首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.Myxobacteria are unique among the prokaryotes as (i) they can form highly complex fruiting bodies under starvation conditions, even up to microscopic tree-like structures (28); (ii) they can move on solid surfaces using different motility mechanisms (16); (iii) they produce some of the most cytotoxic secondary metabolites, with epothilone already in clinical use against cancer (2, 3); and (iv) they harbor the largest prokaryotic genomes found so far (15, 27). The large genome might be directly related to their complex life-style and the diverse secondary (3) and primary (9) metabolisms. Already in 2002 we found that myxobacteria are able to produce isovaleryl coenzyme A (IV-CoA) and compounds derived thereof via a new pathway that branches from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is the central intermediate of the well-known mevalonate-dependent isoprenoid biosynthesis (Fig. (Fig.1)1) (22, 23). Usually IV-CoA is derived from leucine degradation via the branched-chain keto acid dehydrogenase (BKD) complex (24), which is also the preferred pathway to IV-CoA in the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca (Fig. (Fig.2A).2A). However, in bkd mutants, where no or only residual leucine degradation is possible (30), the alternative pathway is induced (Fig. (Fig.2B),2B), presumably to ensure the production of iso-fatty acids (iso-FAs) (5). A possible reason for this alternative pathway is the importance of IV-CoA-derived compounds in the complex myxobacterial life cycle, which is the starvation-induced formation of fruiting bodies in which the cells differentiate into myxospores. We showed that this pathway is induced during fruiting body formation in M. xanthus when leucine is limited. Under these conditions, this pathway might be more important for protein synthesis than for lipid remodeling, as lipids are present in excess during development due to the surface reduction from vegetative rods to round myxospores as described previously (29). Examples of IV-CoA-derived compounds are the unusual iso-branched ether lipids, which are almost exclusively produced in the developing myxospores. They might serve as structural lipids and signaling compounds during fruiting body formation (26).Open in a separate windowFIG. 1.Biosynthesis of IV-CoA and compounds derived thereof and biosynthesis of isoprenoids in M. xanthus. Broken arrows indicate multistep reactions; supplementation (double-lined arrows) with MVL and IVA can be used to complement selected mutants.Open in a separate windowFIG. 2.Short representations of proposed metabolic fluxes through the IV-CoA/isoprenoid network. Broken arrows indicate no metabolic flux. (A) DK1622 (wild type); (B) DK5643 (Δbkd); (C) DK5624 (Δbkd mvaS::kan); (D) HB002 (Δbkd liuC::kan); (E) HB002 with 1 mM IVA; (F) HB002 with 1 mM MVL. Ac-CoA, acetyl-CoA; MVA, mevalonic acid.In M. xanthus, we could recently identify candidate genes involved in the alternative pathway from HMG-CoA to IV-CoA. We also described the genes required for the degradation pathway of leucine and subsequently also those involved in the transformation of IV-CoA to HMG-CoA (4). In myxobacteria leucine is an important precursor for isoprenoid biosynthesis, as was already shown elsewhere for the biosynthesis of steroids (7) and prenylated secondary metabolites like aurachin (22) or leupyrrins (6), as well as volatiles like geosmin or germacradienol in M. xanthus and S. aurantiaca (11, 13). The interconnection of iso-FAs and isoprenoid biosynthesis made it difficult to assign functions to these compound classes during fruiting body formation in M. xanthus because it cannot be excluded that reduced leucine degradation also impairs isoprenoid biosynthesis. A mutant strain of M. xanthus that was blocked in the degradation of leucine and the alternative pathway had a deletion in the bkd locus as well as a plasmid insertion in the mvaS gene encoding the HMG-CoA synthase (strain DK5624). This double mutation severely affected isoprenoid biosynthesis (5), and cultures of DK5624 must be supplemented with mevalonolactone (MVL; the cyclized form of mevalonic acid) in order to enable growth (Fig. (Fig.2C).2C). Since we have identified the genes involved in IV-CoA biosynthesis and the mevalonate pathway (4), we can now start to identify differences between strains that show deficiencies in iso-FAs and strains that show deficiencies in isoprenoids via simple analysis of the FA profile and analysis of the myxobacterial development of selected mutants.All mutants used in this study (HB002 [Δbkd liuC::kan], HB015 [Δbkd MXAN_4265::kan], DK5624 [Δbkd mvaS::kan], HB019 [Δbkd mvaS::kan mvaS+], and HB020 [Δbkd MXAN_4265::kan mvaS+]) have been published previously (4), and FA analysis as well as myxobacterial fruiting body formation has also been described previously (26).M. xanthus HB002 (Δbkd liuC) shows only residual amounts of iso-FAs, as both leucine degradation and the alternative pathway to IV-CoA are blocked (Fig. (Fig.2D)2D) and its capability to form fruiting bodies is strongly reduced (Fig. (Fig.3).3). The residual amount of iso-FAs results from a second BKD activity in M. xanthus that has been identified by residual leucine incorporation as well as by residual enzymatic activity in bkd mutants (23, 30). This second BKD activity might be a side activity of the pyruvate dehydrogenase or a related chemical oxidative decarboxylation, as no second bkd locus could be identified in the genome (unpublished results). Moreover, growth of HB002 is not MVL dependent because the block in the alternative pathway does not affect isoprenoid biosynthesis, as liuC encodes a dehydratase/hydratase that is involved in the conversion of HMG-CoA to 3-methylglutaconyl-CoA and vice versa (4). As expected, the FA profile (4) as well as the developmental phenotype (data not shown) can be complemented (Fig. (Fig.2E)2E) by the addition of isovaleric acid (IVA), the free acid of IV-CoA, indicating the importance of iso-branched compounds for development in M. xanthus. Unexpectedly, addition of MVL (Fig. (Fig.2F)2F) also partially restored fruiting body formation without restoring the FA profile (Fig. (Fig.3).3). Similarly, M. xanthus HB015 (Δbkd MXAN_4265::kan) can produce only traces of iso-FAs, as both pathways to IV-CoA are blocked. MXAN_4265 encodes a protein with similarity to a glutaconyl-CoA transferase subunit, but from our previous results, we postulated it to be involved in the alternative pathway to IV-CoA (Fig. (Fig.1)1) (4). The respective mutant shows a severely impaired developmental phenotype, which can be complemented not only by the addition of IVA (not shown) but also by the addition of MVL (Fig. (Fig.3).3). Again, no change in the FA profile was observed after the addition of MVL. However, a plasmid insertion into MXAN_4265 has a polar effect on mvaS, which is the last gene in this five-gene operon and which is crucial for HMG-CoA formation from acetoacetyl-CoA and acetyl-CoA. Therefore, we assume that both pathways to HMG-CoA are blocked in HB015: no HMG-CoA can be made from acetyl-CoA and hardly any can be made via leucine degradation. In order to prove this hypothesis, we complemented HB015 with an additional copy of mvaS under the constitutive T7A1 promoter as described previously, using the plasmid pCK4267exp (4). The resulting strain, HB020 (Δbkd MXAN_4265::kan mvaS+), showed a restored developmental phenotype but still produced only trace amounts of iso-FAs.Open in a separate windowFIG. 3.Fruiting body formation on TPM agar in selected mutants at 24, 48, and 72 h after starvation. Numbers refer to the relative amounts (in percentages) of the most abundant iso-FA, iso-15:0, which is indicative of iso-FAs in general. Strains were DK1622 (wild type), HB002 (Δbkd liuC::kan), HB015 (Δbkd MXAN_4265::kan), DK5624 (Δbkd mvaS::kan), HB019 (Δbkd mvaS::kan mvaS+), and HB020 (Δbkd MXAN_4265::kan mvaS+). DK5624 was grown with 0.3 mM MVL prior to starvation, and the cells were washed and plated on TPM with or without 1 mM of MVL.The data from HB002, HB015, and HB020 indicate an important function of the mevalonate-dependent isoprenoid pathway for fruiting body formation in M. xanthus. Therefore, MVL addition can at least partially complement the developmental phenotype of DK5624, which cannot form fruiting bodies without MVL (Fig. (Fig.3).3). However, genetic complementation with mvaS in HB019 resulted in the expected complementation of the fruiting body formation and the FA profile (Fig. (Fig.3,3, bottom row).Leucine is one of the most abundant proteinogenic amino acids. It is also an essential amino acid for M. xanthus (8), which has a predatory life-style (1), as it lives on other bacteria and fungi that contain a lot of leucine. Moreover, leucine is very efficiently incorporated into isoprenoids like geosmin and aurachin (10, 22). Thus, one can conclude that in fact leucine degradation is the major pathway for HMG-CoA biosynthesis instead of the usual formation via acetoacetyl-CoA and acetyl-CoA by the HMG-CoA synthase MvaS as indicated in Fig. Fig.2A.2A. No difference in growth was observed between culture with and culture without MVL for HB002 (Δbkd liuC::kan) and HB015 (Δbkd MXAN_4265::kan) in rich medium (data not shown), probably due to the complete MvaS activity (in HB002) or residual BKD activity (in HB002 and HB015), resulting in all precursors for the mevalonate-dependent isoprenoid biosynthesis still being present in excess under these conditions. However, under starvation conditions a small reduction in HMG-CoA biosynthesis caused by completely blocked leucine degradation (as in HB002 due to the mutation in liuC [Fig. [Fig.2D])2D]) or reduced leucine degradation and a mutation in mvaS (as in HB015) might each result in a reduced isoprenoid level, which can be complemented at least partially by the addition of MVL. This would also explain the difference in the developmental phenotypes of HB002 and HB015, with the phenotype being more severe in HB002 (Fig. (Fig.3).3). The fact that complementation with IVA is in all cases more efficient than that with MVL can be explained by the role of the already-mentioned isolipids. They can be produced only after IVA addition, which also complements the (developmental) phenotype of some of these mutants (26).As isoprenoids represent probably the most diverse class of natural products (14), it is very hard to predict which particular isoprenoids might be responsible for the observed effects. Several isoprenoids (7, 11-13), prenylated secondary metabolites (6, 22), and carotenoids (18-21) are known from myxobacteria in general, and a major volatile compound from M. xanthus is the terpenoid geosmin (13). In order to test whether geosmin might be required for fruiting body formation, we constructed a plasmid insertion mutant in MXAN_6247, which is involved in the cyclization of farnesyl diphosphate to geosmin, following published procedures (4, 5). The resulting strain, HB022, showed the expected loss in geosmin production but no developmental phenotype (data not shown).Additionally, it cannot be excluded that prenylated proteins, sugars, or quinones from the respiratory chain are important for fruiting body formation. Moreover, stigmolone has been described as a pheromone involved in fruiting body formation in S. aurantiaca (25). Although its biosynthesis has not been elucidated yet, stigmolone could be an isoprenoid as well, which is deducible from the two iso-branched residues within its chemical structure (17). Nevertheless, the importance of isoprenoids for M. xanthus is evident from the data presented, and clearly more work is needed to identify the compound(s) involved.  相似文献   

2.
It is well established that MDCK II cells grow in circular colonies that densify until contact inhibition takes place. Here, we show that this behavior is only typical for colonies developing on hard substrates and report a new growth phase of MDCK II cells on soft gels. At the onset, the new phase is characterized by small, three-dimensional droplets of cells attached to the substrate. When the contact area between the agglomerate and the substrate becomes sufficiently large, a very dense monolayer nucleates in the center of the colony. This monolayer, surrounded by a belt of three-dimensionally packed cells, has a well-defined structure, independent of time and cluster size, as well as a density that is twice the steady-state density found on hard substrates. To release stress in such dense packing, extrusions of viable cells take place several days after seeding. The extruded cells create second-generation clusters, as evidenced by an archipelago of aggregates found in a vicinity of mother colonies, which points to a mechanically regulated migratory behavior.Studying the growth of cell colonies is an important step in the understanding of processes involving coordinated cell behavior such as tissue development, wound healing, and cancer progression. Apart from extremely challenging in vivo studies, artificial tissue models are proven to be very useful in determining the main physical factors that affect the cooperativity of cells, simply because the conditions of growth can be very well controlled. One of the most established cell types in this field of research is the Madin-Darby canine kidney epithelial cell (MDCK), originating from the kidney distal tube (1). A great advantage of this polarized epithelial cell line is that it retained the ability for contact inhibition (2), which makes it a perfect model system for studies of epithelial morphogenesis.Organization of MDCK cells in colonies have been studied in a number of circumstances. For example, it was shown that in three-dimensional soft Matrigel, MDCK cells form a spherical enclosure of a lumen that is enfolded by one layer of polarized cells with an apical membrane exposed to the lumen side (3). These structures can be altered by introducing the hepatocyte growth factor, which induces the formation of linear tubes (4). However, the best-studied regime of growth is performed on two-dimensional surfaces where MDCK II cells form sheets and exhibit contact inhibition. Consequently, the obtained monolayers are well characterized in context of development (5), mechanical properties (6), and obstructed cell migration (7–9).Surprisingly, in the context of mechanics, several studies of monolayer formation showed that different rigidities of polydimethylsiloxane gels (5) and polyacrylamide (PA) gels (9) do not influence the nature of monolayer formation nor the attainable steady-state density. This is supposedly due to long-range forces between cells transmitted by the underlying elastic substrate (9). These results were found to agree well with earlier works on bovine aortic endothelial cells (10) and vascular smooth muscle cells (11), both reporting a lack of sensitivity of monolayers to substrate elasticity. Yet, these results are in stark contrast with single-cell experiments (12–15) that show a clear response of cell morphology, focal adhesions, and cytoskeleton organization to substrate elasticity. Furthermore, sensitivity to the presence of growth factors that are dependent on the elasticity of the substrate in two (16) and three dimensions (4) makes this result even more astonishing. Therefore, we readdress the issue of sensitivity of tissues to the elasticity of the underlying substrate and show that sufficiently soft gels induce a clearly different tissue organization.We plated MDCK II cells on soft PA gels (Young’s modulus E = 0.6 ± 0.2 kPa), harder PA gels (E = 5, 11, 20, 34 kPa), and glass, all coated with Collagen-I. Gels were prepared following the procedure described in Rehfeldt et al. (17); rigidity and homogeneity of the gels was confirmed by bulk and microrheology (see the Supporting Material for comparison). Seeding of MDCK II cells involved a highly concentrated solution dropped in the middle of a hydrated gel or glass sample. For single-cell experiments, cells were dispersed over the entire dish. Samples were periodically fixed up to Day 12, stained for nuclei and actin, and imaged with an epifluorescence microscope. Details are described in the Supporting Material.On hard substrates and glass it was found previously that the area of small clusters expands exponentially until the movement of the edge cannot keep up with the proliferation in the bulk (5). Consequently, the bulk density increases toward the steady state, whereas the density of the edge remains low. At the same time, the colony size grows subexponentially (5). This is what we denote “the classical regime of growth”. Our experiments support these observations for substrates with E ≥ 5 kPa. Specifically, on glass, colonies start as small clusters of very low density of 700 ± 200 cells/mm2 (Fig. 1, A and B), typically surrounded by a strong actin cable (Fig. 1, B and C). Interestingly, the spreading area of single cells (Fig. 1 A) on glass was found to be significantly larger, i.e., (2.0 ± 0.9) × 10−3 mm2. After Day 4 (corresponding cluster area of 600 ± 100 mm2), the density in the center of the colony reached the steady state with 6,800 ± 500 cells/mm2, whereas the mean density of the edge profile grew to 4,000 ± 500 cells/mm2. This density was retained until Day 12 (cluster area 1800 ± 100 mm2), which is in agreement with previous work (9).Open in a separate windowFigure 1Early phase of cluster growth on hard substrates. (A) Well-spread single cells, and small clusters with a visible actin cable 6 h after seeding. (B) Within one day, clusters densify and merge, making small colonies. (C) Edge of clusters from panel B.In colonies grown on 0.6 kPa gels, however, we encounter a very different growth scenario. The average spreading area of single cells is (0.34 ± 0.3) × 10−3 mm2, which is six times smaller than on glass substrates (Fig. 2 A). Clusters of only few cells show that cells have a preference for cell-cell contacts (a well-established flat contact zone can be seen at the cell-cell interface in Fig. 2 A) rather than for cell-substrate contacts (contact zone is diffusive and the shape of the cells appears curved). The same conclusion emerges from the fact that dropletlike agglomerates, resting on the substrate, form spontaneously (Fig. 2 A), and that attempts to seed one single cluster of 90,000 cells fail, resulting in a number of three-dimensional colonies (Fig. 2 A). When the contact area with the substrate exceeds 4.7 × 10−3 mm2, a monolayer appears in the center of such colonies (Fig. 2 B). The colonies can merge, and if individual colonies are small, the collapse into a single domain is associated with the formation of transient irregular structures (Fig. 2 B). Ultimately, large elliptical colonies (average major/minor axis of e = 1.8 ± 0.6) with a smooth edge are formed (Fig. 2 C), unlike on hard substrates where circular clusters (e = 1.06 ± 0.06) with a ragged edge comprise the characteristic phenotype.Open in a separate windowFigure 2Early phase of cluster growth on soft substrates. (A) Twelve hours after seeding, single cells remain mostly round and small. They are found as individual, or within small, three-dimensional structures (top). The latter nucleate a monolayer in their center (bottom), if the contact area with the substrate exceeds ∼5 × 10−3 mm2. (B) Irregularly-shaped clusters appear due to merging of smaller droplets. A stable monolayer surrounded by a three-dimensional belt of densely packed cells is clearly visible, even in larger structures. (C) All colonies are recorded on Day 4.Irrespective of cluster size, in the new regime of growth, the internal structure is built of two compartments (Fig. 2 B):
  • 1.The first is the edge (0.019 ± 0.05-mm wide), a three-dimensional structure of densely packed cells. This belt is a signature of the new regime because on hard substrates the edge is strictly two-dimensional (Fig. 1 C).
  • 2.The other is the centrally placed monolayer with a spatially constant density that is very weakly dependent on cluster size and age (Fig. 3). The mean monolayer density is 13,000 ± 2,000 cells/mm2, which is an average over 130 clusters that are up to 12 days old and have a size in the range of 10−3 to 10 mm2, each shown by a data point in Fig. 3. This density is twice the steady-state density of the bulk tissue in the classical regime of growth.Open in a separate windowFigure 3Monolayer densities in colonies grown on 0.6 kPa substrates, as a function of the cluster size and age. Each cluster is represented by a single data point signifying its mean monolayer density. (Black lines) Bulk and (red dashed lines) edge of steady-state densities from monolayers grown on glass substrates. Error bars are omitted for clarity, but are discussed in the Supporting Material.
Until Day 4, the monolayer is very homogeneous, showing a nearly hexagonal arrangement of cells. From Day 4, however, defects start to appear in the form of small holes (typical size of (0.3 ± 0.1) × 10−3 mm2). These could be attributed to the extrusions of viable cells, from either the belt or areas of increased local density in the monolayer (inset in Fig. 4). This suggests that extrusions serve to release stress built in the tissue, and, as a consequence, the overall density is decreased.Open in a separate windowFigure 4Cell nuclei within the mother colony and in the neighboring archipelago of second-generation clusters grown on 0.6 kPa gels at Day 12. (Inset; scale bar = 10 μm) Scar in the tissue, a result of a cell-extrusion event. (Main image; scale bar = 100 μm) From the image of cell nuclei (left), it is clear that there are no cells within the scar, whereas the image of actin (right) shows that the cytoplasm of the cells at the edge has closed the hole.Previous reports suggest that isolated MDCK cells undergo anoikis 8 h after losing contact with their neighbors (18). However, in this case, it appears that instead of dying, the extruded cells create new colonies, which can be seen as an archipelago surrounding the mother cluster (Fig. 4). The viability of off-cast cells is further evidenced by the appearance of single cells and second-generation colonies with sizes varying over five orders of magnitude, from Day 4 until the end of the experiment, Day 12. Importantly, no morphological differences were found in the first- and second-generation colonies.In conclusion, we show what we believe to be a novel phase of growth of MDCK model tissue on soft PA gels (E = 0.6 kPa) that, to our knowledge, despite previous similar efforts (9), has not been observed before. This finding is especially interesting in the context of elasticity of real kidneys, for which a Young’s modulus has been found to be between 0.05 and 5 kPa (19,20). This coincides with the elasticity of substrates studied herein, and opens the possibility that the newly found phase of growth has a particular biological relevance. Likewise, the ability to extrude viable cells may point to a new migratory pathway regulated mechanically by the stresses in the tissue, the implication of which we hope to investigate in the future.  相似文献   

3.
The hypersensitive response (HR) is a cell death phenomenon associated with localized resistance to pathogens. Biphasic patterns in the generation of H2O2, salicylic acid and ethylene have been observed in tobacco during the early stages of the HR. These biphasic models reflect an initial elicitation by pathogen-associated molecular patterns followed by a second phase, induced by pathogen-encoded avirulence gene products. The first phase has been proposed to potentiate the second, to increase the efficacy of plant resistance to disease. This potentiation is comparable to the “priming” of plant defenses which is seen when plants display systemic resistance to disease. The events regulating the generation of the biphasic wave, or priming, remains obscure, however recently we demonstrated a key role for nitric oxide in this process in a HR occurring in tobacco. Here we use laser photoacoustic detection to demonstrate that biphasic ethylene production also occurs during a HR occurring in Arabidopsis. We suggest that ethylene emanation during the HR represents a ready means of visualising biphasic events during the HR and that exploiting the genomic resources offered by this model species will facilitate the development of a mechanistic understanding of potentiating/priming processes.Key words: hypersensitive response, biphasic patterns, potentiation, defense priming, ethylene, ArabidopsisThe Hypersensitive Response (HR) is a cell death process which occurs at the site of attempted pathogen attack and which has been associated with host resistance.1 Much work on the regulation of the HR has indicated the importance of H2O2,2 and NO.3 A feature of H2O2 generation during the HR is its biphasic pattern (Fig. 1A). The first rise reflects elicitation by pathogen-associated molecular patterns (PAMPs)4 and the second reflects the interaction between a pathogen-encoded avirulence (avr) gene product with a plant resistance (R) gene. A key aspect of the first rise is the initiation of salicylic acid (SA) synthesis which potentiates the second rise and hence the potency of plant defense and the HR.5Open in a separate windowFigure 1Patterns of defense signal generation during the Pseudomonas syringae pv. phaseolicola elicited-hypersensitive response in tobacco (Nicotiana tabacum). Generation of (A) H2O2 (●, Mur18); (B) nitric oxide (◇; Mur12 (C) salicylic acid (SA, ■19) and (D) ethylene (○ Mur9) during a HR elicited by Pseudomonas syringae pv. phaseolicola (Psph) in tobacco cv. Samsun NN. In (A) a phase where SA acts to augment the second rise in H2O2—the potentiation phase—is highlighted. The potentiation phase is likely to be similar to defense “priming”.6 Methodological details are contained within the appropriate references. (E) A possible model for biphasic defense signal regulation during the Psph-elicited HR in tobacco. During an initial phase NO and H2O2 act to initiate SA biosynthesis, where SA and NO act to initiate a “H2O2 biphasic switch”. This could initially suppress both SA and the H2O2 generation but subsequently acts to potentiate a second phase of H2O2 generation. This in turn increases SA biosynthesis which could act with NO to initiate the “C2H4 biphasic switch” to potentiate ethylene production. These (and other) signals contribute to initiation of the HR and SAR.This potentiation mechanism appears to be similar to defense priming; when whole plants display systemic resistance to disease as opposed to a localized resistance against pathogens. Priming can be initiated (the “primary stimulus”) following attack with a necrotizing pathogen (leading to “systemic acquired resistance”, SAR) or non-pathogenic rhizosphere bacteria (to confer “induced systemic resistance”, ISR). In the primed state a plant stimulates a range of plant defense genes, produces anti-microbial phytoalexins and deposits cell wall strengthening molecules, but only on imposition of a “secondary stimulus”.6 Such secondary stimuli include SA3 or PAMPs7 and is likely to be mechanistically similar to the potentiation step in the biphasic pattern of H2O2 generation (shaded in Fig. 1A). Accordingly, the two phases in the biphasic wave represent primary and secondary stimuli in priming.Highlighting a similarity between local HR-based events and priming, adds further impetus to efforts aiming to describe the underlying mechanism(s), however both phenomena remain poorly understood. Besides SA, both jasmonates and abscisic acid (ABA) have been shown to prime defenses as have a range of non-plant chemicals, with β-aminobutyric acid (BABA) being perhaps most widely used.6,8 Mutants which fail to exhibit BABA-mediated potentiation were defective in either a cyclin-dependent kinase-like protein, a polyphosphoinositide phosphatase or an ABA biosynthetic enzyme.8We have recently investigated biphasic ethylene production during the HR in tobacco elicited by the nonhost HR-eliciting bacterial pathogen Pseudomonas syringae pv. phaseolicola.9 As with H2O2 generation, this pattern reflected PAMP-and AVR-dependent elicitation events and included a SA-mediated potentiation stage. Crucially, we also showed that NO was a vital component in the SA-potentiation mechanism. When this finding is integrated with our other measurements of defense signal generation in the same host-pathogen system the complexity in the signaling network is revealed (Fig. 1). NO generation (Fig. 1B) appeared to be coincident with the first rise in H2O2 (Fig. 1A) which initiated SA biosynthesis10,11 and together would contribute to the first small, but transient, rise in that hormone (Fig. 1C). In line with established models5 this momentary rise in SA coincides with the potentiation phase (shaded in Fig. 1A) required to augment the second rise in ROS. However, ethylene production seems to be correlated poorly with the patterns of NO, H2O2 and SA (Fig. 1D). Nevertheless, biphasic ethylene production was found to reflect PAMP and AVR-dependent recognition and included a SA-mediated potentiation step.9 Hence, ethylene production could be used as a post-hoc indicator of the potentiation mechanism. Therefore, our discovery that the second wave of ethylene production—a “biphasic switch”—is influenced by NO acting with SA could also be relevant to the H2O2 generation. Significantly, the second phases in both H2O2 and ethylene production occur exactly where SA and NO production coincides; in the case of H2O2 generation 2–4 h post challenge and with ethylene 6 h onwards (Fig. 1E).Thus, ethylene production represents a readily assayable marker to indicate perturbations in the underlying biphasic and possible priming mechanisms. As we have demonstrated, laser photoacoustic detection (LAPD) is a powerful on-line approach to determine in planta ethylene production in tobacco9,12 but any mechanistic investigations would be greatly facilitated if the genetic resources offered by the model species Arabidopsis could be exploited.To address this, Arabidopsis Col-0 rosettes were vacuum infiltrated with either Pseudomonas syringae pv. tomato (Pst) avrRpm1 (HR-eliciting), the virulent Pst strain and the non-HR eliciting and non-virulent Pst hrpA strain. Ethylene production was monitored by LAPD (Fig. 2A). Significantly, Pst avrRpm1 initiated a biphasic pattern of ethylene production whose kinetics were very similar to that seen in tobacco (compare Figs. 2A with with1D).1D). Inoculations with Pst and Pst hrpA only displayed the first PAMP-dependent rise in ethylene production. Thus, these data establish that Arabidopsis can be used to investigate biphasic switch mechanism(s) in ethylene production during the HR and possibly defense priming. When considering such mechanisms, it is relevant to highlight the work of Foschi et al.13 who observed that biphasic activation of a monomeric G protein to cause phase-specific activation of different kinase cascades. Interestingly, ethylene has been noted to initiate biphasic activation of G proteins and kinases in Arabidopsis, although differing in kinetics to the phases seen during the HR.14 Further, plant defense priming has been associated with the increased accumulation of MAP kinase protein.6Open in a separate windowFigure 2Ethylene in the Pseudomonas syringae pv. tomato elicited-hypersensitive response in Arabidopsis thaliana. (A) Ethylene production from 5 week old short day (8 h light 100 µmol.m2.sec−1) grown Arabidopsis rosette leaves which were vacuum infiltrated with bacterial suspensions (2 × 106 colony forming units.ml−1) of Pseudomonas syringae pv. tomato (Pst) strains detected using laser photoacoustic detection (LAPD). Experimental details of the ethylene detection by LAPD are detailed in Mur et al.9 The intercellular spaces in leaves were infiltrated with the HR-eliciting strain Pst avrRpm1, (■), the virulent strain Pst (△) or the non-virulent and non-HR eliciting derivative, Pst hrpA (◇). (B) The appearance of Arabidopsis Col-0 and etr1-1 leaves at various h following injection with 2 × 106 c.f.u.mL−1 with of Pst avrRpm1. (C) Explants (1 cm diameter discs) from Arabidopsis leaf areas infiltrated with suspensions of Pst avrRpm1 were placed in a 1.5 cm diameter well, bathed in 1 mL de-ionized H2O. Changes in the conductivity of the bathing solution, as an indicator of electrolyte leakage from either wild type Col-0 (◆), mutants which were compromised in ethylene signaling; etr1-1 (□), ein2-2 (▲) or which overproduced ethylene; eto2-1 (●) were measured using a conductivity meter. Methodological details are set out in Mur et al.9A further point requires consideration; the role of ethylene as a direct contributor to plant defense.15 The contribution of ethylene to the HR has been disputed,16 but in tobacco we have observed that altered ethylene production influenced the formation of a P. syringae pv. phaseolicola elicited HR.9 In Arabidopsis, cell death in the ethylene receptor mutant etr1-1 following inoculation with Pst avrRpm1 is delayed compared to wild type (Fig. 2B). When electrolyte leakage was used to quantify Pst avrRpm1 cell death, both etr1-1 and the ethylene insensitive signaling mutant ein2-1 exhibited slower death than wild-type but in the ethylene overproducing mutant eto2, cell death was augmented (Fig. 2C). These data indicate that ethylene influences the kinetics of the HR.Taking these data together we suggest that the complexity of signal interaction during the HR or in SAR/ISR could be further dissected by combining the genetic resources of Arabidopsis with measurements of ethylene production using such sensitive approaches as LAPD.  相似文献   

4.
5.
The bicistronic groESL operon, encoding the Hsp60 and Hsp10 chaperonins, was cloned into an integrative expression vector, pFPN, and incorporated at an innocuous site in the Anabaena sp. strain PCC7120 genome. In the recombinant Anabaena strain, the additional groESL operon was expressed from a strong cyanobacterial PpsbA1 promoter without hampering the stress-responsive expression of the native groESL operon. The net expression of the two groESL operons promoted better growth, supported the vital activities of nitrogen fixation and photosynthesis at ambient conditions, and enhanced the tolerance of the recombinant Anabaena strain to heat and salinity stresses.Nitrogen-fixing cyanobacteria, especially strains of Nostoc and Anabaena, are native to tropical agroclimatic conditions, such as those of Indian paddy fields, and contribute to the carbon (C) and nitrogen (N) economy of these soils (22, 30). However, their biofertilizer potential decreases during exposure to high temperature, salinity, and other such stressful environments (1). A common target for these stresses is cellular proteins, which are denatured and inactivated during stress, resulting in metabolic arrest, cessation of growth, and eventually loss of viability. Molecular chaperones play a major role in the conformational homeostasis of cellular proteins (13, 16, 24, 26) by (i) proper folding of nascent polypeptide chains; (ii) facilitating protein translocation and maturation to functional conformation, including multiprotein complex assembly; (iii) refolding of misfolded proteins; (iv) sequestering damaged proteins to aggregates; and (v) solubilizing protein aggregates for refolding or degradation. Present at basal levels under optimum growth conditions in bacteria, the expression of chaperonins is significantly enhanced during heat shock and other stresses (2, 25, 32).The most common and abundant cyanobacterial chaperones are Hsp60 proteins, and nitrogen-fixing cyanobacteria possess two or more copies of the hsp60 or groEL gene (http://genome.kazusa.or.jp/cyanobase). One occurs as a solitary gene, cpn60 (17, 21), while the other is juxtaposed to its cochaperonin encoding genes groES and constitutes a bicistronic operon groESL (7, 19, 31). The two hsp60 genes encode a 59-kDa GroEL and a 61-kDa Cpn60 protein in Anabaena (2, 20). Both the Hsp60 chaperonins are strongly expressed during heat stress, resulting in the superior thermotolerance of Anabaena, compared to the transient expression of the Hsp60 chaperonins in Escherichia coli (20). GroEL and Cpn60 stably associate with thylakoid membranes in Anabaena strain PCC7120 (14) and in Synechocystis sp. strain PCC6803 (15). In Synechocystis sp. strain PCC6803, photosynthetic inhibitors downregulate, while light and redox perturbation induce cpn60 expression (10, 25, 31), and a cpn60 mutant exhibits a light-sensitive phenotype (http://genome.kazusa.or.jp/cyanobase), indicating a possible role for Cpn60 in photosynthesis. GroEL, a lipochaperonin (12, 28), requires a cochaperonin, GroES, for its folding activity and has wider substrate selectivity. In heterotrophic nitrogen-fixing bacteria, such as Klebsiella pneumoniae and Bradyrhizobium japonicum, the GroEL protein has been implicated in nif gene expression and the assembly, stability, and activity of the nitrogenase proteins (8, 9, 11).Earlier work from our laboratory demonstrated that the Hsp60 family chaperonins are commonly induced general-stress proteins in response to heat, salinity, and osmotic stresses in Anabaena strains (2, 4). Our recent work elucidated a major role of the cpn60 gene in the protection from photosynthesis and the nitrate reductase activity of N-supplemented Anabaena cultures (21). In this study, we integrated and constitutively overexpressed an extra copy of the groESL operon in Anabaena to evaluate the importance and contribution of GroEL chaperonin to the physiology of Anabaena during optimal and stressful conditions.Anabaena sp. strain PCC7120 was photoautotrophically grown in combined nitrogen-free (BG11) or 17 mM NaNO3-supplemented (BG11+) BG11 medium (5) at pH 7.2 under continuous illumination (30 μE m−2 s−1) and aeration (2 liters min−1) at 25°C ± 2°C. Escherichia coli DH5α cultures were grown in Luria-Bertani medium at 37°C at 150 rpm. For E. coli DH5α, kanamycin and carbenicillin were used at final concentrations of 50 μg ml−1 and 100 μg ml−1, respectively. Recombinant Anabaena clones were selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin or in BG11 liquid medium containing 12.5 μg ml−1 neomycin. The growth of cyanobacterial cultures was estimated either by measuring the chlorophyll a content as described previously (18) or the turbidity (optical density at 750 nm). Photosynthesis was measured as light-dependent oxygen evolution at 25 ± 2°C by a Clark electrode (Oxy-lab 2/2; Hansatech Instruments, England) as described previously (21). Nitrogenase activity was estimated by acetylene reduction assays, as described previously (3). Protein denaturation and aggregation were measured in clarified cell extracts containing ∼500 μg cytosolic proteins treated with 100 μM 8-anilino-1-naphthalene sulfonate (ANS). The pellet (protein aggregate) was solubilized in 20 mM Tris-6 M urea-2% sodium dodecyl sulfate (SDS)-40 mM dithiothreitol for 10 min at 50°C. The noncovalently trapped ANS was estimated using a fluorescence spectrometer (model FP-6500; Jasco, Japan) at a λexcitation of 380 nm and a λemission of 485 nm, as described previously (29).The complete bicistronic groESL operon (2.040 kb) (GenBank accession no. FJ608815) was PCR amplified from PCC7120 genomic DNA using specific primers (Table (Table1)1) and the amplicon cloned into the NdeI-BamHI restriction sites of plasmid vector pFPN, which allows integration at a defined innocuous site in the PCC7120 genome and expression from a strong cyanobacterial PpsbA1 promoter (6). The resulting construct, designated pFPNgro (Table (Table1),1), was electroporated into PCC7120 using an exponential-decay wave form electroporator (200 J capacitive energy at a full charging voltage of 2 kV; Pune Polytronics, Pune, India), as described previously (6). The electroporation was carried out at 6 kV cm−1 for 5 ms, employing an external autoclavable electrode with a 2-mm gap. The electroporation buffer contained high concentrations of salt (10 mM HEPES, 100 mM LiCl, 50 mM CaCl2), as have been recommended for plant cells (23) and other cell types (27). The electrotransformants, selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin by repeated subculturing for at least 25 weeks to achieve complete segregation, were designated AnFPNgro.

TABLE 1.

Plasmids, strains, and primers used in this study
Plasmid, strain, or primerFeature or sequenceaSource or reference
Plasmids
    pFPNIntegrative expression vector6
    pFPNgropFPN with groESL operonThis study
Strains
    An7120Wild-type Anabaena sp. strain PCC7120R. Haselkorn
    AnFPNgroGroESL-overexpressing AnabaenaThis study
Primers
    groESLfwd5′-GGA ATT CCA TAT GGC AGC AGT ATC TCT AAG-3′This study
    groESLrev5′-CGC GGA TCC TTA GTA ATC GAA GTC ACC GCC-3′This study
    PpsbA1fwd5′-GAG CTG CAG GGA TTC CCA AAG ATA GGG-3′6
    PpsbA1rev5′-CTC GGA TCC CCA TAT GTT TTT ATG ATT GCT TTG-3′6
Open in a separate windowaThe underlined nucleotides in the primer sequences represent the incorporated restriction endonuclease sites.The transfer of pFPNgro to PCC7120 resulted in the integration of an extra copy of groESL (PpsbA1-groESL) into the PCC7120 genome. PCR amplification (Fig. (Fig.1I)1I) with the PpsbA1 forward and groESL reverse primer pairs showed the additional copy of groEL juxtaposed downstream to the PpsbA1 promoter (lane 6) in the recombinant Anabaena strain, while the native groESL operon found in the wild-type strain (lane 3) remained intact in the AnFPNgro strain (lane 5).Open in a separate windowFIG. 1.Integration and constitutive expression of an additional groESL operon in Anabaena strain PCC7120. (I) Integration of an additional groESL operon in the PCC7120 genome. The electrophoretogram shows the transfer and integration of PpsbA1-groESL in strain AnFPNgro. Lane 1, 1-kb DNA marker; lane 2, PCR control template without primer; lane 3, PCR product from wild-type Anabaena using the groESLfwd and groESLrev primers; lane 4, PCR product from PCC7120 using the PpsbA1fwd and groESLrev primers; lane 5, PCR product from AnFPNgro using the groESLfwd and groESLrev primers; lane 6, PCR product from AnFPNgro using the PpsbA1fwd and groESLrev primers. (II) Expression of the groESL operon in the wild-type and recombinant Anabaena strains during stress. PCC7120 (An7120) and AnFPNgro were grown for 3 days and then subjected to either heat stress (42°C) for 4 h (A and A′) or salinity stress (150 mM NaCl) for 3 days (B and B′). GroEL levels were estimated by Western blotting of 10% SDS-polyacrylamide gel electrophoresis-resolved whole-cell proteins, followed by immunodetection using anti-AnGroEL antiserum and densitometry (A and B). Panels A′ and B′ depict SDS-polyacrylamide gel electrophoresis-resolved and Coomassie blue-stained proteins to show equal sample loading. Various lanes contained protein samples under unstressed-control (U), heat (H), or salt (S) stress conditions. Numbers below panels A and B show GroEL quantitation by densitometry.Under normal growth conditions, the recombinant AnFPNgro cells expressed about 8.7- to 9.9-fold higher levels of GroEL protein than that detected in the PCC7120 cells (Fig. 1II), indicating a strong constitutive expression of the GroEL protein from the PpsbA1 promoter. In PCC7120, the wild-type copy of the GroEL protein was induced by both heat shock (Fig. 1IIA, lane 2) and salt stress (Fig. 1IIB, lane 2). GroEL levels in the recombinant strain were found to be about 2.5-fold higher under heat stress (Fig. 1IIA, lane 4) and approximately 1.7-fold higher under salinity stress (Fig. 1IIB, lane 4) than that expressed by PCC7120 under these stresses (Fig. 1IIA and IIB, lanes 2). The exposure of AnFPNgro cells to heat stress resulted in a further increase of approximately sixfold in GroEL levels (Fig. 1IIA, lane 4), while salt stress enhanced GroEL levels by approximately threefold (Fig. 1IIB, lane 4), compared to the constitutively expressed GroEL level in this strain (Fig. 1IIA and IIB, lanes 3). The constitutive expression of GroEL protein in AnFPNgro under ambient conditions (Fig. 1IIA and IIB, lanes 3) was from the PpsbA1 promoter (Fig. (Fig.1I,1I, lane 6). We assume that the additional increase in GroEL levels observed under heat and salt stress (Fig. 1IIA and IIB, lanes 4) was due to the native stress-induced groESL operon, functional from its own promoter.The diazotrophically grown PCC7120 did not grow during prolonged exposure to heat stress (42°C) (Fig. (Fig.2A)2A) and showed poor growth during salinity stress (150 mM) (Fig. (Fig.2B).2B). Salinity stress was particularly severe for photosynthetic pigments in PCC7120 and bleached the cells (data not shown). In contrast, the recombinant strain AnFPNgro showed a higher content of major photosynthetic pigments (Fig. (Fig.2C)2C) and presented a healthier blue-green phenotype (data not included). Strain AnFPNgro also showed better growth than wild-type PCC7120, both under unstressed and stressed conditions (Fig. 2A and B).Open in a separate windowFIG. 2.Effect of groESL overexpression on thermotolerance and salinity tolerance of diazotrophically grown Anabaena strains. (A) Growth (measured as chlorophyll a content) of strains during prolonged exposure to 42°C. (B) Growth (turbidity measured at an optical density at 750 nm) during prolonged exposure to 150 mM NaCl. (C) Absorption spectra of a dilute suspension of whole filaments after 7 days of exposure to various NaCl concentrations.The photosynthetic activity decreased with time during heat stress in PCC7120 but was maintained at comparatively higher levels in AnFPNgro cells (Fig. (Fig.3A)3A) than in PCC7120. The dinitrogenase activity in PCC7120 was severely inhibited after 4 h of heat stress (Fig. (Fig.3B).3B). In contrast, the dinitrogenase activity of the recombinant strain (AnFPNgro) was about 1.5-fold higher than PCC7120 under ambient conditions (25°C ± 2°C, no NaCl) and more than 3-fold higher than that of PCC7120 after 4 h of heat stress (Fig. (Fig.3B).3B). Prolonged exposure to salinity stress inhibited photosynthesis and nitrogen fixation in PCC7120 (Fig. 3C and D). However, strain AnFPNgro displayed significant protection of these activities, possibly due to overexpressed GroES/GroEL proteins. The recombinant strain (AnFPNgro) exhibited much-reduced protein aggregation after 4 h of heat stress or after prolonged exposure (10 days) to salinity stress than PCC7120 (Fig. (Fig.44).Open in a separate windowFIG. 3.Effect of groESL overexpression on photosynthesis and nitrogen fixation in Anabaena. Photosynthesis (A and C) and nitrogenase activity (B and D) in wild-type Anabaena strain PCC7120 (An7120) and recombinant AnFPNgro strains exposed to heat stress for 10 days (A) or 4 h (B) or to salinity stress (150 mM) for 10 days (C and D). Letters U, H, and S denote unstressed-control, heat stress, and salt stress conditions, respectively.Open in a separate windowFIG. 4.Protein aggregation in Anabaena strains during exposure to heat and salinity stress. The protein aggregation was monitored by ANS fluorescence after 4 h of exposure to 42°C (H) or 10 days of exposure to 150 mM NaCl (S) and compared with the unstressed controls (U) of recombinant strain AnFPNgro and the wild-type Anabaena strain PCC7120 (An7120). The fluorescence intensity output from the spectrofluorimeter is expressed as arbitrary units (a.u.).This study evaluated the possible benefits of groESL overexpression for the general stress tolerance of PCC7120. The recombinant AnFPNgro strain harbored two groESL operons, one native stress-inducible groESL and a second groESL operon integrated at a defined innocuous site and placed downstream of a constitutive PpsbA1 promoter (Fig. (Fig.1).1). The recombinant AnFPNgro strain showed an 8- to 10-fold higher constitutive expression of GroEL under ambient conditions than PCC7120, while its inherent stress-induced GroEL expression was not impaired and resulted in 30- and 48-fold more GroEL under salt and heat stress, respectively (Fig. (Fig.11).The AnFPNgro cells exhibited better growth (Fig. (Fig.2),2), photosynthesis, and nitrogen fixation (Fig. (Fig.3)3) than PCC7120, suggesting a possible limitation on the availability of GroEL under ambient conditions. The protection of photosynthetic pigments and oxygen photoevolution during salinity stress were particularly impressive. Nearly 2- to 2.5-fold higher GroEL levels in AnFPNgro under heat or salt stress, compared to those of PCC7120 (Fig. (Fig.1),1), lowered the stress-triggered protein aggregation (Fig. (Fig.4)4) and had beneficial consequences for photosynthesis and nitrogen fixation in the recombinant strain (Fig. (Fig.3).3). An overall improvement in the aforesaid vital metabolic activities eventually resulted in the superior tolerance of recombinant AnFPNgro to heat and salt stresses.  相似文献   

6.
7.
2-Oxobutyrate is an important intermediate in the chemical, drug, and food industries. Whole cells of Pseudomonas stutzeri SDM, containing NAD-independent lactate dehydrogenases, effectively converted 2-hydroxybutyrate into 2-oxobutyrate. Under optimal conditions, the biocatalytic process produced 2-oxobutyrate at a high concentration (44.4 g liter−1) and a high yield (91.5%).2-Oxobutyrate (2-OBA) is used as a raw material in the synthesis of chiral 2-aminobutyric acid, isoleucine, and some kinds of medicines (1, 8). There is no suitable starting material for 2-OBA production by chemical synthesis; therefore, the development of innovative biotechnology-based techniques for 2-OBA production is desirable (12).2-Hydroxybutyrate (2-HBA) is cheaper than 2-OBA and can be substituted for 2-OBA in the production of isoleucine, as reported previously (9, 10). The results of those studies also indicated that it might be possible to produce 2-OBA from 2-HBA by a suitable biocatalytic process. In the presence of NAD, NAD-dependent 2-hydroxybutyrate dehydrogenase can catalyze the oxidation of 2-HBA to 2-OBA (4). However, due to the high cost of pyridine cofactors (11), it is preferable to use a biocatalyst that directly catalyzes the formation of 2-OBA from 2-HBA without any requirement for NAD as a cofactor.In our previous report, we confirmed that NAD-independent lactate dehydrogenases (iLDHs) in the pyruvate-producing strain Pseudomonas stutzeri SDM (China Center for Type Culture Collection no. M206010) could oxidize lactate and 2-HBA (6). Therefore, in addition to pyruvate production from lactate, P. stutzeri SDM might also have a potential application in 2-OBA production.To determine the 2-OBA production capability of P. stutzeri SDM, the strain was first cultured at 30°C in a minimal salt medium (MSM) supplemented with 5.0 g liter−1 dl-lactate as the sole carbon source (5). The whole-cell catalyst was prepared by centrifuging the medium and resuspending the cell pellet, and biotransformation was then carried out under the following conditions using 2-HBA as the substrate and whole cells of P. stutzeri SDM as the biocatalyst: 2-HBA, 10 g liter−1; dry cell concentration, 6 g liter−1; buffer, 100 mM potassium phosphate (pH 7.0); temperature, 30°C; shaking speed, 300 rpm. After 4 h of reaction, the mixture was analyzed by high-performance liquid chromatography (HPLC; Agilent 1100 series; Hewlett-Packard) using a refractive index detector (3). The HPLC system was fitted with a Bio-Rad Aminex HPX-87 H column. The mobile phase consisted of 10 mM H2SO4 pumped at 0.4 ml min−1 (55°C). Biotransformation resulted in the production of a compound that had a retention time of 19.57 min, which corresponded to the peak of authentic 2-OBA (see Fig. S1 in the supplemental material).After acidification and vacuum distillation, the new compound was analyzed by negative-ion mass spectroscopy. The molecular ion ([M − H], m/z 101.1) signal of the compound was consistent with the molecular weight of 2-OBA, i.e., 102.1 (see Fig. S2 in the supplemental material). These results confirmed that 2-HBA was oxidized to 2-OBA by whole cells of P. stutzeri SDM.To investigate whether iLDHs are responsible for 2-OBA production in the above-described biocatalytic process, 2-HBA oxidation activity in P. stutzeri SDM was probed by native polyacrylamide gel electrophoresis. After electrophoresis, the gels were soaked in a substrate solution [50 mM Tris-HCl buffer (pH 8.0) containing 0.1 mM phenazine methosulfate, 0.1 mM 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, and 1 mM l-lactate, dl-lactate, or dl-2-HBA] and gently shaken. As shown in Fig. Fig.1,1, d- and l-iLDH migrated as two bands with distinct mobilities. The activities responsible for d- and l-2-HBA oxidation were located at the same positions as the d- and l-iLDH activities, respectively. No other bands responsible for d- and l-2-HBA oxidation were detected. Moreover, the dialysis of the crude cell extract did not lead to loss of 2-HBA oxidation activity and the addition of 10 mM NAD+ could not stimulate the reaction (see Table S1 in the supplemental material). These results implied that in the biocatalytic system, 2-HBA was oxidized to 2-OBA by iLDHs present in P. stutzeri SDM.Open in a separate windowFIG. 1.Activity staining of iLDHs after native polyacrylamide gel electrophoresis with lactate or 2-HBA as the substrate.Although the SDM strain could not use 2-HBA or 2-OBA for growth (see Fig. S3 in the supplemental material), 2-HBA might induce some of the enzymes responsible for 2-OBA production in the biocatalytic process. To exclude this possibility, the SDM strain was cultured in MSM containing dl-lactate or pyruvate as the sole carbon source. As shown in Fig. Fig.2,2, the enzyme activities that catalyzed lactate and 2-HBA oxidation were simultaneously present in the cells cultured on lactate and were absent in those cultured on pyruvate. After the lactate or pyruvate was exhausted, 5.05 g liter−1 dl-2-HBA was added to the medium. It was observed that dl-2-HBA was efficiently converted to 2-OBA in the medium containing dl-lactate (Fig. (Fig.2a).2a). No 2-OBA production was detected in the medium containing pyruvate. Because 2-HBA addition did not induce the enzymes involved in 2-HBA oxidation (Fig. 2a and b), we concluded that the iLDHs induced by dl-lactate catalyzed 2-HBA oxidation in this biocatalytic process.Open in a separate windowFIG. 2.Time course of P. stutzeri SDM growth on media containing dl-lactate (a) and pyruvate (b). 2-HBA was added to the medium after the exhaustion of lactate or pyruvate. Symbols: ▴, lactate; ▵, pyruvate; •, 2-HBA; ○, 2-OBA; ▪, cell density; ▧, iLDHs activity with dl-lactate as the substrate; ▒, iLDHs activity with dl-2-HBA as the substrate.iLDHs could catalyze the oxidation of the substrate in a flavin-dependent manner and might use membrane quinone as the electron acceptor. Unlike the oxidases, which directly use the oxygen as the electron acceptor, this substrate oxidation mechanism could prevent the formation of H2O2 (see Fig. S4 in the supplemental material). The P. stutzeri SDM strain efficiently converted dl-2-HBA to 2-OBA with high yields (4.97 g liter−1 2-OBA was produced from 5.05 g liter−1 dl-2-HBA); therefore, 2-OBA production by this strain can be a valuable and technically feasible process. To increase the efficiency of P. stutzeri SDM in the biotechnological production of 2-OBA, the conditions for biotransformation using whole cells of P. stutzeri SDM were first optimized. The influence of the reaction pH and 2-HBA concentration on 2-OBA production was determined in 100 mM phosphate buffer containing whole cells harvested from the medium containing dl-lactate as the sole carbon source. The reaction was initiated by adding the whole cells and 2-HBA at 37°C, followed by incubation for 10 min. After stopping the reaction by adding 1 M HCl, the 2-OBA concentration was determined by HPLC.As shown in Fig. Fig.3a,3a, ,2-OBA2-OBA production was highest at pH 7.0. Under acidic or alkaline conditions, the transformation of 2-HBA to 2-OBA decreased. The optimal 2-HBA concentration was found to be 0.4 M, as shown in Fig. Fig.3b.3b. 2-OBA production increased as the 2-HBA concentration increased up to about 0.4 M and decreased thereafter. The concentration of the whole-cell catalyst was then optimized using 0.4 M 2-HBA as the substrate at pH 7.0. As shown in Fig. Fig.3c,3c, the highest 2-OBA concentration was obtained with 20 g (dry cell weight [DCW]) liter−1 of P. stutzeri SDM. The 2-OBA concentration decreased with any increase beyond this cell concentration.Open in a separate windowFIG. 3.Optimization of the biocatalysis conditions. (a) Effect of pH on 2-OBA production activity. (b) Effect of 2-HBA concentrations on 2-OBA production activity. (c) Effect of the concentration of P. stutzeri SDM on biotransformation. OD, optical density.After optimizing the biocatalytic conditions, we studied the biotechnological production of 2-OBA from 2-HBA by using the whole-cell catalyst P. stutzeri SDM. As shown in Fig. Fig.4,4, when 20 g (DCW) liter−1 P. stutzeri SDM was used as the biocatalyst, 48.5 g liter−1 2-HBA was biotransformed into 44.4 g liter−1 2-OBA in 24 h.Open in a separate windowFIG. 4.Time course of production of 2-OBA from 2-HBA under the optimum conditions. Symbols: ▪, 2-OBA; •, 2-HBA.Biocatalytic production of 2-OBA was carried out using crotonic acid, propionaldehyde, 1,2-butanediol, or threonine as the substrate (2, 7, 8, 12). Resting cells of the strain Rhodococcus erpi IF0 3730 produced 15.7 g liter−1 2-OBA from 20 g liter−1 1,2-butanediol, which is the highest reported yield of 2-OBA to date (8). By using the whole-cell catalyst P. stutzeri SDM, it was possible to produce 2-OBA at a high concentration (44.4 g liter−1) and a high yield (91.5%). Due to the simple composition of the biocatalytic system (see Fig. S5 in the supplemental material), 2-HBA and 2-OBA could be easily separated on a column using a suitable resin. Separation of 2-OBA from the biocatalytic system was relatively inexpensive. The biocatalytic process presented in this report could be a promising alternative for the biotechnological production of 2-OBA.   相似文献   

8.
Relaxation of a hERG K+ channel model during molecular-dynamics simulation in a hydrated POPC bilayer was accompanied by transitions of an arginine gating charge across a charge transfer center in two voltage sensor domains. Inspection of the passage of arginine side chains across the charge transfer center suggests that the unique hydration properties of the arginine guanidine cation facilitates charge transfer during voltage sensor responses to changes in membrane potential, and underlies the preference of Arg over Lys as a mobile charge carrier in voltage-sensitive ion channels.The response of voltage-sensitive ion channels to changes in membrane potential is mediated by voltage sensor domains (VSD) containing a transmembrane helical segment (S4) with a repeating motif of positively charged and hydrophobic amino acids (Fig. 1) (1,2). Changes in membrane potential drive the S4 helix through the membrane plane with the charged side chains (largely arginine) on S4 swapping Glu/Asp carboxylate partners that lie on less mobile elements of the VSD (2). Movement of S4 is coupled to the ion-conducting pore to transmit changes in membrane potential to channel gating (3).Open in a separate windowFigure 1Structures of the VSD of membrane domains before MD in a POPC bilayer. The S2 (pink) and S4 (blue) helices of the VSD of the hERG model (A) and Kv1.2/2.1 chimera structure (B) are highlighted. (C) Sequence alignment of S2 and S4 among homologous voltage-sensitive K+ channels.The VSD charge-pairing motif of K+ and Na+ channels is best represented in VSD states at zero membrane potential (S4 helix up) for which crystal structures exist for Kv1.2 (4), Kv1.2/2.1 chimera (5), and Nav channels (6,7). In these states, positively charged residues on the intra- and extracellular sections of the S4 helix are separated by a hydrophobic charge-transfer center (CTC) (1) or plug (8) containing a highly conserved Phe residue (Fig. 1). This plug restricts water incursion across the VSD, focusing the electric field across a narrow region near the bilayer center. In voltage-driven transitions between S4 down- and up-states, positively charged S4 side chains move across the CTC.The ether-à-go-go (eag) and eag-related family of voltage-sensitive K+ channels likely share similar charge pairing interactions with VSDs in other channels (9,10). However, eag VSDs contain an extra negative charge on S2 (underlined in Fig. 1 C) so that in hERG, Asp residues (D460 and D466) lie approximately one helical turn above and below the conserved charge-transfer center Phe (F463) (Fig. 1). This eag-specific motif might be expected to facilitate transfer of Arg side chains through the CTC and to stabilize the voltage sensor (VS) in the up state. We recently described an open state (VS-up) hERG model built on the crystal structure template of the Kv1.2/2.1 chimera and molecular-dynamics (MD) simulation of this model in a hydrated POPC bilayer (11). We have inspected an extended version of this simulation and identified transitions of a gating charge into the CTC despite the absence of a membrane potential change. These transitions are absent in equivalent MD simulations of the chimera structure in a POPC bilayer.Fig. 1 shows a single VS from starting structures of the hERG model and the chimera structure in a hydrated POPC bilayer, after restrained MD to anneal the protein-lipid interface (see Methods in the Supporting Material). Because the hERG model is constructed on the chimera structure according to the alignment in Fig. 1 the pattern of pairing between S4 charges and acidic VS side chains is equivalent in the hERG model and chimera structure.The arrangement of charge-paired side chains remains constant during MD in all subunits of the chimera (e.g., Fig. 2 E and see Fig. S2 in the Supporting Material). However, in two subunits of the hERG model the R534 side chain moves toward the extracellular side of the bilayer, sliding into the CTC to form a charge interaction with the extra Asp residue (D460 in hERG) that lies just above F463 (Fig. 2, AC). This transition is facilitated by changes in side-chain rotamers of R534 and F463 as the planar Arg guanidine group rotates past the F463 ring, and the availability of D460 as a counterion for the R534 guanidine (Fig. 2). Movement of an Arg guanidine past the Phe side chain of the CTC is similar to that described in steered MD of an isolated VS domain (12).Open in a separate windowFigure 2Movement of the R534 side chain across the CTC in chain a of the hERG model simulation (A). Similar transitions are observed in chains a and b (panels B and C), but not chains c (D) or d (not shown), where the R534 side chain remains close to D466. In all subunits of the Kv1.2/2.1 chimera simulation, charge pairing of the starting structure (Fig. 1B) was maintained throughout (e.g., panel E and see Fig. S2 in the Supporting Material). (Black and blue lines) Distances from the Arg CZ or Lys ε atom to the two O atoms, respectively, of Asp or Glu.Mason et al. (13) have shown, using neutron scattering, that the low charge density guanidine cation (Gdm+) corresponding to the Arg side chain is poorly hydrated above and below the molecular plane. This property may underlie the universal preference for Arg (over Lys) in voltage sensor charge transfer. Although the poorly-hydrated surfaces of Gdm+ interact favorably with nonpolar (especially planar) surfaces (14,15), Gdm+ retains in-plane hydrogen bonding (13). In the transition of R534 across the CTC, in-plane solvation of the guanidine side chain is provided initially by D466, D501, and water molecules below the CTC, and during and after the transition by D501 and D460 side chains and waters above the CTC (Fig. 3, A and B). Complete transfer of the R534 side chain across the CTC was not observed, but would be expected to involve movement of the guanidine group away from H-bonding distance with D501.Open in a separate windowFigure 3In-plane solvation of R534 guanidine in the charge transfer center during the hERG model MD (A). (Dotted lines) H-bond distances of <2.5 Å. The right-hand group consists of top-down (B) and end-on (C) views of the distribution of oxygen atoms around the side chain of hERG R534 at 20-ns intervals during MD (subunit a). (D) End-on view of equivalent atom distributions around the K302 side chain during the Kv1.2/2.1 chimera MD (subunit c). (Red spheres, water O; pink, Asp OD1 and OD2; purple:, Glu OE1 and OE2.)The atom distribution around the R534 side chain during MD (Fig. 3, B and C) conforms to the experimental Gdm+ hydration structure (13), with H-bonding to waters and side-chain Asp O atoms exclusively in the guanidine plane. The passage of Gdm+ through the CTC is facilitated by the hydrophobic nature of Gdm+ above and below the molecular plane (13), which allows interaction with the nonpolar groups (especially F463) in the CTC (Fig. 3 A and see Fig. S3). This contrasts with the solvation properties of the Lys amino group (e.g., K302 of the Kv1.2/2.1 chimera (Fig. 1), which has a spherical distribution of H-bonding and charge-neutralizing oxygen atoms (Fig. 3 D and see Fig. S4).To further test these interpretations, we ran additional MD simulations of the isolated hERG VS domain model and an R534K mutant in a hydrated POPC bilayer. Again, the R534 side chain entered the CTC in the wild-type model simulation whereas the K534 side chain did not (see Fig. S5). Inspection of the atom distributions in Fig. 3 D (and see Fig. S4) indicates that the pocket below the conserved Phe of the CTC is particularly favorable for a Lys side chain, with waters and acidic side chains that satisfy the spherical solvation requirements of the terminal amino group, and nonpolar side chains that interact with the aliphatic part of the side chain.The occurrence of transitions of the R534 side chain through the CTC in the hERG model, in the absence of a change in membrane potential, indicates a relaxation from a less-stable starting structure. However, the path of the R534 side chain provides useful molecular-level insight into the nature of charge transfer in voltage sensors. How do these observations accord with broader evidence of charge transfer in voltage-sensitive channels in general, and hERG in particular? Studies with fluorinated analogs of aromatic side chains equivalent to F463 of hERG or F233 of the chimera indicate the absence of a significant role for cation-π interactions involving the CTC aromatic group in K+ and Nav channels, although a planar side chain is preferred in some cases (1,16). In hERG, F463 can be replaced by M, L, or V with small effects on channel gating (17), indicating that the hERG CTC requires only a bulky nonpolar side chain to seal the hydrophobic center of the VS and allow passage of the Arg side chain through the CTC. Both absence of requirement for cation-π interactions, and accommodation of nonplanar hydrophobic side chains in a functional hERG CTC, are broadly consistent with the interpretation that it is the poorly-hydrated nature of the Arg guanidine group above and below the molecular plane (together with its tenacious proton affinity (18)) that governs its role in carrying gating charge in voltage sensors.While the simulations suggest that R534 may interact with D460 in the open channel state, the possibility that the extra carboxylate side chain above the CTC might facilitate gating charge transfer is seemingly inconsistent with the slow activation of hERG, although hERG D460C does activate even more slowly than the WT channel (9). However, S4 movement in hERG occurs in advance of channel opening (19), and slow gating is partly mediated by interactions involving hERG cytoplasmic domains (20); thus, slow S4 movement may not be an inherent property of the hERG voltage sensor. Recent studies show that when hERG gating is studied at very low [Ca2+] (50 μM) and low [H+] (pH 8.0), the channel is strongly sensitized in the direction of the open state; this effect is reduced in hERG D460C (and hERG D509C) (10). These observations support a role for the extra hERG Asp residues in binding Ca2+ (and H+) (10), allowing the channel to be allosterically responsive to changes in pH and [Ca2+]. A true comparison of a hERG model with experimental channel gating might involve studies on a channel lacking cytoplasmic domains that modulate gating, and using conditions (high pH and low [Ca2+]) that leave the eag-specific Asp residues unoccupied. This could reveal the inherent current-voltage relationships and kinetics of the hERG voltage sensor.  相似文献   

9.
Although ionizing radiation has been employed as a mutagenic agent in plants, the molecular mechanism(s) of the mutagenesis is poorly understood. AtPolζ, AtRev1 and AtPolη are Arabidopsis translesion synthesis (TLS)-type polymerases involved in UV-induced mutagenesis. To investigate the role of TLS-type DNA polymerases in radiation-induced mutagenesis, we analyzed the mutation frequency in AtPolζ-, AtRev1- or AtPolη-knockout plants rev3-1, rev1-1 and polh-1, respectively. The change in mutation frequency in rev3-1 was negligible, whereas that in rev1-1 decreased markedly and that in polh-1 increased slightly compared to wild-type. Abasic (apurinic/apyrimidinic; AP) sites, induced by radiation or generated during DNA repair processes, can pair with any kind of nucleotide on the opposite strand. 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG), induced by radiation following formation of reactive oxygen species, can pair with cytosine or adenine. Therefore, AtRev1 possibly inserts dC opposite an AP site or 8-oxo-dG, which results in G to T transversions.Key words: ionizing radiation, DNA damage, translesion synthesis, ROS, 8-oxo-dG, ArabidopsisIonizing radiation has been applied to various plants for the purpose of generating useful agricultural resources. A variety of ionizing radiation forms, including X rays, γ rays, neutrons and ion-beams, have been used as mutagens for mutation breeding in addition to chemical mutagens.1 Nevertheless, the molecular mechanism(s) associated with radiation-induced mutations in higher plants remains to be fully understood.In animals and microorganisms, it is known that a large proportion of mutations occur when damaged DNA is replicated by specific DNA polymerases. This activity is referred to as “translesion synthesis (TLS),” and represents one of the damage-tolerance pathways conserved from bacteria to humans. TLS-type polymerases have a more relaxed active site structure compared to replicases and therefore can act on damaged templates. However, the very flexible nature of the active site can induce high and sometimes fatal, replication errors. In higher plants, the presence of several TLS-type polymerase genes was reported. AtREV3 encodes the catalytic subunit of AtPolζ.2 AtPOLK, AtREV1 and AtPOLH encode AtPolκ, AtRev1 and AtPolη, respectively.37 In our previous paper, we suggested the role of three TLS-type polymerases, AtPolζ, AtRev1 and AtPolη, in the formation of UV-induced mutations.8Since the variety and ratio of UV-induced DNA damage have been well characterized, and the TLS activity of each polymerase can be examined in vitro, it is relatively easy to speculate on how the TLS polymerases induce mutation following UV-exposure. By contrast, ionizing radiation can induce a variety of damage, including damage to bases and strand breaks, and the role of TLS-type polymerases in radiation-induced mutation is less understood.In an effort to determine whether TLS polymerases are involved in radiation-induced mutation in higher plants, we analyzed the mutation frequency in Arabidopsis somatic tissues following γ ray irradiation. The reporter gene used for this analysis was the uidA166G-T gene, which contains a nonsense mutation generated by replacement of the 166th guanine with thymine.9 The reporter gene integrated in the Arabidopsis genome will become active when a T-to-G reversion occurs at the 166ththymine. To detect γ ray-induced mutations, transgenic plants carrying the uidA166G-T were treated with 100 Gy of γ rays and then grown for another 10 days, so that cells with an active uidA gene can proliferate and produce a detectable blue sector on somatic tissues.To investigate the roles of TLS-type polymerases in radiation-induced mutations, we examined the mutation frequencies in disruptants of the AtREV3, AtREV1 and AtPOLH genes, rev3-1, rev1-1 and polh-1, respectively, and compared these to that of wild-type. The reversion events in rev3-1 did not change significantly compared to wild-type siblings (Fig. 1). This is contrasted with the reduction in UV-induced mutation frequency when AtPolζ is disrupted.8 However, the reversion events in rev1-1 plants were less than 1/10 of that in wild-type siblings (p < 0.01). This result indicates that AtRev1 plays a role in promoting γ ray-induced mutations. The reversion event in polh-1 was slightly (∼1.4 times) higher than that in wild-type siblings (p < 0.05), suggesting that AtPolη plays a role in reducing γ ray-induced mutations.Open in a separate windowFigure 1γ ray-induced mutation frequencies in AtREV3-, AtREV1- and AtPOLH-disrupted plants. Wild-type and mutant derived from a single F1 plant were examined concurrently. Bars represent average frequencies per 100 plants derived from multiple experiments. error bars indicate ±SE. *p < 0.01; **p < 0.05.The frequencies in wild-type, rev3-1, rev1-1 and polh-1 were 12, 22, 1.9 and 13 times higher, respectively, with γ ray exposure compared to the spontaneous mutation frequency as previously reported.8 These results indicate that the G to T transversion was greatly induced by γ ray exposure.Since ionizing radiation can induce a variety of damage to DNA or nucleotide pools, the mechanisms associated with radiation-induced mutagenesis would be more complicated than those pertaining to UV-induced mutagenesis. It is known that some kinds of damage are more abundantly generated by ionizing radiation. Additionally, some kinds of damage are preferentially used as templates or substrates by specific DNA polymerases. Based on previous reports relating to plants or other organisms, we propose two possible mechanisms to account for the γ ray-induced reversion events (Fig. 2).Open in a separate windowFigure 2Possible role of TLS polymerases in γ ray-induced mutagenesis. (A) role of TLS polymerases in the replication of AP sites. Ionizing radiation induces formation of an AP site (O). AtRev1 inserts dC opposite the AP site, leading to a G to T transversion. AtPolη inserts dA or T opposite the AP site, contributing less to G to T transversions. (B) Ionizing radiation induces the formation of reactive oxygen species (ROS) which oxidize guanine (G) in DNA or dGTP, producing 8-oxo-dG or 8-oxo-dGTP (Go). 8-oxo-dGTP is misincorporated opposite adenine (A) through replication. Go is paired with cytosine (C) at the next round of DNA replication, which results in a T to G transversion. AtPolη inserts dC or dA opposite Go, whereas AtRev1 inserts dC opposite Go. Other polymerases including AtPolκ might insert dA opposite Go.Abasic (apurinic/apyrimidinic; AP) sites represent one of the most abundant DNA lesions that occur spontaneously and are induced by radiation.10 AP sites can also be generated during the DNA repair process.11 If the 166th T of our marker gene were lost following irradiation with γ rays, the template would induce various mutations.Among the TLS-type polymerases, Rev1s share the specific ability to insert dCMP opposite AP sites.1214 Therefore, the significant reduction in mutation frequency in AtRev1-knockout plants might be due to loss of dCMP insertion opposite AP sites (Fig. 2A). In contrast, it was shown that yeast or human Polηs insert dA or T opposite AP sites or AP-site analogs.1517 Thus, the activity of Polη does not seem to contribute toward T to G transversions (Fig. 2A). The incidence of mutagenic bypass of AP sites by AtRev1 may be greater when AtPolη is absent, which elevates the mutation frequency slightly.Given the similar reduction in UV-induced mutation frequencies, we previously suggested that AtRev1 cooperates with AtPolζ to bypass UV-damage.8 In contrast, no significant change in γ ray-induced mutation frequency was observed in AtPolζ-knockout plants. This suggests that AtRev1 might work independently of AtPolζ when bypassing AP sites, although it is not consistent with previous reports concerning yeast.15,16Radiation damages cells through the formation of reactive oxygen species (ROS). ROS induce oxidative damage of DNA, including strand breaks and base and nucleotide modifications. The formation of 7,8-dihydro-8-oxo-2′-deoxy-guanosine (8-oxo-dG) represents one of the most abundant and best characterized type of oxidative damage.18 8-oxo-dG can pair with cytosine or adenine, inducing frequent base substitutions. In addition to direct oxidation of deoxyguanosine (dG) in DNA, 8-oxo-dG can be generated by the incorporation of oxidized dGTP (8-oxo-dGTP) into DNA during the replication process.19 8-oxo-dG in DNA induces mutations when used as a template for the next round of replication. If 8-oxo-dGTP were incorporated in lieu of the 166thT and paired with dC in the next round of replication, it would lead to a T to G transversion (Fig. 2B).It was shown that yeast and human Rev1s insert dC at positions opposite 8-oxo-dG.13,20 Therefore, the reduction in mutation frequency in AtRev1-knockout plants could be due to loss of dCMP insertion opposite 8-oxo-dG (Fig. 2B). Although human and yeast Polηs can insert dC or dA opposite 8-oxo-dG, the insertion efficiencies and dC/dA ratios differ depending on the assay conditions and sequence context.2125 Thus, the balance of error-free and error-prone bypass activities of Polη might interfere with the mutation frequency in individual assays. The slight increase in mutation frequency in AtPolη-knockout plants suggests that the ratio of dC insertion by other polymerases was slightly higher when AtPolη is absent.In yeast, spontaneous mutations in base excision repair (BER)-deficient cells are not reduced by elimination of Polζ, suggesting a minor role of Polζ in 8-oxo-dG induced mutations.26,27 Our result demonstrating no reduction in mutation frequency in AtPolζ-knockout plants suggests that AtPolζ is also dispensable in terms of 8-oxo-dG induced mutagenesis. However, the root growth of AtPolζ-knockout plants is severely inhibited by γ ray exposure.2,4 Therefore, it is possible that AtPolζ has other function(s) in radiation-induced damage responses.In addition to the three polymerases examined in this report, Arabidopsis possesses an additional TLS-type polymerase referred to as AtPolκ. In vitro analysis revealed that AtPolκ preferentially inserts dA opposite 8-oxo-dG,28 as is the case with human Polκ.29,30 Therefore, it is conceivable that AtPolκ has a function to promote T to G transversions (Fig. 2B). It will be interesting to measure the mutation frequency in AtPolκ-knockout plants following γ ray exposure. Further, analyses of mutation frequencies in BER- or mismatch repair (MMR)-deficient mutants will be necessary to delineate the mechanism(s) of radiation-induced mutagenesis in higher plants.  相似文献   

10.
We recently established a proteome methodology for Arabidopsis leaf peroxisomes and identified more than 90 putative novel proteins of the organelle. These proteins included glutathione reductase isoform 1 (GR1), a major enzyme of the antioxidative defense system that was previously reported to be cytosolic. In this follow-up study, we validated the proteome data by analyzing the in vivo subcellular targeting of GR1 and the function of its C-terminal tripeptide, TNL>, as a putative novel peroxisome targeting signal type 1 (PTS1). The full-length protein was targeted to peroxisomes in onion epidermal cells when fused N-terminally with the reporter protein. The efficiency of peroxisome targeting, however, was weak upon expression from a strong promoter, consistent with the idea that the enzyme is dually targeted to peroxisomes and the cytosol in vivo. The reporter protein that was extended C-terminally by 10 amino acid residues of GR1 was directed to peroxisomes, characterizing TNL> as a novel PTS1. The data thus identify plant peroxisomal GR at the molecular level in the first plant species and complete the plant peroxisomal ascorbate-glutathione cycle. Moreover, GR1 is the first plant protein that is dually targeted to peroxisomes and the cytosol. The evolutionary origin and regulatory mechanisms of dual targeting are discussed.Key words: ascorbate-glutathione cycle, dual targeting, proteome analyses, reactive oxygen species, targeting signalsMassive amounts of hydrogen peroxide (H2O2) are produced during photosynthesis in peroxisomes by glycolate oxidase activity as part of the photorespiratory cycle.1 Next to catalase, the ascorbate-glutathione cycle is the secondary scavenging system for H2O2 detoxification.24 The cycle comprises four enzymes, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and NADPH-dependent glutathione reductase (GR). GR plays a major physiological role in maintaining and regenerating reduced glutathione in response to biotic and abiotic stresses in plants.5 Jiminez et al. (1997) provided biochemical evidence for the presence of the antioxidants ascorbate and glutathione and the enzymes of the ascorbate-glutathione cycle in pea peroxisomes.68 While Arabidopsis APX3, MDAR1 and MDAR4 have been characterized as peroxisomal isoforms,911 the molecular identity of plant peroxisomal GR and DHAR have not been determined in any plant species to date.5 Arabidopsis encodes two GR and five DHAR isoforms that are either shown to be or predicted to be cytosolic, mitochondrial or plastidic.12 We recently identified specific isoforms of GR (GR1, At3g24170) and DHAR (DHAR1, At1g19570) as being peroxisome-associated by proteome analysis of Arabidopsis leaf peroxisomes.13,14 Both isoforms were previously reported to be or predicted to be cytosolic.15Arabidopsis GR1 terminates with TNL>, which is related to functional plant PTS1 tripeptides such as SNL> and ANL>.16,17 Threonine (T), however, has not yet been described as an allowed residue at position −3 of PTS1s in any plant peroxisomal protein.16 Analysis of homologous plant proteins and expressed sequence tags (ESTs) shows that TNL> is generally highly conserved in putative plant GR1 orthologs (Fig. 1). A few other sequences terminate with related tripeptides, such TSL>, TTL>, NNL> and TKL>. Only a single EST (Picrorhiza kurrooa) carries the canonical PTS1, SKI> (Fig. 1). The data provide only weak additional support for peroxisome targeting of plant GR1 orthologs. However, GR homologs from green algae (chlorophyta) carry canonical PTS1 tripeptides, such as SKL> (Chlamydomonas, Volvox) and AKM> (Micromonas, Fig. 1, Suppl. Fig. 1).Open in a separate windowFigure 1Analysis of PTS1 conservation in plant GR1 homologs. Sequences of full-length protein (FLP) plant GR1 homologs or ESTs (“EST”) were identified by BLAST and phylogenetic analysis, aligned by ClustalX, and conserved residues were shaded by Genedoc. In addition to spermatophyta, homologs from bryophyta and chlorophyta were analyzed for PTS1 conservation. For a phylogenetic analysis of the full-length proteins, see also Supplementary Figure 1. The species abbreviations are as follows: Aa, Artemisia annua; At, Arabidopsis thaliana; Bn, Brassica napus; Br, Brassica rapa; Ci, Cichorium intybus; Cr, Chlamydomonas reinhardtii; Cs, Cynara scolymus; Fv, Fragaria vesca; Ha, Helianthus annuus; Msp, Micromonas sp. RCC 299; Mt, Medicago truncatula; Nt, Nicotiana tabacum; Os, Oryza sativa; Pk, Picrorhiza kurrooa; Ppat, Physcomitrella patens subsp. patens; Ps, Pisum sativum; Ptri, Populus trichocarpa; Rc, Ricinus communis; Rs, Raphanus sativus; Tp, Trifolium pratense; Tpus, Triphysaria pusilla; Vc, Volvox carteri f. nagariensis; Vv, Vitis vinifera; Zm, Zea mays.  相似文献   

11.
Two enzymes, l-arabinose isomerase and mannose-6-phosphate isomerase, from Geobacillus thermodenitrificans produced 118 g/liter l-ribose from 500 g/liter l-arabinose at pH 7.0, 70°C, and 1 mM Co2+ for 3 h, with a conversion yield of 23.6% and a volumetric productivity of 39.3 g liter−1 h−1.l-Ribose, a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, is not abundant in nature (4, 15, 20). l-Ribose has been synthesized primarily from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, and d-mannono-1,4-lactone (1, 13, 20). Recombinant cells containing a NAD-dependent mannitol-1-dehydrogenase produced 52 g/liter l-ribose from 100 g/liter ribitol after fermentation for 72 h (14). However, the volumetric productivity of l-ribose was 26-fold lower than that of the chemical synthetic method starting from l-arabinose (6). l-Ribose isomerase from an Acinetobacter sp., which is most active with l-ribose, showed poor efficiency in the conversion of l-ribulose to l-ribose (9). Recently, l-ribulose was produced with a conversion yield of 19% from the inexpensive sugar l-arabinose using l-arabinose isomerase (AI) from Geobacillus thermodenitrificans (18). l-Ribose has been produced from l-ribulose using mannose-6-phosphate isomerase (MPI) from Bacillus subtilis with a conversion yield of 70% (17). In this study, the production of l-ribose from l-arabinose was demonstrated via a two-enzyme system from G. thermodenitrificans, in which l-ribulose was first produced from l-arabinose by AI and subsequently converted to l-ribose by MPI.The analysis of monosaccharides and the purification and thermostability of AI and MPI from G. thermodenitrificans (2) isolated from compost were performed as described previously (7, 18, 19). The cross-linked enzymes were obtained from the treatment of 0.5% glutaraldehyde (10, 16). The reaction was performed by replacing the reaction solution with 100 g/liter l-arabinose and 1 mM Co2+ every 6 h at 70°C and pH 7.0. The reaction volume of 10 ml contained 5 g of the cross-linked enzymes with 8 U/ml AI and 20 U/ml MPI. One unit of AI or MPI activity, which corresponded to 0.0625 or 2.5 mg protein, respectively, was defined as the amount of enzyme required to produce 1 μmol of l-ribulose or l-ribose, respectively, per min at 70°C, pH 7.0, and 1 mM Co2+. Unless otherwise stated, the reaction was carried out in 50 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) buffer (pH 7.0) in the presence of 1 mM Co2+ at 70°C for 4 h. All experiments were performed in triplicate.The recombinant Escherichia coli ER2566 (New England Biolabs, Ipswich, MA) containing pTrc99A plasmid (Pharmacia Biotech, Piscataway, NJ) and the AI or MPI gene was cultivated in a 7-liter fermentor containing 3 liters of chemically defined medium (11). When the cell mass reached 2 g/liter, 10 g/liter lactose was added for enzyme induction. After 14 h, 40 g/liter cells with 13,400 U/liter of AI or 34 g/liter cells with 630 U/liter of MPI was obtained. The enzyme was purified by heat treatment and Hi-Trap anion-exchange chromatography. The purification yields of AI and MPI were 21 and 78%, respectively, and the levels of purity for the concentrated AI and MPI by gene scanning were 48 and 92%, respectively. Maximum l-ribose production from l-arabinose by AI and by MPI in 10 ml of total volume was observed at pH 7.0, 70°C, and 1 mM Co2+ (data not shown). Half-lives for the two-enzyme system containing 10 mM l-arabinose, 0.2 U/ml AI, and 0.5 U/ml MPI at 60, 65, 70, 75, and 80°C were 1,216, 235, 48, 26, and 12 h, respectively. The use of Co2+ may be disadvantageous, as it is fairly toxic. This problem can be solved by using Mn2+ instead of Co2+. When Mn2+ was used in the reaction with the same amounts of enzymes, the conversion yield was the same as that obtained with Co2+, even though the volumetric productivity was lower than that with Co2+ (data not shown).The effect of the ratio of AI to MPI in the two-step enzymatic production of l-ribose from l-arabinose was investigated by mixing the enzyme solutions (8 U/ml AI and 20 U/ml MPI) to obtain AI/MPI ratios ranging from 10:90 to 90:10 (vol/vol) (Fig. (Fig.1).1). The reactions were run with 300 g/liter l-arabinose. Maximum l-ribose production was observed at a volume ratio of 50:50 of the enzyme solutions. The effects of enzyme concentration on l-ribose production were investigated at the optimal unit ratio (AI/MPI ratio, 1:2.5) with 500 g/liter l-arabinose and AI and MPI concentrations from 0.4 and 1.0 U/ml, respectively, to 9.2 and 23.0 U/ml, respectively (Fig. (Fig.2A).2A). l-Ribose production increased with increasing amounts of enzymes until reaching a plateau at 8 U/ml AI and 20 U/ml MPI. The effect of substrate concentration on l-ribose production was evaluated at l-arabinose concentrations ranging from 15 to 500 g/liter with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.2B).2B). The production of both l-ribose and l-ribulose, an intermediate, increased with increasing substrate level. The results suggest that concentrations of substrate above 500 g/liter l-arabinose might cause the increased production. The conversion yields of l-ribose and l-ribulose from l-arabinose were constant at 32% and 14%, respectively, within an initial concentration of 100 g/liter l-arabinose, indicating that the reactions reached equilibrium at an l-arabinose/l-ribulose/l-ribose ratio of 54:14:32, which was in agreement with the calculated equilibrium (17). However, at l-arabinose concentrations above 100 g/liter, the conversion yields of l-ribose and l-ribulose from l-arabinose decreased with increasing l-arabinose concentration. The l-arabinose/l-ribulose/l-ribose ratio, with an initial l-arabinose concentration of 300 g/liter, was 71:6:23 after 4 h of reaction. To obtain near-equilibrium (54:14:32) at this high concentration of l-arabinose, more effective enzymes are required.Open in a separate windowFIG. 1.Effect of the ratio of AI to MPI on l-ribose production from l-arabinose by the purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose.Open in a separate windowFIG. 2.(A) Effect of enzyme concentration on l-ribose production from l-arabinose at the optimal unit ratio (AI/MPI ratio, 1:2.5). Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose. (B) Effect of l-arabinose concentration on l-ribose production. Symbols: •, l-ribose; ▪, l-ribulose. Data are the means for three separate experiments, and error bars represent standard deviations.A time course reaction of l-ribose production from l-arabinose was monitored for 3 h with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.3).3). As a result, 118 g/liter l-ribose was obtained from an initial l-arabinose concentration of 500 g/liter after 3 h, with a conversion yield of 23.6% and a productivity of 39.3 g liter−1 h−1. Recombinant E. coli containing MDH yielded 52 g/liter l-ribose from an initial ribitol concentration of 100 g/liter after 72 h, with a productivity of 0.72 g liter−1 h−1 (14). The production and productivity obtained in the current study using AI and MPI from G. thermodenitrificans were 2.3- and 55-fold higher, respectively, than those obtained from ribitol and 17- and 21-fold higher than those obtained with the production of l-ribose from l-arabinose using resting cells of recombinant Lactobacillus plantarum (5). The chemical synthetic method is capable of producing 56.5 g/liter l-ribose from 250 g/liter l-arabinose after 3 h, corresponding to a productivity of 18.8 g liter−1 h−1 (6). Still, both the production and productivity of l-ribose using the method described herein were 2.1-fold higher. Thus, the method of production of l-ribose in the present study exhibited the highest productivity and production, compared to other fermentation methods and chemical syntheses.Open in a separate windowFIG. 3.Time course of l-ribose production from l-arabinose by purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose.Several rounds of conversion reusing the cross-linked enzymes were performed (Fig. (Fig.4).4). The immobilized enzymes showed more than 20% conversion of l-ribose from l-arabinose for the 9th batch, and the concentration of l-ribose was reduced to 43% after the 20th batch. These results suggest that the immobilization of enzyme facilitates separation of product and enzyme, and it enables the enzyme to function continuously, as reported previously (3, 8, 12). Thus, the reuse of enzyme by immobilization improves the economic viability of this enzymatic process.Open in a separate windowFIG. 4.Reuse of immobilized AI and MPI from G. thermodenitrificans for l-ribose production from 100 g/liter l-arabinose. Data are the means for three separate experiments, and error bars represent standard deviations.  相似文献   

12.
13.
14.
15.
16.
17.
Plant VAPYRINs are required for the establishment of arbuscular mycorrhiza (AM) and root nodule symbiosis (RNS). In vapyrin mutants, the intracellular accommodation of AM fungi and rhizobia is blocked, and in the case of AM, the fungal endosymbiont cannot develop arbuscules which serve for nutrient exchange. VAPYRINs are plant-specific proteins that consists of a major sperm protein (MSP) domain and an ankyrin domain. Comparison of VAPYRINs of dicots, monocots and the moss Physcomitrella patens reveals a highly conserved domain structure. We focused our attention on the ankyrin domain, which closely resembles the D34 domain of human ankyrin R. Conserved residues within the petunia VAPYRIN cluster to a surface patch on the concave side of the crescent-shaped ankyrin domain, suggesting that this region may represent a conserved binding site involved in the formation of a protein complex with an essential function in intracellular accommodation of microbial endosymbionts.Key words: VAPYRIN, arbuscular mycorrhiza, petunia, symbiosis, glomus, ankyrin, major sperm protein, VAPPlants engage in mutualistic interactions such as root nodule symbiosis (RNS) with rhizobia and arbuscular mycorrhiza (AM) with Glomeromycotan fungi. These associations are referred to as endosymbioses because they involve transcellular passage through the epidermis and intracellular accommodation of the microbial partner within root cortical cells of the host.1,2 Infection by AM fungi and rhizobia is actively promoted by the plant and requires the establishment of infection structures namely the prepenetration apparatus (PPA) in AM and a preinfection thread in RNS, respectively.35 In both symbioses the intracellular microbial accommodation in epidermal and root cortical cells involves rebuilding of the cytoskeleton and of the entire membrane system.68 Recently, intracellular accommodation of rhizobia and AM fungi, and in particular morphogenesis of the AM fungal feeding structures, the arbuscules, was shown to depend on the novel VAPYRIN protein.911VAPYRINs are plant-specific proteins consisting of two protein-protein interaction domains, an N-terminal major sperm protein (MSP) domain and a C-terminal ankyrin (ANK) domain. MSP of C. elegans forms a cytoskeletal network required for the motility of the ameboidal sperm.12 MSP domains also occur in VAP proteins that are involved in membrane fusion processes in various eukaryotes.13 The ANK domain, on the other hand, closely resembles animal ankyrins which serve to connect integral membrane proteins to elements of the spectrin cytoskeleton,14 thereby facilitating the assembly of functional membrane microdomains in diverse animal cells.15 Ankyrin repeats exhibit features of nano-springs, opening the possibility that ankyrin domains may be involved in mechanosensing.16 Based on these structural similarities, VAPYRIN may promote intracellular accommodation of endosymbionts by interacting with membranes and/or with the cytoskeleton. Indeed, VAPYRIN protein associates with small subcellular compartments in petunia and in Medicago truncatula.9,10Ankyrin repeats typically consist of 33 amino acids, of which 30–40% are highly conserved across most taxa. These residues confer to the repeats their basic helix-turn-helix structure.17 Ankyrin domains often consist of arrays of several repeats that form a solenoid with a characteristic crescent shape.17 Besides the ankyrin-specific motiv-associated amino acids there is little conservation between the ankyrin domains of different proteins, or between the individual repeats of a given ankyrin domain,17 a feature that was also observed in petunia VAPYRIN (Fig. 1A).9 However, sequence comparison of VAPYRINs from eight dicots, three monocots and the moss Physcomitrella patens revealed a high degree of sequence conservation beyond the ankyrin-specific residues (Fig. 1B and Sup. Fig. S1). When the degree of conservation was determined for the individual ankyrin repeats among all the 12 species, it appeared that repeats 7, 9 and 10 exhibited particularly high conservation (Fig. 1C).Open in a separate windowFigure 1Sequence analysis and phylogeny of VAPYRIN from diverse plants. (A) Predicted amino acid sequence of the petunia VAPYRIN protein PAM1. The 11 repeats of the ankyrin domain are aligned, and the ankyrin consensus sequence is shown below the eleventh ankyrin repeat (line c). Conserved residues that are characteristic for ankyrin repeats (Mosavi et al. 2004)17 are depicted in bold face. (B) Unrooted phylogenetic tree representing the VAPYRINs of eight dicot species (Petunia hybrida, Solanum lycopersicon, Solanum tuberosum, Vitis vinifera, Populus trichocarpa, Ricinus communis, Medicago truncatula and Glycine max) three monocot species (Sorghum bicolor, Zea mays and Oryza sativa), and the moss Physcomitrella patens. (C) Degree of conservation of the individual ankyrin repeats of VAPYRIN. Schematic representation of the MSP domain as N-terminal barrel-shaped structure, and of the individual ankyrin repeats as pairs of alpha-helices. An additional loop occurring only in monocots (grass-loop) is inserted above repeat 4, and the deletion between repeat 7 and 8 is indicated (gap). This latter feature is common to all VAPYRIN proteins. The percentage of amino acid residues that are identical in at least 11 of the 12 VAPYRINS is given below the MSP domain and the eleven ankyrin repeats. The box highlights repeats 7–10 which contribute to the predicted binding site (compare with Figs. 3 and and44).Sequence comparison of the eleven repeats of all the twelve plant species revealed that the individual repeats clustered according to their position in the domain, rather than according to their origin (plant species) (Fig. 2). This shows that the repeats each are well conserved across species, but show little similarity among each other within a given VAPYRIN protein. The higher conservation of repeats 9 and 10 was reflected by the compact appearance of the respective branches, in which the monocot and moss sequences were nested closely with the dicot sequences, compared to other repeats, where the branches appeared fragmented between monocots and dicots, and where the P. patens sequence fell out of the branch as in the case of repeats 4–6 (Fig. 2). Taken together, this points to an old evolutionary origin of the entire ankyrin domain in lower land plants, with no subsequent rearrangement of ankyrin repeats.Open in a separate windowFigure 2Phylogenetic analysis of the individual ankyrin repeats of VAPYRIN. Phylogenetic representation of an alignment of all the 11 repeats of the 12 VAPYRINs compared in Figure 1B and C. The repeats cluster according to their position within the domain, rather than to their origin (plant species). Numbers indicate the position of the repeats within the domain (compare with Fig. 1C). P. patens repeats are highlighted (small circles) for clarity. The monocot repeat 4 sequences (boxed) are remote from the remaining repeat 4 sequences because of the grass loop (compare with Fig. 1C).Ankyrin domains function as protein-protein interaction domains,17 in which the residues on the surface are involved in the binding of their protein partners.14 The fact that repeats 9 and 10 exhibited particularly high levels of conservation across species from moss to angiosperms indicated that this region may contain functionally important residues. Within repeat 10, sixteen amino acid positions were identical in >90% of the analyzed species (Fig. 3A and grey bars). Nine of those represent residues that are characteristic for ankyrin repeats (red letters) and determine their typical 3D shape.17 These residues are considered ankyrin-specific, and are unlikely to be involved in a VAPYRIN-specific function. The remaining seven highly conserved residues in repeat 10, however, are VAPYRIN-specific, since they have been under positive selection, without being essential for the basic structure of the ankyrin repeat. Ankyrin-specific and VAPYRIN-specific residues where identified throughout the entire ankyrin domain (Sup. Fig. 1), and subsequently mapped on a 3-dimensional model of petunia VAPYRIN to reveal their position in the protein (Fig. 3B–G). The ankyrin-specific residues were found to be localized primarily to the interior of the ankyrin domain, with the characteristic glycines (brown) marking the turns between helices and loops (Fig. 3B, D and F, compare with A). In contrast, the VAPYRIN-specific residues were localized primarily on the surface of the ankyrin domain (Fig. 3C, E and G). A prominent clustering of VAPYRIN-specific residues was identified on the concave side of the crescent-shaped ankyrin domain comprising repeats 7–10 close to the gap (Figs. 3G and and44). This highly conserved VAPYRIN-specific region contains several negatively and positively charged residues (D, E and K, R, respectively) and aromatic residues (W, Y, F), which may together form a conserved binding site for an interacting protein.Open in a separate windowFigure 33D-Mapping of conserved positions within the ankyrin domain of VAPYRIN. (A) Conserved amino acid residues were evaluated for ankyrin repeat 10 of petunia VAPYRIN as an example. The degree of conservation between the 12 VAPYRINs analyzed in Figures 1B and and22 is depicted with grey bars. Average conservation between all the 132 ankyrin repeats of the 12 VAPYRIN sequences is shown with black bars. Residues that are conserved in all 132 repeats (red letters) define the ankyrin consensus sequence, which confers to the repeats their characteristic basic structure.17 Residues that are >90% conserved but are not part of the basic ankyrin sequence (highlighted with asterisks) are VAPYRIN-specific and may therefore have been conserved because of their specific function in VAPYRIN. Arrows indicate the characteristic antiparallel helices, the turns are marked by conserved glycine residues (underlined; compare with B, D and F). (B–G) 3D-models of the petunia VAPYRIN PAM1. Conserved amino acid residues were color-coded according to their physico-chemical properties (http://life.nthu.edu.tw/∼fmhsu/rasframe/SHAPELY.HTM) with minor modification (see below). In (B, D and F) the ankyrin-specific residues are highlighted (corresponding to the bold letters in Fig. 1A). In (C, E and G), the VAPYRIN-specific residues are highlighted. Note the patch of high conservation on the concave side of the crescent-shaped ankyrin domain between repeats 7–10 next to the gap. (B–E) represent respective side views of the ankyrin domain, (F and G) exhibit the concave inner side of the domain. Color code: Bright red: aspartic acid (D), glutamic acid (E); Yellow: cysteine (C); Blue: lysine (K), arginine (R); Orange: serine (S), threonine (T); Dark blue: phenylalanine (F), tyrosin (Y); Brown: glycine (G); Green: leucin (L), valine (V), isoleucin (I), alanine (A); Lilac: tryptophane (W); Purple: histidine (H); Pink: proline (P).Open in a separate windowFigure 4The highly conserved surface area in domain 8–10 of the ankyrin domain of petunia VAPYRIN. Close-up of the highly conserved region of petunia PAM1 as shown in Figure 3G. Amino acids were color-coded as in Figure 3 and their position in the amino acid sequence is indicated (compare with Sup. Fig. 1).In this context, it is interesting to note that human ankyrin R also contains a binding surface on the concave side of the D34 domain for the interaction with the CBD3 protein.14 Consistent with an essential function of the C-terminal third of the ankyrin domain, mutations that abolish this relatively short portion of VAPYRIN, have a strong phenotype, indicating that they may represent null alleles.9 Based on this collective evidence, we hypothesize that repeats 7–10 are involved in the formation of a protein complex that is essential for intracellular accommodation of rhizobia and AM fungi. Biochemical and genetic studies are now required to identify the binding partners of VAPYRINs, and to elucidate their role in plant endosymbioses.  相似文献   

18.
The DNA-packaging specificities of phages λ and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. λ-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase''s ability to package λDNA is reduced ∼20-fold. Phage λ with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppressors that change codons of the recognition helix. Some of these codons appear to remove an unfavorable base-pair contact; others appear to create a novel nonspecific DNA contact. Helper-packaging experiments show that these mutant terminases have lost the ability to discriminate between λ and 21 during DNA packaging. Two cis-acting suppressors affect cosB, the small subunit''s DNA-binding site. Each changes a cosBλ-specific base pair to a cosB21-specific base pair. These cosB suppressors cause enhanced DNA packaging by 21-specific terminase and reduce packaging by λ-terminase. Both the cognate support helix and turn are required for strong packaging discrimination. The wing does not contribute to cosB specificity. Evolution of packaging specificity is discussed, including a model in which λ- and 21-packaging specificities diverged from a common ancestor phage with broad packaging specificity.VIRUSES must package viral chromosomes from nucleic acid pools that include host-cell nucleic acids, so specific recognition of the viral nucleic acid is essential during virion assembly. For large DNA viruses, including the tailed double-strand DNA (dsDNA) bacteriophages, the herpesviruses, and the adenoviruses, DNA-packaging proteins recognize specific sequences on the viral chromosomes (reviewed in Baines and Weller 2005 and Ostapchuk and Hearing 2005, respectively). For the dsDNA viruses that produce virion chromosomes by processing concatemeric DNA, a viral terminase enzyme functions in the recognition and cutting of concatemeric DNA and subsequently sponsors DNA translocation. λ-Terminase is a heterooligomer of large and small subunits, gpA and gpNu1, respectively. Cutting of concatemeric DNA is carried out by gpA''s endonuclease activity (Becker and Gold 1978; Davidson and Gold 1992; Hwang and Feiss 1996). Three DNA subsites, cosQ, cosN, and cosB, are contained in the ∼200-bp-long cos site and orchestrate DNA packaging through interactions with terminase (Figure 1A; reviewed in Feiss and Catalano 2005). gpA introduces staggered nicks in cosN to generate the 12-bp cohesive ends of mature λDNA molecules. Efficient and accurate nicking of cosN requires anchoring of gpA by gpNu1, which binds to the adjacent cosB subsite (Higgins and Becker 1994b; Hang et al. 2001).Open in a separate windowFigure 1.—The cos and terminase region of the λ-chromosome. (A) (Top) Map of cos and the terminase-encoding Nu1 and A genes. The black bar indicates the location of the winged helix-turn-helix DNA-binding motifs in the N-terminal domain of gpNu1. (Bottom) cos subsites: cosQ is required for termination of DNA packaging; cosN is the site where the large terminase subunit, gpA, introduces staggered nicks to generate the cohesive ends of virion DNA molecules; and cosB contains the gpNu1-binding sites R1, R2, and R3 along with the IHF-binding site I1. (B) (Top) Schematic of gpNu1 residues 1–42, including the support (blue) and recognition (red) α-helixes and the wing loop (magenta). β1 and β2 are short β-strands flanking the DNA-binding elements. (Bottom) Sequences are a comparison of residues of λ''s gpNu1 and phage 21''s gp1, with conserved resides indicated by vertical lines. Note that the recognition helixes of gpNu1 and gp1 differ by four residues, all likely solvent-exposed (Becker and Murialdo 1990; de Beer et al. 2002). (C) Three-dimensional structure of the winged helix-turn-helix-containing, N-terminal domain of gpNu1 (residues 1–68) (de Beer et al. 2002). Side groups of solvent-exposed residues of the recognition helix are displayed. Color coded as in B.λ''s cosB (cosBλ) is a complex subsite containing three copies of a gpNu1-binding sequence, the R sequence, plus a site, I1, for the integration host factor (IHF), the Escherichia coli DNA-bending protein. The order of sites is cosN–R3–I1–R2–R1. The amino-terminal half of gpNu1 contains a winged helix-turn-helix DNA-binding motif (Figure 1, B and C; Gajiwala and Burley 2000) that interacts with the R sequences. Further, the amino-terminal domain of gpNu1 is a tight dimer (Figure 1C, de Beer et al. 2002). The IHF-induced bend at I1 creates a DNA hairpin in cosB that positions the major grooves of R3 and R2 to face inward, so that the helix-turn-helix motifs of dimeric gpNu1 can be docked into them. The wing loops are positioned to make minor groove contacts with R3 and R2. Thus it is proposed that gpA is positioned to nick cosN by assembly of a bent structure with dimeric gpNu1 bound to R3 and R2 (Becker and Murialdo 1990; de Beer et al. 2002). A variety of studies indicate that the positioning of gpNu1 at R3 is crucial and that the other interactions function to create and/or stabilize the R3–gpNu1 interaction (Cue and Feiss 1993a; Higgins and Becker 1994a; Hang et al. 2001).DNA packaging initiates when terminase binds and nicks a cos. Following cosN nicking and separation of the cohesive ends, terminase remains bound to the cosB-containing chromosome end (Becker et al. 1977; Yang et al. 1997). The DNA-bound terminase docks on the portal vertex of a prohead, the empty, immature virion head shell. Assembly of the ternary prohead–terminase–DNA complex activates gpA''s potent translocation ATPase, and the viral DNA is translocated into the prohead (Yang and Catalano 2003; Dhar and Feiss 2005). Translocation brings the next cos along the concatemer to the portal-docked terminase (Feiss and Widner 1982). The downstream cos is cleaved by terminase, completing packaging of the chromosome. Recognition of the downstream cos requires cosQ and cosN (Cue and Feiss 2001). Following DNA packaging, terminase undocks from the filled head. Attachment of a tail to the DNA-filled head completes virion assembly. The undocked terminase remains bound to and sponsors the packaging of the next chromosome along the concatemer.The interactions between the recognition helix of gpNu1 and an R sequence are typical for helix-turn-helix proteins, as shown by genetic studies of chimeras between λ and its relative, phage 21, as follows: λ and 21 have similarly organized cos sites; the cosB of 21 also has the R3–I1–R2–R1 structure. Nevertheless, the two phages have distinct packaging specificities. Base-pair differences in the R sequences account for packaging specificity (Becker and Murialdo 1990; Smith and Feiss 1993). cosN and cosQ are interchangeable between λ and 21 (Feiss et al. 1981). The consensus R sequences are 5′-CGTTTCCtTTCT-3′ for cosBλ and 5′-CaTGTCGGncCT-3′ for cosB21, where capitalized residues are conserved in all three R sequences of both phages; underlined and capitalized are two residues conserved in all three R sequences of both phages, but which differ between cosBλ and cosB21 (Becker and Murialdo 1990). These two conserved but phage-specific base pairs are likely to be of major importance for specificity. Similarly, the recognition helixes of the helix-turn-helix motifs of the small subunits of λ (gpNu1) and 21 (gp1) terminases differ in four amino acid residues that account for packaging specificity (Figure 1; Becker and Murialdo 1990).In earlier work (de Beer et al. 2002), we showed that modifying λ-terminase by replacing the gpNu1 recognition helix with that of 21''s gp1 created a terminase (gpNu1hy1 terminase) that was specific for the cosB of phage 21 (designated cosB21). That is, λ cosB21 Nu1hy1 was viable, but λ cosBλ Nu1hy1 was inviable due to the specificity mismatch between cosBλ and the cosB21-specific recognition helix of the chimeric small terminase subunit, gpNu1hy1. The Nu1hy1 terminase packages cosB21 chromosomes ∼10-fold more efficiently than it does cosBλ chromosomes. This 10-fold discrimination between cosB21 and cosBλ chromosomes is much weaker than the >104-fold discrimination shown by wild-type λ and 21 terminases (de Beer et al. 2002). Because of the modest discrimination of Nu1hy1 terminase, the yield of λ cosBλ Nu1hy1 is only slightly below the yield required for plaque formation. Lysates of λ cosBλ Nu1hy1 contain plaque-forming pseudorevertants at a level expected for single mutations. A number of these pseudorevertants were sequenced and found to contain mutations in cosBλ or in the Nu1hy1 gene. Here we report on in vivo packaging studies on the effects of these Nu1hy1 and cosBλ suppressor mutations on packaging specificity.  相似文献   

19.
Viral enzymes that process small molecules provide potential chemotherapeutic targets. A key constraint—the replicative potential of spontaneous enzyme mutants—has been hard to define with human gammaherpesviruses because of their narrow species tropisms. Here, we disrupted the murid herpesvirus 4 (MuHV-4) ORF61, which encodes its ribonucleotide reductase (RNR) large subunit. Mutant viruses showed delayed in vitro lytic replication, failed to establish infection via the upper respiratory tract, and replicated to only a very limited extent in the lower respiratory tract without reaching lymphoid tissue. RNR could therefore provide a good target for gammaherpesvirus chemotherapy.Cellular deoxyribonucleotide synthesis is strongly cell cycle dependent. DNA viruses replicating in noncycling cells must therefore either induce cellular enzymes or supply their own. Most herpesviruses encode multiple homologs of nucleotide metabolism enzymes, including both subunits of the cellular ribonucleotide reductase (RNR) (4). While most in vivo cells are resting, most in vitro cell lines divide continuously (29). The importance of viral RNRs may therefore only be apparent in vivo (14). In contrast to alpha- and betaherpesviruses, gammaherpesviruses cause disease mainly through latency-associated cell proliferation. However, gamma-2 herpesviruses show lytic gene expression in sites of latency (9, 17), and lytic reactivation could potentially alleviate some gammaherpesvirus-infected cancers (7, 8). Therefore, it is important also to understand the pathogenetic roles of gammaherpesvirus lytic cycle enzymes, such as RNR.The known human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV) have narrow species tropisms that preclude most pathogenesis studies. In contrast, murid herpesvirus 4 (MuHV-4) (21, 26) allows gammaherpesvirus host colonization to be studied in vivo. After intranasal (i.n.) inoculation, MuHV-4 replicates lytically in lung epithelial cells before seeding to lymphoid tissue (27). Long-term virus loads are independent of extensive primary lytic spread (25). However, whether persistence requires some lytic gene expression remains unclear. Replication-deficient viral DNA reached the spleen after intraperitoneal (i.p.) but not i.n. virus inoculation (15, 20, 28), suggesting that virus dissemination from the lung to lymphoid tissue requires lytic replication. In addition, less invasive inoculations may increase further the viral functions required to establish a persistent infection. Thymidine kinase (TK)-deficient MuHV-4 given i.n. without general anesthesia, in which method the wild-type virus infects the upper respiratory tract and reaches lymphoid tissue without infecting the lungs (18), fails to colonize in mice at all (12). The implication is that virions using a likely physiological route of host entry must replicate in terminally differentiated cells to establish a significant infection. However, some unusual features of gammaherpesvirus TKs (11) suggest that they have functions besides thymidine phosphorylation. We therefore targeted here another enzyme linked to viral DNA replication, the MuHV-4 RNR. We aimed to define the in vivo importance of a potential therapeutic target and to advance generally our understanding of gammaherpesvirus pathogenesis.Transposon insertions in the MuHV-4 RNR small (ORF60) and large (ORF61) RNR subunit genes have been described as either attenuating or not for lytic replication in vitro (19, 23). We disrupted ORF61 (RNR) by inserting stop codons close to its 5′ end (Fig. (Fig.11 a). An EcoRI-L genomic clone (coordinates 80644 to 84996) in pUC19 (6) was digested with AleI to remove nucleotides 82320 to 82534 of ORF61 (82865 to 80514). An oligonucleotide encoding multiple stop codons and an EcoRI restriction site (5′-CTAGCATGCTAGAATTCTAGCATGCATG-3′) was ligated in place. Nucleotides 81365 to 83883 were then PCR amplified, including a BamHI site in the 81365 primer, cloned as a BglII/BamHI fragment into the BamHI site of pST76K-SR, and recombined into a MuHV-4 bacterial artificial chromosome (BAC) (1). A revertant virus was made by reconstituting the corresponding, unmutated genomic fragment. Southern blots (5) of viral DNA (Fig. (Fig.1b)1b) confirmed the expected genomic structures, and immunoblots (5) of infected cell lysates (Fig. (Fig.1c)1c) established that mutant viruses no longer expressed the RNR large subunit.Open in a separate windowFIG. 1.Disruption of the MuHV-4 ORF61. (a) Schematic diagram of the ORF61 (RNR large) locus, showing the mutation introduced and relevant restriction sites. (b) Viral DNA was digested with EcoRI and probed for ORF61. Oligonucleotide insertion into ORF61 changes a 4,352-bp wild-type band to 2,462 bp plus 1,676 bp. The 2,462-bp fragment is not visible because it overlaps the probe by only 331 nucleotides (nt) and comigrates with a background band of unknown origin. WT, wild type; REV, revertant; RNR, mutant; RNR ind, independent mutant. WT luc+ is MuHV-4 expressing luciferase from an ORF57/ORF58 intergenic cassette. RNR luc+ and RNR luc+ind have ORF61 disrupted on this background. (c) Infected cell lysates were immunoblotted for gp150 (virion envelope glycoprotein, monoclonal antibody [MAb] T1A1), ORF17 (capsid component, MAb 150-7D1), TK (tegument component, MAb CS-4A5), and ORF61 (MAb PS-8A7). (d) BHK-21 cells were infected with RNR+ or RNR viruses (0.01 eGFP units/cell, 2 h, 37°C), washed two times with phosphate-buffered saline (PBS) to remove unbound virions, and cultured at 37°C to allow virus spread. Infectivity (in eGFP units) at each time point was determined on fresh BHK-21 cells in the presence of phosphonoacetic acid to prevent further viral spread, with the number of eGFP-postive cells counted 18 h later by flow cytometry. (e) BHK-21 cells were infected with RNR+ or RNR viruses (2 eGFP units/cell, 2 h, 37°C), washed in medium (pH 3) to inactivate nonendocytosed virions, and cultured at 37°C to allow virus replication. The infectivity of replicate cultures was then assayed as described in the legend of panel d. (f) BHK-21 cells were incubated with RNR+ or RNR viruses (0.3 eGFP units/cell, 37°C) for the times indicated, and the numbers of eGFP-positive cells in the cultures were then determined by flow cytometry.RNR viruses were noticeably slower than RNR+ viruses when spreading through BHK-21 cell monolayers after BAC DNA transfection. Normalizing by immunoblot signal, RNR virus stocks had titers similar to that of the wild type by viral enhanced green fluorescent protein (eGFP) expression but 10- to 100-fold lower plaque titers. Using eGFP expression as a readout, RNR virion production after a low multiplicity of infection lagged 1 day behind that of the wild type (Fig. (Fig.1d).1d). Maximum infectivity yields were also reduced, but once BHK-21 cells become confluent, they support MuHV-4 lytic infection poorly, so this was probably a consequence of the slower lytic spread. After a high multiplicity of infection (Fig. (Fig.1e),1e), RNR mutants showed a 10-h lag in virion production and no difference in the final yield. They showed no defect in single-cycle eGFP expression (Fig. (Fig.1f),1f), implying normal virion entry. Therefore, the main RNR defect lay in infectious virion production.For in vivo experiments, the loxP-flanked viral BAC-eGFP cassette must be removed (1). Therefore, to monitor infection in vivo without having to rely on new virion production as a readout, we transferred the RNR mutation onto a luciferase-positive (luc+) background (18). Viral luciferase expression (from an early lytic promoter) by in vitro luminometry (18) was independent of either viral DNA replication or RNR expression (Fig. (Fig.22 a). After i.n. inoculation of anesthetized mice, RNR luciferase signals measured in vivo by i.p. luciferin injection and IVIS Lumina charge-coupled-device (CCD) camera scanning (18) were visible in lungs (Fig. (Fig.2b)2b) but were 100-fold lower than those of the RNR+ controls (Fig. (Fig.2c).2c). A severe impairment of RNR lytic replication was confirmed by plaque assay (18) (Fig. (Fig.2d);2d); the difference between RNR and RNR+ plaque titers greatly exceeded any difference in plaquing efficiency.Open in a separate windowFIG. 2.Host colonization by RNR MuHV-4 mutants. (a) BHK-21 cells were left uninfected or infected overnight with RNR+ or RNR luc+ MuHV-4 and then assayed for luciferase expression by luminometry. Phosphonoacetic acid (PAA; 100 μg/ml) was either added or not to cultures to block viral late gene expression. Each point shows the mean ± standard deviation from triplicate cultures. (b) BALB/c mice were infected i.n. under general anesthesia with RNR or RNR+ luc+ MuHV-4 (5 × 103 PFU) and then assayed for luciferase expression by luciferin injection and CCD camera scanning. The images are from 5 days postinfection. Note that the RNR+ and RNR images have different sensitivity scales. (c) For quantitation, dorsal and ventral luciferase signals were summed. Each point shows 1 mouse. The dashed lines show detection thresholds. The RNR+ signal was significantly greater than the RNR signal for all sites and time points (P < 0.001 by Student''s t test). (d) C57BL/6 mice were infected i.n. under anesthesia with RNR or RNR+ MuHV-4 (5 × 103 PFU). Five days later, infectious virus loads in noses and lungs were measured by plaque assay. Each point shows 1 mouse. RNR infections yielded no plaques and therefore are shown at the sensitivity limits of each assay. (e) BALB/c mice were infected i.n. with RNR or RNR+ MuHV-4 without anesthesia and then monitored by luciferin injection and CCD camera scanning. Each point shows the summed ventral and dorsal signals of the relevant region for 1 mouse. Neck signals correspond to the superficial cervical lymph nodes (SCLN). The dashed lines show detection thresholds. RNR luciferase signals were undetectable at all time points.No RNR luciferase signals were visible in noses, nor did RNR MuHV-4 give signals in the superficial cervical lymph nodes (SCLN), which drain the nose (Fig. (Fig.2c).2c). This lack of live imaging signals from the upper respiratory tract was confirmed by ex vivo imaging of SCLN at day 14 postinfection. We examined upper respiratory tract infection further with an independently derived luc+ RNR mutant, inoculating i.n. without anesthesia so as to avoid virus aspiration into the lungs. No RNR luciferase signals were detected, while wild-type signals were readily observed in the nose and superficial cervical lymph nodes (Fig. (Fig.2e2e).Like RNR MuHV-4, TK mutants are severely attenuated for lytic replication in the lower respiratory tract. However, they eventually establish a reactivatable latent infection and induce virus-specific antibody (3). Latent virus titers in spleens peak at 1 month postinoculation. Infectious center assays showed no RNR infection of spleens at that time (Fig. (Fig.33 a). We also looked for viral DNA in spleens by quantitative PCR (Fig. (Fig.3b).3b). Genomic coordinates 4166 to 4252 were amplified and hybridized to a probe with coordinates 4218 to 4189. Viral genome copies, relative to the cellular adenosine phosphoribosyl transferase copy number, were calculated from standard curves of cloned plasmid DNA (10). No RNR viral DNA was detected. ELISA for MuHV-4-specific serum IgG (24) detected an antibody response after lung infection but not upper respiratory tract infection of BALB/c mice with RNR MuHV-4 (Fig. (Fig.3c).3c). There was a similar lack of antibody 1 month after upper respiratory tract infection of C57BL/6 mice with independently derived RNR mutants (Fig. (Fig.3d)3d) and 3 months after exposure of 6 BALB/c mice to RNR luc+ MuHV-4. In contrast, i.p. RNR luc+ MuHV-4 gave lower luciferase signals than RNR+ luc+ MuHV-4 (Fig. (Fig.44 a), but RNR infectious centers (Fig. (Fig.4b)4b) and viral genomes (Fig. (Fig.4c)4c) were detected in spleens, and enzyme-linked immunosorbent assays (ELISAs) (Fig. (Fig.4d)4d) showed MuHV-4-specific serum IgG.Open in a separate windowFIG. 3.Spleen colonization by RNR MuHV-4. (a) BALB/c or C57BL/6 mice were infected i.n. either with general anesthesia (lung infection) or without (nose infection). One month later, spleens were assayed for recoverable latent virus by infectious center assay. Lower detection limit, 10 infectious centers per spleen. (b) The spleens described in the legend of panel a were further analyzed for viral DNA by quantitative PCR. Copy numbers are expressed relative to the cellular adenosine phosphoribosyl transferase copy number in each sample. The dashed lines show lower detection limits (1 viral copy/10,000 cellular copies). (c) Sera from BALB/c mice after i.n. infection either with (lung infection) or without (nose infection) general anesthesia were assayed for MuHV-4-specific IgG by ELISA. Each line shows the absorbance curve for 1 mouse. The dashed lines show naive serum. (d) Sera from C57BL/6 mice 1 month after infection with independent RNR mutants were analyzed for MuHV-4-specific IgG, as described in the legend to panel c.Open in a separate windowFIG. 4.Intraperitoneal infection with RNR+ and RNR MuHV-4. (a) Mice were infected i.p. with RNR luc+ or RNR+ luc+ MuHV-4 and then monitored for luciferase expression. Each point shows the total abdominal signal of 1 mouse. The x axis is at the lower limit of signal detection above the background. (b) Spleens were assayed for recoverable virus by infectious center assay 10 days after i.p. infection with RNR luc+ or RNR+ luc+ MuHV-4. Each point shows the titer of 1 mouse. One log10 infectious center per mouse corresponds to the lower limit of detection. (c) Spleen DNA was analyzed for viral genome content by quantitative PCR. Each point shows viral copy/cellular copy for the mean of triplicate reactions for 1 mouse. (d) Sera taken 10 days after i.p. infection with RNR luc+ or RNR+ luc+ MuHV-4 were assayed for MuHV-4-specific IgG by ELISA. Each line shows the absorbance values for the serum of 1 mouse. “Naive” represents age-matched, uninfected controls.The failure of both the RNR large subunit (ORF61) and TK MuHV-4 mutants to infect via the upper respiratory tract argues that this requires viral replication in a nucleotide-poor cell. The additional lack of lymphoid RNR infection after inoculation into the lungs seemed likely to reflect a defect in virus transport, as RNR MuHV-4 did colonize the spleen after i.p. inoculation. It is also possible that the first cells infected simply produced no infectious virions, although this seemed a more likely explanation for upper respiratory tract infection being undetectable; lung infection progressed sufficiently to give detectable luciferase expression and to induce an antiviral antibody response. How transport from lung to lymphoid tissue occurs is unknown, but likely scenarios include latently infected dendritic cells (22) carrying MuHV-4 along afferent lymphatics to germinal centers and cell-free virions being captured in lymph nodes by subcapsular sinus macrophages (13). Therefore, RNR may be important for MuHV-4 to spread from myeloid cells to B cells.The difference between RNR and TK mutants in host colonization via the lung—TK mutants reached lymphoid tissue whereas RNR mutants did not—could reflect additional ORF61 functions, as precedent exists for functional drift (2, 16). Alternatively, RNR may be needed more than TK for MuHV-4 replication in some cell types. Formidable hurdles to RNR-based therapies remain: human gammaherpesvirus infections rarely present until latency is well established, so blocking virus spread to lymphoid tissue may have a limited impact, and no drugs sufficiently selective to target viral RNRs in a clinical setting have yet emerged. Nevertheless, the severe in vivo attenuation of RNR MuHV-4 suggested that RNR may be a viable target for limiting gammaherpesvirus lytic spread.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号