首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High density genetic maps are a reliable tool for genetic dissection of complex plant traits. Mapping resolution is often hampered by the variable crossover and non-crossover events occurring across the genome, with pericentromeric regions (pCENR) showing highly suppressed recombination rates. The efficiency of linkage mapping can further be improved by characterizing and understanding the distribution of recombinational activity along individual chromosomes. In order to evaluate the genome wide recombination rate in common beans (Phaseolus vulgaris L.) we developed a SNP-based linkage map using the genotype-by-sequencing approach with a 188 recombinant inbred line family generated from an inter gene pool cross (Andean x Mesoamerican). We identified 1,112 SNPs that were subsequently used to construct a robust linkage map with 11 groups, comprising 513 recombinationally unique marker loci spanning 943 cM (LOD 3.0). Comparative analysis showed that the linkage map spanned >95% of the physical map, indicating that the map is almost saturated. Evaluation of genome-wide recombination rate indicated that at least 45% of the genome is highly recombinationally suppressed, and allowed us to estimate locations of pCENRs. We observed an average recombination rate of 0.25 cM/Mb in pCENRs as compared to the rest of genome that showed 3.72 cM/Mb. However, several hot spots of recombination were also detected with recombination rates reaching as high as 34 cM/Mb. Hotspots were mostly found towards the end of chromosomes, which also happened to be gene-rich regions. Analyzing relationships between linkage and physical map indicated a punctuated distribution of recombinational hot spots across the genome.  相似文献   

2.
Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.  相似文献   

3.
A genetic linkage map for the edible basidiomycete Agaricus bisporus was constructed from 118 haploid homokaryons derived from an intervarietal A. bisporus var. bisporus × A. bisporus var. burnettii hybrid. Two hundred and thirty-one AFLP, 21 SSR, 68 CAPS markers together with the MAT, BSN, PPC1 loci and one allozyme locus (ADH) were evenly spread over 13 linkage groups corresponding to the chromosomes of A. bisporus. The map covers 1156 cM, with an average marker spacing of 3.9 cM and encompasses nearly the whole genome. The average number of crossovers per chromosome per individual is 0.86. Normal recombination over the entire genome occurs in the heterothallic variety, burnettii, contrary to the homothallic variety, bisporus, which showed adaptive genome-wide suppressed recombination. This first comprehensive genetic linkage map for A. bisporus provides foundations for quantitative trait analyses and breeding programme monitoring, as well as genome organisation studies.  相似文献   

4.
Phycomyces blakesleeanus is a member of the subphylum Mucoromycotina. A genetic map was constructed from 121 progeny of a cross between two wild type isolates of P. blakesleeanus with 134 markers. The markers were mostly PCR-RFLPs. Markers were located on 46 scaffolds of the genome sequence, covering more than 97% of the genome. Analysis of the alleles in the progeny revealed nine or 12 linkage groups, depending on the log of the odds (LOD) score, across 1583.4 cM at LOD 5. The linkage groups were overlaid on previous mapping data from crosses between mutants, aided by new identification of the mutations in primary metabolism mutant strains. The molecular marker map, the phenotype map and the genome sequence are overall congruent, with some exceptions. The new genetic map provides a genome-wide estimate for recombination, with the average of 33.2 kb per cM. This frequency is one piece of evidence for meiosis during zygospore development in Mucoromycotina species. At the same time as meiosis, transmission of non-recombinant chromosomes is also evident in the mating process in Phycomyces. The new map provides scaffold ordering for the genome sequence and a platform upon which to identify the genes in mutants that are affected in traits of interest, such as carotene biosynthesis, phototropism or gravitropism, using positional cloning.  相似文献   

5.
The tick-borne protozoan parasite Theileria parva is the causal agent of East Coast Fever (ECF), a severe lymphoproliferative disease of cattle in eastern, central and southern Africa. The life cycle of T. parva is predominantly haploid, with a brief diploid stage occurring in the tick vector that involves meiotic recombination. Resolved genetic studies of T. parva are currently constrained by the lack of a genome-wide high-definition genetic map of the parasite. We undertook a genetic cross of two cloned isolates of T. parva to construct such a map from 35 recombinant progeny, using a genome-wide panel of 79 variable number of tandem repeat markers. Progeny were established by in vitro cloning of cattle lymphocytes after infection with sporozoites prepared from Rhipicephalus appendiculatus ticks fed on a calf undergoing a dual infection with the two clonal parental stocks. The genetic map was determined by assigning individual markers to the four chromosome genome, whose physical length is approximately 8309 kilobasepairs (Kb). Segregation analysis of the markers among the progeny revealed a total genetic size of 1683.8 centiMorgans (cM), covering a physical distance of 7737.62 Kb (∼93% of the genome). The average genome-wide recombination rate observed for T. parva was relatively high, at 0.22 cM Kb−1 per meiotic generation. Recombination hot-spots and cold-spots were identified for each of the chromosomes. A panel of 27 loci encoding determinants previously identified as immunorelevant or likely to be under selection were positioned on the linkage map. We believe this to be the first genetic linkage map for T. parva. This resource, with the availability of the genome sequence of T. parva, will promote improved understanding of the pathogen by facilitating the use of genetic analysis for identification of loci responsible for variable phenotypic traits exhibited by individual parasite stocks.  相似文献   

6.
Our previously published second generation genetic map for the American mink (Neovison vison) has been used and redesigned in its best for genome-wide studies with maximum of efficiency. A number of 114 selected markers, including 33 newly developed microsatellite markers from the CHORI-231 mink Bacterial Artificial Chromosome (BAC) library, have been genotyped in a two generation population composed of 1200 individuals. The outcome reassigns the position of some markers on the chromosomes and it produces a more reliable map with a convenient distance between markers. A total of 104 markers mapped to 14 linkage groups corresponding to the mink autosomes. Six markers are unlinked and four markers are allocated to the X chromosome by homology but no linkage was detected. The sex-average linkage map spans 1192 centiMorgans (cM) with an average intermarker distance of 11.4 cM and 1648 cM when the ends of the linkage groups and the autosomal unlinked markers are added. Sex-specific genetic linkage maps were also generated. The male sex-specific map had a total length of 1014.6 cM between the linked markers and an average inter-marker interval of 9.7 cM. The female map has a corresponding length of 1378.6 cM and an average inter-marker interval of 13.3 cM. The study is complemented with additional anchorage for most of the chromosomes of the map by BAC in situ hybridization with clones containing microsatellites strategically selected from the various parts of the genome. This map provides an improved tool for genetic mapping and comparative genomics in mink, also useful for the future assembly of the mink genome sequence when this will be taken forward.  相似文献   

7.
The wasp genus Nasonia is a genetic model with unique advantages for the study of interspecific differences, including haplodiploidy and interfertile species. However, as a parasitoid, Nasonia is confined within a fly host, thus restricting direct observations and manipulation of development over time. Here, we present the first in vitro cultivation method for this system that decouples Nasonia from its host, allowing continuous observations from embryo to adulthood. Using transwell plates and a simple Nasonia rearing medium, we demonstrate a technique that will significantly expand the utility of the Nasonia model.  相似文献   

8.
L. Zhang  G. Yang  S. Guo  Q. Wei  G. Zou 《Animal genetics》2010,41(5):523-530
For silver carp (Hypophthalmichthys molitrix), a combined microsatellite (or simple sequence repeat) and amplified fragment length polymorphism (AFLP) sex average linkage map was constructed. A total of 483 markers (245 microsatellites and 238 AFLPs) were assigned to 33 linkage groups. The map spanned 1352.2 cM, covering 86.4% of the estimated genome size of silver carp. The maximum and average spaces between 420 loci were 21.5 cM and 3.2 cM, respectively. The length of linkage groups ranged from 3.6 cM to 98.5 cM with an average of 41.0 cM. The number of markers per group varied from 2 to 44 with an average of 14.6. The AFLP markers significantly improved the integrity of microsatellite-based linkage groups and increased the genome coverage and marker evenness. A genome-wide recombination suppression was observed in male. In an extreme case, six microsatellites co-segregated in male, but spanned a 45.1 cM region in female.  相似文献   

9.
A genetic linkage map of the channel catfish genome (N = 29) was constructed using EST-based microsatellite and single nucleotide polymorphism (SNP) markers in an interspecific reference family. A total of 413 microsatellites and 125 SNP markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 allowed mapping of 331 markers (259 microsatellites and 72 SNPs) to 29 linkage groups. Each linkage group contained 3–18 markers. The largest linkage group contained 18 markers and spanned 131.2 cM, while the smallest linkage group contained 14 markers and spanned only 7.9 cM. The linkage map covered a genetic distance of 1811 cM with an average marker interval of 6.0 cM. Sex-specific maps were also constructed; the recombination rate for females was 1.6 times higher than that for males. Putative conserved syntenies between catfish and zebrafish, medaka, and Tetraodon were established, but the overall levels of genome rearrangements were high among the teleost genomes. This study represents a first-generation linkage map constructed by using EST-derived microsatellites and SNPs, laying a framework for large-scale comparative genome analysis in catfish. The conserved syntenies identified here between the catfish and the three model fish species should facilitate structural genome analysis and evolutionary studies, but more importantly should facilitate functional inference of catfish genes. Given that determination of gene functions is difficult in nonmodel species such as catfish, functional genome analysis will have to rely heavily on the establishment of orthologies from model species.  相似文献   

10.
The gray, short-tailed opossum, Monodelphis domestica, is the most extensively used, laboratory-bred marsupial resource for basic biologic and biomedical research worldwide. To enhance the research utility of this species, we are building a linkage map, using both anonymous markers and functional gene loci, that will enable the localization of quantitative trait loci (QTL) and provide comparative information regarding the evolution of mammalian and other vertebrate genomes. The current map is composed of 83 loci distributed among eight autosomal linkage groups and the X chromosome. The autosomal linkage groups appear to encompass a very large portion of the genome, yet span a sex-average distance of only 633.0 cM, making this the most compact linkage map known among vertebrates. Most surprising, the male map is much larger than the female map (884.6 cM vs. 443.1 cM), a pattern contrary to that in eutherian mammals and other vertebrates. The finding of genome-wide reduction in female recombination in M. domestica, coupled with recombination data from two other, distantly related marsupial species, suggests that reduced female recombination might be a widespread metatherian attribute. We discuss possible explanations for reduced female recombination in marsupials as a consequence of the metatherian characteristic of determinate paternal X chromosome inactivation.  相似文献   

11.
Common carp (Cyprinus carpio L.) is cultured worldwide and is a major contributor to the world’s aquaculture production. The common carp has a complex tetraploidized genome, which may historically experience additional whole genome duplication than most other Cyprinids. Fine maps for female and male carp were constructed using a mapping panel containing one F1 family with 190 progeny. A total of 1,025 polymorphic markers were used to construct genetic maps. For the female map, 559 microsatellite markers in 50 linkage groups cover 3,468 cM of the genome. For the male map, 383 markers in 49 linkage groups cover 1,811 cM of the genome. The consensus map was constructed by integrating the new map with two published linkage maps, containing 732 markers and spanning 3,278 cM in 50 linkage groups. The number of consensus linkage groups corresponds to the number of common carp chromosomes. A significant difference on sex recombinant rate was observed that the ratio of female and male recombination rates was 4.2:1. Comparative analysis was performed between linkage map of common carp and genome of zebrafish (Danio rerio), which revealed clear 2:1 relationship of common carp linkage groups and zebrafish chromosomes. The results provided evidence that common carp did experienced a specific whole genome duplication event comparing with most other Cyprinids. The consensus linkage map provides an important tool for genetic and genome study of common carp and facilitates genetic selection and breeding for common carp industry.  相似文献   

12.
A canine integrated linkage-radiation map has been recently constructed by using microsatellite markers. This map, with a good coverage of the canine genome, allows for a genome-wide search for the extent and distribution of linkage disequilibrium derived from linkage and evolutionary forces. In this study, we genotyped an outbred pedigree between Labrador retriever and Greyhound breeds with a set of microsatellite markers (240) from the canine linkage map. Linkage disequilibrium was measured between all syntenic and nonsyntenic marker pairs. Analysis of syntenic pairs revealed a significant correlation (–0.229, P < 0.001) between linkage disequilibrium and genetic distance (log transformed). Significant linkage disequilibria were observed more frequently between syntenic pairs spaced <40 cM than those paced >40 cM. There is a clear trend for linkage disequilibrium to decline with marker distance. From our results, a genome-wide screen with markers at low to moderate density (1–2 per 10 cM) should take full advantage of linkage disequilibrium for quantitative trait locus mapping in dogs. This study supports the appropriateness of linkage disequilibrium analysis to detect and map quantitative trait loci underlying complex traits in dogs.  相似文献   

13.
Insect hosts and parasitoids are engaged in an intense struggle of antagonistic coevolution. Infection with heritable bacterial endosymbionts can substantially increase the resistance of aphids to parasitoid wasps, which exerts selection on parasitoids to overcome this symbiont-conferred protection (counteradaptation). Experimental evolution in the laboratory has produced counteradapted populations of the parasitoid wasp Lysiphlebus fabarum. These populations can parasitize black bean aphids (Aphis fabae) protected by the bacterial endosymbiont Hamiltonella defensa, which confers high resistance against L. fabarum. We used two experimentally evolved parasitoid populations to study the genetic architecture of the counteradaptation to symbiont-conferred resistance by QTL analysis. With simple crossing experiments, we showed that the counteradaptation is a recessive trait depending on the maternal genotype. Based on these results, we designed a customized crossing scheme to genotype a mapping population phenotyped for the ability to parasitize Hamiltonella-protected aphids. Using 1835 SNP markers obtained by ddRAD sequencing, we constructed a high-density linkage map consisting of six linkage groups (LGs) with an overall length of 828.3 cM and an average marker spacing of 0.45 cM. We identified a single QTL associated with the counteradaptation to Hamiltonella in L. fabarum on linkage group 2. Out of 120 genes located in this QTL, several genes encoding putative venoms may represent candidates for counteradaptation, as parasitoid wasps inject venoms into their hosts during oviposition.Subject terms: Experimental evolution, Evolutionary genetics, Evolutionary ecology, Genetic linkage study  相似文献   

14.

Background

The silver-lipped pearl oyster, Pinctada maxima, is an important tropical aquaculture species extensively farmed for the highly sought "South Sea" pearls. Traditional breeding programs have been initiated for this species in order to select for improved pearl quality, but many economic traits under selection are complex, polygenic and confounded with environmental factors, limiting the accuracy of selection. The incorporation of a marker-assisted selection (MAS) breeding approach would greatly benefit pearl breeding programs by allowing the direct selection of genes responsible for pearl quality. However, before MAS can be incorporated, substantial genomic resources such as genetic linkage maps need to be generated. The construction of a high-density genetic linkage map for P. maxima is not only essential for unravelling the genomic architecture of complex pearl quality traits, but also provides indispensable information on the genome structure of pearl oysters.

Results

A total of 1,189 informative genome-wide single nucleotide polymorphisms (SNPs) were incorporated into linkage map construction. The final linkage map consisted of 887 SNPs in 14 linkage groups, spans a total genetic distance of 831.7 centimorgans (cM), and covers an estimated 96% of the P. maxima genome. Assessment of sex-specific recombination across all linkage groups revealed limited overall heterochiasmy between the sexes (i.e. 1.15:1 F/M map length ratio). However, there were pronounced localised differences throughout the linkage groups, whereby male recombination was suppressed near the centromeres compared to female recombination, but inflated towards telomeric regions. Mean values of LD for adjacent SNP pairs suggest that a higher density of markers will be required for powerful genome-wide association studies. Finally, numerous nacre biomineralization genes were localised providing novel positional information for these genes.

Conclusions

This high-density SNP genetic map is the first comprehensive linkage map for any pearl oyster species. It provides an essential genomic tool facilitating studies investigating the genomic architecture of complex trait variation and identifying quantitative trait loci for economically important traits useful in genetic selection programs within the P. maxima pearling industry. Furthermore, this map provides a foundation for further research aiming to improve our understanding of the dynamic process of biomineralization, and pearl oyster evolution and synteny.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-810) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
《Trends in parasitology》2023,39(2):101-112
In recent years, with the development of microbial research technologies, microbiota research has received widespread attention. The parasitoid wasp genus Nasonia is a good model organism for studying insect behavior, development, evolutionary genetics, speciation, and symbiosis. This review describes key advances and progress in the field of the Nasonia–microbiome interactions. We provide an overview of the advantages of Nasonia as a model organism for microbiome studies, list research methods to study the Nasonia microbiome, and discuss recent discoveries in Nasonia microbiome research. This summary of the complexities of Nasonia–microbiome relationships will help to contribute to a better understanding of the interactions between animals and their microbiomes and establish a clear research direction for Nasonia–microbiome interactions in the future.  相似文献   

17.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops with high seed oil quality. The first sesame genetic linkage map based on F2 segregating population of an intraspecific cross between two cultivars was constructed. Using three types of PCR-based markers, 284 polymorphic loci including 10 EST-SSR marker, 30 AFLP marker and 244 RSAMPL marker, respectively, had been screened. Subsequently, a total of 220 molecular markers were mapped in 30 linkage groups covering a genetic length of 936.72 cM, and the average distance between markers was 4.93 cM. In this map, the linkage groups contained from 2 to 33 loci each and ranged in distance from 6.44 cM to 74.52 cM. Based on map information, sesame genome length was estimated to be approximately 1,232.53 cM, and genome coverage of this map was about 76.0%. As a starting point of sesame genome study, the genetic linkage map will be hopeful to tag traits of breeding interest and further aid in the sesame molecular breeding. Furthermore, RSAMPL marker had been also appreciated in this paper, for its first usage in genetic map construction and higher utilization potential in some crop species lacking much genome information.  相似文献   

18.
Beye M  Hunt GJ  Page RE  Fondrk MK  Grohmann L  Moritz RF 《Genetics》1999,153(4):1701-1708
Sex determination in Hymenoptera is controlled by haplo-diploidy in which unfertilized eggs develop into fertile haploid males. A single sex determination locus with several complementary alleles was proposed for Hymenoptera [so-called complementary sex determination (CSD)]. Heterozygotes at the sex determination locus are normal, fertile females, whereas diploid zygotes that are homozygous develop into sterile males. This results in a strong heterozygote advantage, and the sex locus exhibits extreme polymorphism maintained by overdominant selection. We characterized the sex-determining region by genetic linkage and physical mapping analyses. Detailed linkage and physical mapping studies showed that the recombination rate is <44 kb/cM in the sex-determining region. Comparing genetic map distance along the linkage group III in three crosses revealed a large marker gap in the sex-determining region, suggesting that the recombination rate is high. We suggest that a "hotspot" for recombination has resulted here because of selection for combining favorable genotypes, and perhaps as a result of selection against deleterious mutations. The mapping data, based on long-range restriction mapping, suggest that the Q DNA-marker is within 20,000 bp of the sex locus, which should accelerate molecular analyses.  相似文献   

19.

Background

Genomic resources for the majority of free-living vertebrates of ecological and evolutionary importance are scarce. Therefore, linkage maps with high-density genome coverage are needed for progress in genomics of wild species. The Siberian jay (Perisoreus infaustus; Corvidae) is a passerine bird which has been subject to lots of research in the areas of ecology and evolutionary biology. Knowledge of its genome structure and organization is required to advance our understanding of the genetic basis of ecologically important traits in this species, as well as to provide insights into avian genome evolution.

Results

We describe the first genetic linkage map of Siberian jay constructed using 117 microsatellites and a mapping pedigree of 349 animals representing five families from a natural population breeding in western Finland from the years 1975 to 2006. Markers were resolved into nine autosomal and a Z-chromosome-specific linkage group, 10 markers remaining unlinked. The best-position map with the most likely positions of all significantly linked loci had a total sex-average size of 862.8 cM, with an average interval distance of 9.69 cM. The female map covered 988.4 cM, whereas the male map covered only 774 cM. The Z-chromosome linkage group comprised six markers, three pseudoautosomal and three sex-specific loci, and spanned 10.6 cM in females and 48.9 cM in males. Eighty-one of the mapped loci could be ordered on a framework map with odds of >1000:1 covering a total size of 809.6 cM in females and 694.2 cM in males. Significant sex specific distortions towards reduced male recombination rates were revealed in the entire best-position map as well as within two autosomal linkage groups. Comparative mapping between Siberian jay and chicken anchored 22 homologous loci on 6 different linkage groups corresponding to chicken chromosomes Gga1, 2, 3, 4, 5, and Z. Quite a few cases of intra-chromosomal rearrangements within the autosomes and three cases of inter-chromosomal rearrangement between the Siberian jay autosomal linkage groups (LG1, LG2 and LG3) and the chicken sex chromosome GgaZ were observed, suggesting a conserved synteny, but changes in marker order, within autosomes during about 100 million years of avian evolution.

Conclusion

The constructed linkage map represents a valuable resource for intraspecific genomics of Siberian jay, as well as for avian comparative genomic studies. Apart from providing novel insights into sex-specific recombination rates and patterns, the described maps – from a previously genomically uncharacterized superfamily (Corvidae) of passerine birds – provide new insights into avian genome evolution. In combination with high-resolution data on quantitative trait variability from the study population, they also provide a foundation for QTL-mapping studies.  相似文献   

20.
Kiwifruit is a perennial horticultural crop species of the Actinidiaceae family and has high nutritional value. For a species with a long generation time, traditional breeding and genetic improvement is predicted to take more than 20 years to obtain superior cultivars. Thus, marker-assisted selection (MAS) should be used to accelerate the breeding process. Development of a genetic linkage map and molecular markers are pre-requisites for MAS of crop species. Here, we report a genome-wide SNP-based genetic map of kiwifruit by analysing next-generation restriction-site-associated DNA sequencing (RADseq) reads. To construct a genetic linkage map, a 102 F1 line mapping population of Actinidia chinensis (2n = 58) was derived by combining parents that had contrasting phenotypic traits. The maternal map contained 4112 SNP loci and spanned a distance of 3821 cM, with an average adjacent-marker interval length of 0.929 cM. The map length of the 29 linkage groups ranged from 78.3 to 169.9 cM, with an average length of 131.8 cM. High levels of collinearity between the 29 genetic maps with the kiwifruit reference genome were found. The genetic map developed in this study can serve as an important platform to improve kiwifruit research, including anchoring unmapped scaffolds of the kiwifruit genome sequence and mapping QTLs (quantitative trait loci) that control economically important traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号