral genome maintenance and amplification in immortalized keratinocytes. In contrast to the wild type (WT), a mutant genome carrying a defective E1 NES was poorly maintained and progressively lost upon cell division, indicating that nuclear export of E1 is required for long-term maintenance of the viral episome. Because nuclear export of E1 is not required for viral DNA replication per se but needed for episomal maintenance over several cell divisions, we investigated the possibility that continuous accumulation of E1 into the nucleus is detrimental to cellular proliferation. In support of this possibility, we found that the accumulation of E1 at high levels in the nucleus impedes cellular proliferation by delaying cell cycle progression in the S phase. In addition, we found that this delay was alleviated when nuclear export of E1 was increased. Altogether, these results suggest that nuclear export of E1 is required, at least in part, to limit accumulation of this viral helicase in the nucleus in order to prevent its detrimental effect on cellular proliferation.  相似文献   

20.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号