首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adeno-associated virus (AAV) type 2 and 5 proteins Rep52 and Rep40 were polyubiquitinated during AAV-adenovirus type 5 (Ad5) coinfection and during transient transfection in either the presence or absence of Ad5 E4orf6 and E1b-55k. Polyubiquitination of small Rep proteins via lysine 48 (K48) linkages, normally associated with targeting of proteins for proteasomal degradation, was detected only in the presence of E4orf6. The small Rep proteins were ubiquitinated via lysine 63 (K63) following transfection in either the presence or absence of E4orf6 or following coinfection with Ad5. E4orf6/E1b-55k-dependent K48-specific polyubiquitination of small Rep proteins could be inhibited using small interfering RNA (siRNA) to cullin 5.Together, adenovirus type 5 (Ad5) early gene products E1a, E1b-55k, E2a, E4orf6, and virus-associated (VA) RNA can support efficient replication of adeno-associated virus (AAV) (4, 31). E4orf6 and E1b-55k are known to interact with cellular cullin 5 (cul5), elongins B and C, and the ring box protein Rbx1 to form an E3 ubiquitin ligase complex that specifically targets a small population of cellular proteins for degradation by the proteasome (1, 7, 21, 22, 24, 27). This property has been implicated in a number of functions presumed to be required for both Ad and AAV replication (3, 8-10, 17, 23, 24, 34, 35).Previously, only p53, Mre11, DNA ligase IV, and integrin α3 had been shown to be substrates of the Ad5 E3 ubiquitin ligase complex (1, 7, 21, 22, 24, 27); however, we have recently shown (16, 17) that the small Rep proteins and capsid proteins of AAV5 are also degraded in the presence of Ad E4orf6 and E1b-55k in a proteasome-dependent manner. These proteins were restored to levels required during infection by the action of VA RNA (17). The targeting for degradation of AAV5 protein by the E4orf6/E1b-55k E3 ubiquitin ligase complex required functional BC-box motifs in E4orf6 and could be inhibited by depletion of the scaffolding protein cullin 5 using directed small interfering RNA (siRNA) (16). In addition, the degradation of AAV5 protein was partially prevented by overexpression of pUBR7, a plasmid that generates a dominant-negative ubiquitin (16). The role this targeted degradation plays in the life cycle of AAV has not yet been clarified; however, E4orf6 mutants that cannot function in this regard do not support AAV replication as well as wild-type E4orf6 (R. Nayak and D. J. Pintel, unpublished data). Degradation of Mre11 by the Ad5 E3 ligase has also been implicated in allowing efficient Ad5 and AAV replication (24). Ubiquitination of AAV Rep proteins during viral infection, however, has not previously been reported.  相似文献   

2.
The parvovirus adeno-associated virus (AAV) contains a small single-stranded DNA genome with inverted terminal repeats that form hairpin structures. In order to propagate, AAV relies on the cellular replication machinery together with functions supplied by coinfecting helper viruses such as adenovirus (Ad). Here, we examined the host cell response to AAV replication in the context of Ad or Ad helper proteins. We show that AAV and Ad coinfection activates a DNA damage response (DDR) that is distinct from that seen during Ad or AAV infection alone. The DDR was also triggered when AAV replicated in the presence of minimal Ad helper proteins. We detected autophosphorylation of the kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and signaling to downstream targets SMC1, Chk1, Chk2, H2AX, and XRCC4 and multiple sites on RPA32. The Mre11 complex was not required for activation of the DDR to AAV infection. Additionally, we found that DNA-PKcs was the primary mediator of damage signaling in response to AAV replication. Immunofluorescence revealed that some activated damage proteins were found in a pan-nuclear pattern (phosphorylated ATM, SMC1, and H2AX), while others such as DNA-PK components (DNA-PKcs, Ku70, and Ku86) and RPA32 accumulated at AAV replication centers. Although expression of the large viral Rep proteins contributed to some damage signaling, we observed that the full response required replication of the AAV genome. Our results demonstrate that AAV replication in the presence of Ad helper functions elicits a unique damage response controlled by DNA-PK.Replication of viral genomes produces a large amount of extrachromosomal DNA that may be recognized by the cellular DNA damage machinery. This is often accompanied by activation of DNA damage response (DDR) signaling pathways and recruitment of cellular repair proteins to sites of viral replication. Viruses therefore provide good model systems to study the recognition and response to DNA damage (reviewed in reference 48). The Mre11/Rad50/Nbs1 (MRN) complex functions as a sensor of chromosomal DNA double-strand breaks (DSBs) and is involved in activation of damage signaling (reviewed in reference 41). The MRN complex also localizes to DNA DSBs and is found at viral replication compartments during infection with a number of DNA viruses (6, 40, 47, 70, 75, 77, 87, 93). The phosphatidylinositol 3-kinase-like kinases (PIKKs) ataxia telangiectasia mutated (ATM), ATM and Rad3-related kinase (ATR), and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) are involved in the signal transduction cascades activated by DNA damage (reviewed in references 43, 51, and 71). These kinases respond to distinct types of damage and regulate DSB repair during different phases of the cell cycle (5), either through nonhomologous end-joining (NHEJ) or homologous recombination pathways (reviewed in references 63, 81, and 86). The DNA-PK holoenzyme is composed of DNA-PKcs and two regulatory subunits, the Ku70 and Ku86 heterodimer. DNA-PK functions with XRCC4/DNA ligase IV to repair breaks during NHEJ, and works with Artemis to process DNA hairpin structures during VDJ recombination and during a subset of DNA DSB events (46, 50, 86). While the kinase activity of DNA-PKcs leads to phosphorylation of a large number of substrates in vitro as well as autophosphorylation of specific residues (reviewed in references 16 and 85), it is currently unclear how DNA-PKcs contributes to signaling in cells upon different types of damage.The adeno-associated virus (AAV) genome consists of a molecule of single-stranded DNA with inverted terminal repeats (ITRs) at both ends that form double-hairpin structures due to their palindromic sequences (reviewed in reference 52). The ITRs are important for replication and packaging of the viral genome and for integration into the host genome. Four viral Rep proteins (Rep78, Rep68, Rep52, and Rep40) are also required for replication and packaging of the AAV genome into virions assembled from the Cap proteins. Although the Rep and Cap genes are replaced in recombinant AAV vectors (rAAV) that retain only the ITRs flanking the gene of interest, these vectors can be replicated by providing Rep in trans (reviewed in reference 7). Productive AAV infection requires helper functions supplied by adenovirus (Ad) or other viruses such as herpes simplex virus (HSV) (reviewed in reference 27), together with components of the host cell DNA replication machinery (54, 55, 58). In the presence of helper viruses or minimal helper proteins from Ad or HSV, AAV replicates in the nucleus at centers where the viral DNA and Rep proteins accumulate (35, 76, 84, 89). Cellular and viral proteins involved in AAV replication, including replication protein A (RPA), Ad DNA-binding protein (DBP), and HSV ICP8, localize with Rep proteins at these viral centers (29, 33, 76).A number of published reports suggest associations between AAV and the cellular DNA damage machinery. For example, transduction by rAAV vectors is increased by genotoxic agents and DNA damaging treatments (1, 62, 91) although the mechanisms involved remain unclear. Additionally, the ATM kinase negatively regulates rAAV transduction (64, 92), and we have shown that the MRN complex poses a barrier to both rAAV transduction and wild-type AAV replication (11, 67). UV-inactivated AAV particles also appear to activate a DDR involving ATM and ATR kinases that perturbs cell cycle progression (39, 60, 88). It has been suggested that this response is provoked by the AAV ITRs (60) and that UV-treated particles mimic stalled replication forks in infected cells (39). In addition to AAV genome components, the viral Rep proteins have been observed to exhibit cytotoxicity and induce S-phase arrest (3, 65).The role of cellular repair proteins in AAV genome processing has also been explored by examining the molecular fate of rAAV vectors, which are converted into circular and concatemeric forms that persist episomally (18, 19, 66). Proteins shown to regulate circularization in cell culture include ATM and the MRN complex (14, 64), while in vivo experiments using mouse models have implicated ATM and DNA-PK in this process (14, 20, 72). Additionally, DNA-PKcs and Artemis have recently been shown to cleave the ITR hairpins of rAAV vectors in vivo in a tissue-dependent manner (36). Despite these studies, it is not clear how damage response factors function together and how they impact AAV transduction and replication in human cells.In this study we examined the cellular response to AAV replication in the context of Ad infection or helper proteins. We show that coinfection with AAV and Ad activates a DDR that is distinct from that seen during infection with Ad alone. The ATM and DNA-PKcs damage kinases are activated and signal to downstream substrates, but the response does not require the MRN complex and is primarily mediated by DNA-PKcs. Although expression of the large Rep proteins induced some DDR events, full signaling appeared to require AAV replication and was accompanied by accumulation of DNA-PK at viral replication compartments. Our results demonstrate that AAV replication induces a unique DNA damage signal transduction response and provides a model system for studying DNA-PK.  相似文献   

3.
4.
5.
6.
7.
8.
Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.A large number of inherited or acquired diseases remain promising targets for human gene therapy. One vector that has shown outstanding potential thus far in numerous preclinical and clinical evaluations is based on nonpathogenic adeno-associated virus (AAV). A unique asset among various properties that make AAV especially attractive over its competitors, such as adenoviral or lentiviral vectors, is the availability of a vast number of natural isolates which differ significantly in their properties (24). We and others have shown previously that the function of an AAV vector particle is determined mainly by the capsid protein and that viral Rep proteins and genomic packaging elements are largely interchangeable (24, 27, 85). Paradoxically, the ever-increasing repertoire of naturally occurring and synthetically generated AAV capsid sequences (>300 to date) is currently creating a dilemma for the rational selection of the optimal serotype for a given application. The importance of finding the ideal capsid for efficient and safe gene transfer has been exemplified in many preclinical studies, as well as in a clinical trial using the AAV type 2 (AAV-2) prototype in human liver tissue (36, 47). In one previous study, the treatment of patients with severe hemophilia B with recombinant AAV-2 expressing human factor IX (hFIX) resulted in mildly elevated, yet therapeutic, levels of this blood coagulation factor. However, expression was short lived, and the hFIX decline was accompanied by a transient asymptomatic increase of liver transaminases, due to a T-cell immune response against the AAV-2 capsid (47). Also, preexisting neutralizing anti-AAV-2 antibodies (frequent in humans) in these individuals likely inhibited the linear vector dose response previously observed in animals.We and others have suggested previously that the use of novel AAV serotypes, in particular, nonhuman isolates, will help to overcome some of these problems (19, 24, 63). Important examples are AAV-8 and AAV-9, which can transduce mouse liver far better than AAV-2, albeit the difference in dogs or primates is less clear (17, 52, 54, 75). The potential for the complete transduction of liver tissue and perhaps other tissues makes these two non-AAV-2 serotypes also particularly interesting for therapeutic RNA interference (RNAi) (28). We recently demonstrated the feasibility of efficiently and persistently suppressing hepatitis B virus with RNAi from a double-stranded AAV-8 vector (28). On the other hand, a potential drawback of AAV-8 and AAV-9 is their lack of specific tissue tropism (34, 52). The resulting frequent vector dissemination into all organs, including the brain, even from low peripheral doses in mice or monkeys (52, 54) is a particular concern for RNAi therapies in which control over vector biodistribution and the limitation of off-target effects will be imperative for the success of the approach (28).In order to overcome the constraints of wild-type AAV serotypes, numerous groups have recently begun to develop novel strategies to engineer “designer” AAVs tailored for the therapeutic transduction of clinically relevant organs (reviewed in detail in references 9, 12, 35, 41, 51, and 85). Briefly, the variety of strategies can be grouped into indirect or chemical approaches and direct physical modification strategies. In the indirect approaches, specific molecules (e.g., bispecific antibodies [6] or avidin-coupled ligands [4]) are allowed to react with the viral surface (biotinylated in the case of avidin [4]), as well as a cellular receptor, forming a conjugate ideally able to retarget the capsid to a refractory cell type. Yet, numerous pharmacological problems, such as concerns about in vivo complex stability and difficulties in upscaling complex manufacturing, continue to prevent the broad adaptation of these approaches. Alternative, more powerful strategies rely on the direct physical modification of the AAV capsid protein and gene. Early examples include the generation of mosaic AAV capsids via the mixing of helper plasmids carrying capsid genes from distinct serotypes, such as AAV-1 and AAV-2 (30) and pairwise combinations of AAV-1 through AAV-5 (62). Similar mosaics were generated previously via a marker rescue approach, yielding AAV-2/AAV-3 recombinants with unique properties (8). A related strategy is the rational creation of chimeric virions via domain swapping among multiple parental serotypes, involving either entire capsid loops or parts thereof or individual residues. Notable examples include AAV-1/AAV-2 chimeras with improved tropism in muscle tissue (31), with one of these chimeras presently being studied in a phase I clinical trial for the treatment of Duchenne muscular dystrophy (85). Most recently, our own group described a battery of unique chimeras comprising elements from serotypes 2 and 8, which were exploited to identify capsid subdomains responsible for efficient AAV transduction in murine liver tissue in vivo (64).A special type of chimeric capsids are those containing foreign proteins or peptides inserted into various positions of the virion shell. The methods and strategies used are widely diverse, and again, we refer to comprehensive reviews (12, 35, 41). Noteworthy here are approaches to fuse targeting ligands to the N termini of AAV capsid proteins (ideally, VP2 [45, 83]), or more powerful, to insert short peptides (up to 14 amino acids [21], typically 7) into exposed regions of the assembled virion. This strategy is referred to as viral display, in analogy to phage display, and has already been used extensively to retarget AAV-2 virions to a multitude of refractory or hard-to-infect cell types, such as vascular endothelial, smooth muscle, and pancreatic islet cells (43, 55, 77, 81, 82) and various tumor lines (22, 58, 65, 66). It has particularly benefited from comprehensive mutational analyses by various groups (e.g., references 21, 33, 56, and 83) that have resulted in the identification of prominent locations within the AAV-2 capsid tolerating peptide insertion. Most notable is the heparin binding domain (HBD), consisting of a total of four arginine (R) residues and one lysine residue, with R585 and R588 representing the most crucial components (37, 56). Numerous groups have now consistently shown that the insertion of 7-mer peptides into this region not only is frequently well tolerated and efficiently mediates virus retargeting, but also provides the extra benefit that the endogenous AAV-2 tropism can be abolished, thus enhancing target specificity (e.g., reference 21).In addition to identifying sites for vector engineering, some of the mutational AAV studies directly yielded novel capsid variants with potential benefits for clinical use. A remarkable case was a recent study by Lochrie et al. (42) in which a set of 127 AAV-2 variants with point or insertion mutations were generated and screened for multiple properties. Several capsids were isolated which differed from the wild-type AAV-2 capsid in having better in vitro transduction efficiencies (albeit being equally efficient in vivo) or, clinically most relevant, higher-level resistance to individual or pooled human antisera. Nonetheless, the limitations of the approach also became clear, most notably, the extreme effort required to generate and manually screen a large number of mutants, which in fact prevented the interesting analyses of all possible combinations of beneficial point mutations in further capsids.Indeed, the factors of time and labor are the main reasons why an increasing number of groups have recently begun to develop novel means for AAV vector evolution that no longer rely on the rational modification of the AAV-2 capsid. Instead, the new combinatorial methodologies allow for the far more efficient creation and selection of interesting candidates in a library-based high-throughput format. Thus far, two different strategies have been reported, both principally expanding on previously developed techniques. One is the use of viral display libraries, in which random 7-mer peptides are inserted into the AAV-2 HBD (at amino acid 587 or 588), yielding between 4 × 106 and 1.7 × 108 capsids potentially exposing new ligands on their surfaces (50, 58, 76). Subsequent iterative selection on diverse cell types refractory to the wild type, e.g., coronary artery endothelial cells, cardiomyoblasts, and carcinoma, leukemia, and megakaryocytic cell lines, led to enrichment with peptide mutants with increased target specificities and efficacies (48, 50, 58, 76). The second library type, independently described by two groups in 2006, relies on error-prone PCR amplification of the AAV-2 capsid gene (46, 59). Similar to the methods in earlier mutational studies, this approach resulted in the identification of AAV-2 point mutations (usually up to two per capsid) which yielded mutants that differed from the wild type in having mildly enhanced efficacies in vitro and/or improved transduction efficiencies in the presence of neutralizing anti-AAV-2 antibodies either generated in rabbits or preexisting in individual human sera.Here, for the first time, we introduce the technology of DNA family shuffling into the realm of AAV vector evolution. The basic concept of this technology is the in vitro recombination of related parental genes with >50% homology, which are first fragmented and then reassembled based on partial homology, resulting in libraries of chimeric genes. Iterative amplification under pressure can then yield hybrids not only combining parental assets, but also ideally exhibiting novel and synergistic properties (70, 71). DNA family shuffling has been used extensively in recent years to evolve and improve all types of proteins, from markers and enzymes to vaccines (e.g., references 10, 13-15, and 39). Importantly, a set of reports also suggested its power to enhance viral gene therapy vectors by creating retro- or lentiviruses with improved stability or efficacy compared to that of the parental wild types (57, 61, 69). Here, we describe the novel use of DNA family shuffling for the highly efficient molecular interbreeding of eight multispecies AAVs to create chimeric capsids and, moreover, document its compatibility and synergism with existing AAV vector evolution technology.  相似文献   

9.
Adeno-associated virus (AAV) serotypes are being tailored for numerous therapeutic applications, but the parameters governing the subcellular fate of even the most highly characterized serotype, AAV2, remain unclear. To understand how cellular conditions control capsid trafficking, we have tracked the subcellular fate of recombinant AAV2 (rAAV2) vectors using confocal immunofluorescence, three-dimensional infection analysis, and subcellular fractionation. Here we report that a population of rAAV2 virions enters the nucleus and accumulates in the nucleolus after infection, whereas empty capsids are excluded from nuclear entry. Remarkably, after subcellular fractionation, virions accumulating in nucleoli were found to retain infectivity in secondary infections. Proteasome inhibitors known to enhance transduction were found to potentiate nucleolar accumulation. In contrast, hydroxyurea, which also increases transduction, mobilized virions into the nucleoplasm, suggesting that two separate pathways influence vector delivery in the nucleus. Using a small interfering RNA (siRNA) approach, we then evaluated whether nucleolar proteins B23/nucleophosmin and nucleolin, previously shown to interact with AAV2 capsids, affect trafficking and transduction efficiency. Similar to effects observed with proteasome inhibition, siRNA-mediated knockdown of nucleophosmin potentiated nucleolar accumulation and increased transduction 5- to 15-fold. Parallel to effects from hydroxyurea, knockdown of nucleolin mobilized capsids to the nucleoplasm and increased transduction 10- to 30-fold. Moreover, affecting both pathways simultaneously using drug and siRNA combinations was synergistic and increased transduction over 50-fold. Taken together, these results support the hypothesis that rAAV2 virions enter the nucleus intact and can be sequestered in the nucleolus in stable form. Mobilization from the nucleolus to nucleoplasmic sites likely permits uncoating and subsequent gene expression or genome degradation. In summary, with these studies we have refined our understanding of AAV2 trafficking dynamics and have identified cellular parameters that mobilize virions in the nucleus and significantly influence AAV infection.Adeno-associated virus (AAV) is classified as a dependovirus because it requires the presence of a helper virus, such as adenovirus or herpesvirus, in order to enter into a productive lytic cycle (6). Because of its nonpathogenicity and ability to promote sustained, long-term transgene expression in a wide variety of tissues such as the brain, liver, muscle, retina, and vasculature (51), several recombinant AAV (rAAV) serotypes are emerging as attractive vectors for gene therapy. Despite many advances in AAV vector design, barriers such as a preexisting immune response and off-target binding have necessitated administration of high viral titers to achieve efficient transduction (24, 51).Beyond the barriers of the immune response (9, 42) and cell surface targeting (52), researchers are becoming increasingly aware that subcellular processing is a significant barrier to infection (16, 29, 52). Subcellular processing may include conformational changes within the endosome or similar compartments, endosomal escape, nuclear targeting, and uncoating, but the factors that control these events are not well defined. Understanding how cellular conditions affect subcellular processing of virions will lead to improved gene delivery through exploitation of these parameters and promote better vector design.Given that the virion is an icosahedral particle only 25 nm in diameter, rAAV must contain all of the molecular components required to navigate through the subcellular environment in a remarkably small structure. Wild-type AAV is a nonenveloped parvovirus that packages a single-stranded DNA genome of approximately 4.7 kb in length. The viral genome is flanked by two inverted terminal repeats and contains two open reading frames, one that codes for replication proteins and another that codes for capsid proteins. Three capsid proteins (VP1, VP2, and VP3) are encoded in the second overlapping reading frame, each beginning with a different start codon but sharing a common C terminus and stop codon. Capsids are comprised of 60 copies of V1, VP2, and VP3 in a ratio of approximately 1:1:10, respectively (11, 43). During production, AAV capsids are known to assemble at early time points in the nucleolus (64), a subdomain of the nucleus and one of the oldest known cellular structures. Intact capsids have been shown to interact with nucleolar proteins such as nucleolin (NCL) and B23/nucleophosmin (NPM1) in the context of assembly (8, 46), but how these proteins affect infection or vector delivery is currently unknown.Initial cell surface binding of AAV capsids is mediated by expression of glycoprotein receptors and specified by residues in VP3 (45, 58, 59). After binding receptors on the host cell plasma membrane, AAV serotype 2 (AAV2) is endocytosed from the cell surface in a clathrin- and dynamin-dependent process (3, 5, 19). Following endocytosis, many AAV particles accumulate in late endosomes, lysosomes, or other compartments and do not deliver their genome to the nucleus (17). This impediment to gene delivery is exacerbated when particles lack VP1 or contain specific mutations in the unique N terminus of VP1 (23). The N terminus of VP1 is normally folded inside the capsid, harboring a phospholipase domain and putative nuclear localization signals necessary for infection (13, 23, 74). These regions of VP1 are thought to translocate to the capsid exterior during subcellular processing of the virus (10, 35, 57). Even with proper capsid composition, the vast majority of internalized particles remain clearly outside the nuclear membrane, and although recent evidence suggests that successful infection occurs when the capsid uncoats inside the nucleus (57, 61), whether AAV can enter the nucleus as an intact capsid is still vehemently debated.In general, it has proven difficult to discern whether infectious particles truly cross the nuclear membrane, due to the limitations of fluorescence microscopy (5, 67). In an in vitro setting it has been demonstrated that unmodified AAV capsids are capable of entering purified nuclei (28), yet these conditions do not accurately represent what occurs physiologically, since virus directly microinjected into cytoplasm will not enter the nucleus or efficiently transduce the cell (17, 57). In one instance, single-particle tracking of AAV has been used to follow capsids in a live-cell imaging paradigm and has found that they can be quickly and directly transported to the nucleus (54). However, another recent study has parsed confocal images of green fluorescent protein-tagged AAV2 particles during infection and has reported that few if any particles enter the nucleus during infection (38).Although it is unclear whether capsids enter the nucleus intact, it has been well established that nuclear delivery of the genome is highly inefficient and significantly limits transduction. Several studies have identified agents that surmount subcellular barriers to transduction (20, 22, 69). Two of the most well-documented agents known to improve subcellular processing are proteasome inhibitors and hydroxyurea (HU); however, their mechanisms of action remain unknown. Therefore, we set out to determine what effect, if any, these agents had on subcellular trafficking of rAAV2 in the hope of identifying specific cellular parameters that promote efficient transduction.Here we report that rAAV2 capsids accumulate in the nucleolus during infection. Proteasome inhibitors were found to potentiate nucleolar accumulation, while HU reduced nucleolar accumulation and appeared to mobilize capsids to the nucleoplasm. Acting independently, both proteasome inhibitors and HU increased transduction, and together they were cooperative, which suggests that these treatments operate through separate pathways to improve gene delivery. In addition, we found that small interfering RNA (siRNA) knockdown of nucleolar proteins NCL and NPM1 had effects similar to those of proteasome inhibition or HU and increased transduction. Based on our results, we have proposed a model wherein AAV virions initially enter the nucleus intact and can be sequestered in the nucleolus in stable form. Disruption of the nucleolus subsequently mobilizes virions from the nucleolus to nucleoplasmic sites and likely permits uncoating.  相似文献   

10.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

11.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

12.
13.
The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind Tsg101 and Alix, respectively. Interactions with these two cellular proteins recruit members of the host''s fission machinery (ESCRT) to facilitate HIV-1 release. Other retroviruses gain access to the host ESCRT components by utilizing a PPXY-type L domain that interacts with cellular Nedd4-like ubiquitin ligases. Despite the absence of a PPXY motif in HIV-1 Gag, interaction with the ubiquitin ligase Nedd4-2 was recently shown to stimulate HIV-1 release. We show here that another Nedd4-like ubiquitin ligase, Nedd4-1, corrected release defects resulting from the disruption of PTAP (PTAP), suggesting that HIV-1 Gag also recruits Nedd4-1 to facilitate virus release. Notably, Nedd4-1 remediation of HIV-1 PTAP budding defects is independent of cellular Tsg101, implying that Nedd4-1''s function in HIV-1 release does not involve ESCRT-I components and is therefore distinct from that of Nedd4-2. Consistent with this finding, deletion of the p6 region decreased Nedd4-1-Gag interaction, and disruption of the LYPXnL motif eliminated Nedd4-1-mediated restoration of HIV-1 PTAP. This result indicated that both Nedd4-1 interaction with Gag and function in virus release occur through the Alix-binding LYPXnL motif. Mutations of basic residues located in the NC domain of Gag that are critical for Alix''s facilitation of HIV-1 release, also disrupted release mediated by Nedd4-1, further confirming a Nedd4-1-Alix functional interdependence. In fact we found that Nedd4-1 binds Alix in both immunoprecipitation and yeast-two-hybrid assays. In addition, Nedd4-1 requires its catalytic activity to promote virus release. Remarkably, RNAi knockdown of cellular Nedd4-1 eliminated Alix ubiquitination in the cell and impeded its ability to function in HIV-1 release. Together our data support a model in which Alix recruits Nedd4-1 to facilitate HIV-1 release mediated through the LYPXnL/Alix budding pathway via a mechanism that involves Alix ubiquitination.Retroviral Gag polyproteins bear short conserved sequences that control virus budding and release. As such, these motifs have been dubbed late or L domains (49). Three types of L domains have thus far been characterized: PT/SAP, LYPXnL, and PPPY motifs (5, 9, 32). They recruit host proteins known to function in the vacuolar protein sorting (vps) of cargo proteins and the generation of multivesicular bodies (MVB) compartments (2). It is currently accepted that budding of vesicles into MVB involves the sequential recruitment of endosomal sorting complexes required for transport (ESCRT-I, -II, and -III) and the activity of the VPS4 AAA-ATPase (22). These sorting events are believed to be triggered by recognition of ubiquitin molecules conjugated to cargo proteins (20, 24, 41). For retrovirus budding, L domain motifs are the primary signals in Gag that elicit the recruitment of ESCRT components to facilitate viral budding. Consequently, mutations in L domain motifs or dominant-negative interference with the function of ESCRT-III members or the VPS4 ATPase adversely affect virus release. This indicates that Gag interactions with the ESCRT machinery are necessary for virus budding and separation from the cell (7, 10, 15, 16, 21, 28, 44).Two late domains have been identified within the p6 region of human immunodeficiency virus type 1 (HIV-1) Gag protein: the PTAP and LYPXnL motifs. The PTAP motif binds the cellular protein Tsg101 (15, 39, 40, 47), whereas the LYPXnL motif is the docking site for Alix (44). Tsg101 functions in HIV-1 budding (15) as a member of ESCRT-I (30, 48), a soluble complex required for the generation of MVB. This process is topologically similar to HIV-1 budding and requires the recruitment of ESCRT-III members called the charged-multivesicular body proteins (3, 29, 48) and the activity of the VPS4 AAA-ATPase (4, 48). In addition to binding the LYPXnL motif, Alix also interacts with the nucleocapsid (NC) domain of HIV-1 Gag (13, 38), thus linking Gag to components of ESCRT-III that are critical for virus release (13).Other retroviruses, including the human T-cell leukemia virus (HTLV) and the Moloney murine leukemia virus (MoMLV), utilize the PPPY-type L domain to efficiently release virus (7, 26, 51). The PPPY motif binds members of the Nedd4-like ubiquitin ligase family (6, 7, 16, 19, 25, 43), whose normal cellular function is to ubiquitinate cargo proteins and target them into the MVB sorting pathway (11, 12, 20). Members of the Nedd4-like ubiquitin ligase family include Nedd4-1, Nedd4-2 (also known as Nedd4L), WWP-1/2, and Itch. They contain three distinct domains: an N-terminal membrane binding C2 domain (12), a central PPPY-interacting WW domain (43), and a C-terminal HECT domain that contains the ubiquitin ligase active site (42). The functional requirement for the binding of Nedd4-like ubiquitin ligases to the PPPY motif in virus budding has been demonstrated (7, 16, 18, 19, 25, 26, 28, 50, 51). Overexpression of dominant-negative mutants of Nedd4-like ligases, ESCRT-III components, or VPS4 cause a potent inhibition of PPPY-dependent virus release (7, 19, 29, 31, 52) and induce assembly and budding defects similar to those observed after perturbation of the PPPY motif (26, 51). These observations demonstrated that Nedd4-like ligases connect Gag encoding PPPY motif to ESCRT-III and VPS4 proteins to facilitate virus release.Whereas the role of Nedd4-like ubiquitin ligases in virus budding has been established, the protein interactions that link them to the cell''s ESCRT-III pathway are still unknown. Evidence for associations of Nedd4-like ligases with ESCRT proteins have been previously reported and include: the binding of Nedd4-like ubiquitin ligases LD1 and Nedd4-1 to ESCRT-I member Tsg101 (6, 31), the colocalization of multiple Nedd4-like ubiquitin ligases with endosomal compartments (1, 28), the requirement of the cell''s ESCRT pathway for Itch mediated L domain independent stimulation of MoMLV release (23), and the ubiquitination of ESCRT-I components with a shorter isoform, Nedd4-2s (8). Therefore, Nedd4-like ubiquitin ligase interactions with members of the cell''s ESCRT pathway may provide retroviral Gag with access to the host budding machinery required for virus release.Although HIV-1 Gag does not carry the PPPY canonical sequence known to interact with Nedd4-like ubiquitin ligases, both Nedd4-1 and Nedd4-2 were shown to restore the release of the HIV-1 PTAP mutant, albeit Nedd4-1 with less efficiency than Nedd4-2 (8, 46). These findings suggested that HIV-1 might utilize cellular Nedd4-like ubiquitin ligases to increase virus release. We present here evidence demonstrating that Nedd4-1 interacts with Gag and enhances HIV-1 PTAP virus release. Furthermore, we show that Nedd4-1''s function in HIV-1 release is distinct from that of Nedd4-2 in both its viral and cellular requirements. Notably, we found that Nedd4-1 enhancement of HIV-1 release requires the Alix-binding LYPXnL L domain motif in the p6 region and basic residues in the NC domain. In addition, Alix''s facilitation of HIV-1 release requires cellular Nedd4-1, since mutations in NC that prevented Alix-mediated HIV-1 release also eliminated release by overexpression of Nedd4-1. This suggested a Nedd4-1-Alix physical and functional interdependence. In agreement with this, we found Nedd4-1 to bind and ubiquitinate Alix in the cell. Taken together, these results support a model in which Alix recruits Nedd4-1 to facilitate late steps of HIV-1 release through the LYPXnL L domain motif via a mechanism that involves Alix ubiquitination.  相似文献   

14.
15.
Type I interferons (IFNs) play a critical role in the host defense against viruses. Lymphocytic choriomeningitis virus (LCMV) infection induces robust type I IFN production in its natural host, the mouse. However, the mechanisms underlying the induction of type I IFNs in response to LCMV infection have not yet been clearly defined. In the present study, we demonstrate that IRF7 is required for both the early phase (day 1 postinfection) and the late phase (day 2 postinfection) of the type I IFN response to LCMV, and melanoma differentiation-associated gene 5 (MDA5)/mitochondrial antiviral signaling protein (MAVS) signaling is crucial for the late phase of the type I IFN response to LCMV. We further demonstrate that LCMV genomic RNA itself (without other LCMV components) is able to induce type I IFN responses in various cell types by activation of the RNA helicases retinoic acid-inducible gene I (RIG-I) and MDA5. We also show that expression of the LCMV nucleoprotein (NP) inhibits the type I IFN response induced by LCMV RNA and other RIG-I/MDA5 ligands. These virus-host interactions may play important roles in the pathogeneses of LCMV and other human arenavirus diseases.Type I interferons (IFNs), namely, alpha interferon (IFN-α) and IFN-β, are not only essential for host innate defense against viral pathogens but also critically modulate the development of virus-specific adaptive immune responses (6, 8, 28, 30, 36, 50, 61). The importance of type I IFNs in host defense has been demonstrated by studying mice deficient in the type I IFN receptor, which are highly susceptible to most viral pathogens (2, 47, 62).Recent studies have suggested that the production of type I IFNs is controlled by different innate pattern recognition receptors (PRRs) (19, 32, 55, 60). There are three major classes of PRRs, including Toll-like receptors (TLRs) (3, 40), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) (25, 48, 51), and nucleotide oligomerization domain (NOD)-like receptors (9, 22). TLRs are a group of transmembrane proteins expressed on either cell surfaces or endosomal compartments. RLRs localize in the cytosol. Both TLRs and RLRs are involved in detecting viral pathogens and controlling the production of type I IFNs (52, 60). In particular, the endosome-localized TLRs (TLR3, TLR7/8, and TLR9) play important roles in detecting virus-derived double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), and DNA-containing unmethylated CpG motifs, respectively. In contrast, RIG-I detects virus-derived ssRNA with 5′-triphosphates (5′-PPPs) or short dsRNA (<1 kb), whereas melanoma differentiation-associated gene 5 (MDA5) is responsible for recognizing virus-derived long dsRNA as well as a synthetic mimic of viral dsRNA poly(I):poly(C) [poly(I·C)] (24, 60). Recognition of viral pathogen-associated molecular patterns (PAMPs) ultimately leads to the activation and nuclear translocation of interferon regulatory factors (IRFs) and nuclear factor κB (NF-κB), which, in turn, switches on a cascade of genes controlling the production of both type I IFNs and other proinflammatory cytokines (10, 11, 60).Lymphocytic choriomeningitis virus (LCMV) infection in its natural host, the mouse, is an excellent system to study the impact of virus-host interactions on viral pathogenesis and to address important issues related to human viral diseases (1, 45, 49, 67). LCMV infection induces type I IFNs as well as other proinflammatory chemokines and cytokines (6, 41). Our previous studies have demonstrated that TLR2, TLR6, and CD14 are involved in LCMV-induced proinflammatory chemokines and cytokines (66). The mechanism by which LCMV induces type I IFN responses, however, has not been clearly defined (7, 8, 31, 44). The role of the helicase family members RIG-I and MDA5 in virus-induced type I IFN responses has been recently established. RIG-I has been found to be critical in controlling the production of type I IFN in response to a number of RNA viruses, including influenza virus, rabies virus, Hantaan virus, vesicular stomatitis virus (VSV), Sendai virus (SeV), etc. In contrast, MDA5 is required for responses to picornaviruses (15, 25, 63).In the present study, we demonstrated that LCMV genomic RNA strongly activates type I IFNs through a RIG-I/MDA5-dependent signaling pathway. Our present study further demonstrated that the LCMV nucleoprotein (NP) blocks LCMV RNA- and other viral ligand-induced type I IFN responses.  相似文献   

16.
The endosomal sorting complex required for transport (ESCRT) machinery controls the incorporation of cargo into intraluminal vesicles of multivesicular bodies. This machinery is used during envelopment of many RNA viruses and some DNA viruses, including herpes simplex virus type 1. Other viruses mature independent of ESCRT components, instead relying on the intrinsic behavior of viral matrix and envelope proteins to drive envelopment. Human cytomegalovirus (HCMV) maturation has been reported to proceed independent of ESCRT components (A. Fraile-Ramos et al. Cell. Microbiol. 9:2955-2967, 2007). A virus complementation assay was used to evaluate the role of dominant-negative (DN) form of a key ESCRT ATPase, vacuolar protein sorting-4 (Vps4DN) in HCMV replication. Vps4DN specifically inhibited viral replication, whereas wild-type-Vps4 had no effect. In addition, a DN form of charged multivesicular body protein 1 (CHMP1DN) was found to inhibit HCMV. In contrast, DN tumor susceptibility gene-101 (Tsg101DN) did not impact viral replication despite the presence of a PTAP motif within pp150/ppUL32, an essential tegument protein involved in the last steps of viral maturation and release. Either Vps4DN or CHMP1DN blocked viral replication at a step after the accumulation of late viral proteins, suggesting that both are involved in maturation. Both Vps4A and CHMP1A localized in the vicinity of viral cytoplasmic assembly compartments, sites of viral maturation that develop in CMV-infected cells. Thus, ESCRT machinery is involved in the final steps of HCMV replication.Cellular endosomal sorting complex required for transport (ESCRT) machinery controls the evolutionarily conserved process (33) of membrane budding that is normally a component of cytokinesis (6, 46), endosome sorting and multivesicular body (MVB) formation (28). After the initial characterization in retroviruses, many enveloped viruses have been shown to rely on this machinery during envelopment and release from cells (1, 18, 35, 40, 47, 69). Other viruses, such as influenza virus, mature independent of ESCRT machinery and are believed to use an alternative virus-intrinsic pathway (7). The core of the ESCRT machinery consists of five multiprotein complexes (ESCRT-0, -I, -II, and -III and Vps4-Vta1) (27). Vacuolar protein sorting-4 (Vps4) is a critical ATPase that functions downstream of most ESCRT components. Based on sensitivity to dominant-negative (DN) inhibitors of protein function, replication of several RNA viruses, as well as of the DNA virus herpes simplex virus type 1 (HSV-1) (5, 10), have been shown to rely on Vps4 in a manner that is analogous to the formation of MVBs (endosomal compartments containing intraluminal vesicles) (10, 45). Evidence based exclusively on small interfering RNA (siRNA) methods suggested cytomegalovirus (CMV) maturation was independent of ESCRT components, although the maturation of this virus remained MVB associated (16).ESCRT machinery facilitates envelopment and release at cytoplasmic membranes and recruits cargo for sorting via any of three alternative pathways that converge on a Vps4-dependent downstream step: (i) a tumor susceptibility gene-101 (Tsg101)-dependent pathway, (ii) an apoptosis linked gene-2 interacting protein X (ALIX)-dependent pathway, and (iii) a pathway that relies on a subset of Nedd4-like HECT E3 ubiquitin ligases (35). The involvement of ESCRT in viral envelopment and egress was first observed in human immunodeficiency virus (HIV) (18, 19, 40, 60) and has been extended to equine infectious anemia virus (34, 40, 52, 60), Rous sarcoma virus (29, 70, 71), Mason-Pfizer monkey virus (20, 72), rabies virus (24), Ebola virus (23), hepatitis B virus (68), vaccinia virus (25), HSV-1 (5, 10), and several other RNA and DNA viruses (7). Structural proteins in most of these viruses carry late (L) domains characterized by conserved amino acid motifs (PTAP, PPXY, and YXXL) that mediate protein-protein interactions and facilitate recruitment of ESCRT components to facilitate virus budding. The introduction of mutations in these motifs leads to defects in viral maturation and release from cells (40).Vps4 controls the release of ESCRT complexes from membranes (18, 40). Inhibition of Vps4A and Vps4B using Vps4ADN reduces levels of viral maturation mediated by L domains (47). For this reason, inhibition by a Vps4DN is considered the gold standard test to establish the role of ESCRT machinery in maturation of any virus (7). Tsg101, a component of ESCRT-I, normally functions to deliver ubiquitinated transmembrane proteins to MVBs (35). HIV-1 p6 Gag PTAP domain interacts with Tsg101 (18) and directs viral cores (capsids) to sites of viral envelopment (39). Upon disruption of HIV-1 PTAP domain, particle release becomes dependent on auxiliary factors, including an ALIX-binding YXXL domain within p6 Gag (60). A minimal amino-terminal L domain of Tsg101 functions as a DN inhibitor of PTAP-mediated viral budding without inhibiting Tsg101-independent PPXY- or YXXL-dependent pathways (40). The murine leukemia virus PPXY domain recruits a subset of Nedd4-like HECT E3 ubiquitin ligases (WWP1, WWP2, and Itch) (36) that in turn recruit ESCRT-III components (35). The YXXL L domain binds to the cellular protein ALIX (60). ALIX binds to Tsg101 (38) and also with ESCRT-III protein CHMP-4B (60), thus linking ESCRT-I and ESCRT-III. Green fluorescent protein (GFP)-, red fluorescent protein, or yellow fluorescent protein (YFP)-fused CHMPs are general DN inhibitors of all natural CHMP-associated activities and cause the formation of aberrant endosomal compartments that sequester ESCRT complexes (26, 31, 60). Through the use of these DN constructs, the recruitment and assembly of ESCRT components can be inhibited to specifically disrupt different steps of the ESCRT pathway.The best evidence supporting involvement of ESCRT machinery in the life cycle of herpesviruses comes from the inhibition of HSV-1 envelopment by Vps4DN (10), as well as by CHMP3DN (5), together with the association of HSV-1 maturation with MVB. It was recently reported that HHV-6 also induces MVB formation that controls viral egress via an exosomal release pathway (45). After losing primary envelope acquired at the nuclear membrane, Human CMV (HCMV) undergoes a secondary, or final, envelopment step within a cytoplasmic assembly compartments (AC) (59). Secondary envelopment is thought to occur within early endosomal compartments based on diverse observations: (i) purified virions and dense bodies have a lipid composition that is similar to this compartment (64); (ii) the AC of HCMV-infected fibroblasts contain endosomal markers (11); and (iii) a number of HCMV envelope proteins, including US28 (14), UL33, US27 (15), and gB (9), colocalize with endosomal markers in infected cells. A model of HCMV egress via early endosomes has been proposed (11).The approach that we have used here employed human foreskin fibroblasts (HFs) and restricted viral replication to cells that expressed the DN or wild-type (WT) component of the ESCRT pathway by including a requirement that transfected cells complement replication of virus. Confirming expression of both DN and complementing protein in transfected cells by epifluorescence microscopy ensured that an overwhelming majority of cells coexpressed these proteins. The results were scored as inhibition of viral spread to adjacent cells as well as demonstration of late gene expression in the transfected and/or infected cell. Viral progeny is released within 48 to 72 h from CMV-infected cells (44), reducing the likelihood that nonspecific or long-term toxicity of DN-ESCRT proteins would impact our analysis. This assay has been effectively used earlier for both immediate-early gene (54) and late gene (2, 62) mutants, and similar complementation assay results have been reported in diverse systems (8, 49, 73). This assay further provided an opportunity to determine when inhibition occurred relative to the viral replication cycle. Our data implicate ESCRT machinery late during HCMV maturation, which is consistent with a role in secondary envelopment and release.  相似文献   

17.
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.The smallpox vaccine, live vaccinia virus (VACV), is frequently considered the gold standard of human vaccines and has been enormously effective in preventing smallpox disease. The smallpox vaccine led to the worldwide eradication of the disease via massive vaccination campaigns in the 1960s and 1970s, one of the greatest successes of modern medicine (30). However, despite the efficacy of the smallpox vaccine, the mechanisms of protection remain unclear. Understanding those mechanisms is key for developing immunologically sound vaccinology principles that can be applied to the design of future vaccines for other infectious diseases (3, 101).Clinical studies of fatal human cases of smallpox disease (variola virus infection) have shown that neutralizing antibody titers were either low or absent in patient serum (24, 68). In contrast, neutralizing antibody titers for the VACV intracellular mature virion (MV or IMV) were correlated with protection of vaccinees against smallpox (68). VACV immune globulin (VIG) (human polyclonal antibodies) is a promising treatment against smallpox (47), since it was able to reduce the number of smallpox cases ∼80% among variola-exposed individuals in four case-controlled clinical studies (43, 47, 52, 53, 69). In animal studies, neutralizing antibodies are crucial for protecting primates and mice against pathogenic poxviruses (3, 7, 17, 21, 27, 35, 61, 66, 85).The specificities and the functions of protective antipoxvirus antibodies have been areas of intensive research, and the mechanics of poxvirus neutralization have been debated for years. There are several interesting features and problems associated with the antibody response to variola virus and related poxviruses, including the large size of the viral particles and the various abundances of many distinct surface proteins (18, 75, 91, 93). Furthermore, poxviruses have two distinct virion forms, intracellular MV and extracellular enveloped virions (EV or EEV), each with a unique biology. Most importantly, MV and EV virions share no surface proteins (18, 93), and therefore, there is no single neutralizing antibody that can neutralize both virion forms. As such, an understanding of virion structure is required to develop knowledge regarding the targets of protective antibodies.Neutralizing antibodies confer protection mainly through the recognition of antigens on the surface of a virus. A number of groups have discovered neutralizing antibody targets of poxviruses in animals and humans (3). The relative roles of antibodies against MV and EV in protective immunity still remain somewhat unclear. There are compelling data that antibodies against MV (21, 35, 39, 66, 85, 90, 91) or EV (7, 16, 17, 36, 66, 91) are sufficient for protection, and a combination of antibodies against both targets is most protective (66). It remains controversial whether antibodies to one virion form are more important than those to the other (3, 61, 66). The most abundant viral particles are MV, which accumulate in infected cells and are released as cells die (75). Neutralization of MV is relatively well characterized (3, 8, 21, 35). EV, while less abundant, are critical for viral spread and virulence in vivo (93, 108). Neutralization of EV has remained more enigmatic (3).B5R (also known as B5 or WR187), one of five known EV-specific proteins, is highly conserved among different strains of VACV and in other orthopoxviruses (28, 49). B5 was identified as a protective antigen by Galmiche et al., and the available evidence indicated that the protection was mediated by anti-B5 antibodies (36). Since then, a series of studies have examined B5 as a potential recombinant vaccine antigen or as a target of therapeutic monoclonal antibodies (MAbs) (1, 2, 7, 17, 40, 46, 66, 91, 110). It is known that humans immunized with the smallpox vaccine make antibodies against B5 (5, 22, 62, 82). It is also known that animals receiving the smallpox vaccine generate antibodies against B5 (7, 20, 27, 70). Furthermore, previous neutralization assays have indicated that antibodies generated against B5 are primarily responsible for neutralization of VACV EV (5, 83). Recently Chen at al. generated chimpanzee-human fusion MAbs against B5 and showed that the MAbs can protect mice from lethal challenge with virulent VACV (17). We recently reported, in connection with a study using murine monoclonal antibodies, that neutralization of EV is highly complement dependent and the ability of anti-B5 MAbs to protect in vivo correlated with their ability to neutralize EV in a complement-dependent manner (7).The focus of the study described here was to elucidate the mechanisms of EV neutralization, focusing on the human antibody response to B5. Our overall goal is to understand underlying immunobiological and virological parameters that determine the emergence of protective antiviral immune responses in humans.  相似文献   

18.
19.
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.Ebola and Marburg viruses are members of the family Filoviridae. Filoviruses are filamentous, negative-sense, single-stranded RNA viruses that cause lethal hemorrhagic fevers in both humans and nonhuman primates (5). Filoviruses encode seven viral proteins including: NP (major nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (glycoprotein), VP30 (minor nucleoprotein), VP24 (secondary matrix protein), and L (RNA-dependent RNA polymerase) (2, 5, 10, 12, 45). Numerous studies have shown that expression of Ebola virus VP40 (eVP40) alone in mammalian cells leads to the production of virus-like particles (VLPs) with filamentous morphology which is indistinguishable from infectious Ebola virus particles (12, 17, 18, 25, 26, 27, 30, 31, 34, 49). Like many enveloped viruses such as rhabdovirus (11) and arenaviruses (44), Ebola virus encodes late-assembly or L domains, which are sequences required for the membrane fission event that separates viral and cellular membranes to release nascent virion particles (1, 5, 7, 10, 12, 18, 25, 27, 34). Thus far, four classes of L domains have been identified which were defined by their conserved amino acid core sequences: the Pro-Thr/Ser-Ala-Pro (PT/SAP) motif (25, 27), the Pro-Pro-x-Tyr (PPxY) motif (11, 12, 18, 19, 41, 53), the Tyr-x-x-Leu (YxxL) motif (3, 15, 27, 37), and the Phe-Pro-Ile-Val (FPIV) motif (39). Both PTAP and the PPxY motifs are essential for efficient particle release for eVP40 (25, 27, 48, 49), whereas mVP40 contains only a PPxY motif. L domains are believed to act as docking sites for the recruitment of cellular proteins involved in endocytic trafficking and multivesicular body biogenesis to facilitate virus-cell separation (8, 13, 14, 16, 28, 29, 33, 36, 43, 50, 51).In addition to L domains, oligomerization, and plasma-membrane localization of VP40 are two functions of the protein that are critical for efficient budding of VLPs and virions. Specific sequences involved in self-assembly and membrane localization have yet to be defined precisely. However, recent reports have attempted to identify regions of VP40 that are important for its overall function in assembly and budding. For example, the amino acid region 212KLR214 located at the C-terminal region was found to be important for efficient release of eVP40 VLPs, with Leu213 being the most critical (30). Mutation of the 212KLR214 region resulted in altered patterns of cellular localization and oligomerization of eVP40 compared to those of the wild-type genotype (30). In addition, the proline at position 53 was also implicated as being essential for eVP40 VLP release and plasma-membrane localization (54).In a more recent study, a YPLGVG motif within the M protein of Nipah virus (NiV) was shown to be important for stability, membrane binding, and budding of NiV VLPs (35). Whether this NiV M motif represents a new class of L domain remains to be determined. However, it is clear that this YPLGVG motif of NiV M is important for budding, perhaps involving a novel mechanism (35). Our rationale for investigating the corresponding, conserved motifs present within the Ebola and Marburg virus VP40 proteins was based primarily on these findings with NiV. In addition, Ebola virus VP40 motif maps close to the hinge region separating the N- and C-terminal domains of VP40 (4). Thus, the 96LPLGVA101 motif of eVP40 is predicted to be important for the overall stability and function of VP40 during egress. Findings presented here indicate that disruption of these filovirus VP40 motifs results in a severe defect in VLP budding, due in part to impairment in overall VP40 structure, stability and/or intracellular localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号