首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5′ untranslated region (5′UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5′UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.Targeting the translation initiation pathway is emerging as a potential therapy for inhibiting cancer cell growth (35, 38). Ribosome recruitment to the 5′ ends of eukaryotic mRNAs proceeds via translation initiation mechanisms that are dependent either on the 5′ cap structure (m7GpppN, where N is any nucleotide) or an internal ribosome entry site (IRES). The majority of translation initiation events in eukaryotes are mediated through cap-dependent translation whereby the 40S ribosomal subunit is recruited to the vicinity of the mRNA 5′ cap structure by the eukaryotic initiation factor 4F (eIF4F) complex. eIF4F is comprised of eIF4E (the cap-binding subunit), eIF4A (an RNA helicase), and eIF4G (a large scaffolding protein for eIF4E, eIF4A, and other initiation factors). Once assembled at the 5′ cap, the 40S ribosomal subunit in association with several initiation factors scans the 5′ untranslated region (5′UTR) of the mRNA until it encounters a start codon in a favorable context, followed by polypeptide synthesis (37).Early in vitro studies have shown that the initiation factor eIF4B acts to potentiate ribosome recruitment to the mRNA (3, 45). eIF4B stimulates translation of both capped and uncapped mRNAs in vitro (1, 36). This function is exerted through stimulation of the helicase activity of eIF4A (43), possibly through direct interactions with eIF4A (44) or with mRNA, the ribosome-associated eIF3, and 18S rRNA (28, 29, 44). Thus, eIF4B is thought to form auxiliary bridges between the mRNA and the 40S ribosomal subunit. Toeprinting studies using mammalian eIF4B underscored its importance in the assembly of the 48S initiation complex, especially on mRNAs harboring secondary structures in the 5′UTRs (11).In vivo studies of eIF4B are limited. Ectopic expression of eIF4B in cultured Drosophila melanogaster cells and in developing eye imaginal discs stimulated cell proliferation (16). Enhanced cell proliferation is most likely mediated by increased translation of a subset of mRNAs, since knockdown of Drosophila eIF4B by RNA interference (RNAi) caused a modest reduction in global translation but compromised the survival of insect cells grown under low serum conditions (16). Studies of eIF4B in mammalian cells yielded contradictory results. Transient overexpression of eIF4B stimulated translation initiation in a phosphorylation-dependent manner in some cells (18, 49) while inhibiting translation in others (30, 31, 41). These differences might be attributed to disparate levels of eIF4B overexpression.To address the physiological role of eIF4B in mRNA translation in the cell, RNAi knockdown of eIF4B was used here. We demonstrate that eIF4B is required for optimal translation. Importantly, the translation of mRNAs bearing structured 5′UTRs, such as the cell cycle regulators Cdc25C, c-myc, and ODC (ornithine decarboxylase), and the antiapoptotic factors Bcl-2 and XIAP (X-linked inhibitor of apoptosis), was reduced as a result of eIF4B silencing by RNAi. Furthermore, eIF4B silencing promoted caspase-dependent apoptosis. Thus, we show that mammalian eIF4B is required for cell proliferation and survival, whereby it acts by regulating the translation of a functionally related subset of mRNAs.  相似文献   

5.
The herpes simplex virus (HSV) virion host shutoff protein (vhs) encoded by gene UL41 is an mRNA-specific RNase that triggers accelerated degradation of host and viral mRNAs in infected cells. We report here that vhs is also able to modulate reporter gene expression without greatly altering the levels of the target mRNA in transient-transfection assays conducted in HeLa cells. We monitored the effects of vhs on a panel of bicistronic reporter constructs bearing a variety of internal ribosome entry sites (IRESs) located between two test cistrons. As expected, vhs inhibited the expression of the 5′ cistrons of all of these constructs; however, the response of the 3′ cistron varied with the IRES: expression driven from the wild-type EMCV IRES was strongly suppressed, while expression controlled by a mutant EMCV IRES and the cellular ApaF1, BiP, and DAP5 IRES elements was strongly activated. In addition, several HSV type 1 (HSV-1) 5′ untranslated region (5′ UTR) sequences also served as positive vhs response elements in this assay. IRES activation was also observed in 293 and HepG2 cells, but no such response was observed in Vero cells. Mutational analysis has yet to uncouple the ability of vhs to activate 3′ cistron expression from its shutoff activity. Remarkably, repression of 5′ cistron expression could be observed under conditions where the levels of the reporter RNA were not correspondingly reduced. These data provide strong evidence that vhs can modulate gene expression at the level of translation and that it is able to activate cap-independent translation through specific cis-acting elements.The virion host shutoff protein (vhs) encoded by herpes simplex virus (HSV) gene UL41 is an endoribonuclease that is packaged into the tegument of mature HSV virions. Once delivered into the cytoplasm of newly infected cells, vhs triggers shutoff of host protein synthesis, disruption of preexisting polysomes, and degradation of host mRNAs (reviewed in reference 62). The vhs-dependent shutoff system destabilizes many cellular and viral mRNAs (36, 46, 67). The rapid decline in host mRNA levels presumably helps viral mRNAs gain access to the cellular translational apparatus. In addition, the relatively short half-lives of viral mRNAs contribute to the sharp transitions between the successive phases of viral protein synthesis by tightly coupling changes in the rates of synthesis of viral mRNAs to altered mRNA levels (46). These effects enhance virus replication and may account for the modest reduction in virus yield displayed by vhs mutants in cultured Vero cells (55, 61).vhs also plays a critical role in HSV pathogenesis: vhs mutants are severely impaired for replication in the corneas and central nervous systems of mice and cannot efficiently establish or reactivate from latency (63, 65, 66). Mounting evidence indicates that this attenuation stems at least in part from an impaired ability to disarm elements of the innate and adaptive host immune responses (reviewed in reference 62). For example, vhs suppresses certain innate cellular antiviral responses, including production of proinflammatory cytokines and chemokines (68); dampens the type I interferon system (11, 45, 49, 78); and blocks activation of dendritic cells (58). Moreover, vhs mutants display enhanced virulence in knockout mice lacking type I interferon (IFN) receptors (37, 45) or Stat1 (48) and are hypersensitive to the antiviral effects of IFN in some cells in tissue culture (11, 49, 68). Thus, vhs is arguably a bona fide virulence factor.vhs present in extracts of HSV virions or purified from bacteria has nonspecific RNase activity capable of degrading all RNA substrates (15, 70, 71, 79). However, vhs is highly selective in vivo, targeting mRNAs and sparing other cytoplasmic RNAs (36, 46). In vivo and in mammalian whole-cell extracts, vhs-induced decay of at least some mRNAs initiates near regions of translation initiation and proceeds in an overall 5′-to-3′ direction (12, 13, 29, 52). Moreover, vhs binds to the translation initiation factors eIF4H, eIF4B, and eIF4A II, all components of the cap recognition factor eIF4F (10, 16, 17). Thus, it has been proposed that vhs selectively targets actively translated mRNAs through interactions with eIF4F components (17). Consistent with this hypothesis, recent data document that eIF4H is required for vhs activity in vivo (59).A previous report from this laboratory documented that the internal ribosome entry sites (IRESs) of the picornaviruses poliovirus and encephalomyocarditis virus (EMCV) strongly target vhs-induced RNA cleavage events to sequences immediately 3′ to the IRES in an in vitro translation system derived from rabbit reticulocyte lysates (RRL) (13). IRES elements are highly structured RNA sequences that are able to direct cap-independent translational initiation (reviewed in references 21, 25, 30, and 64). In the case of the poliovirus and EMCV elements, this is achieved by directly recruiting the eIF4F scaffolding protein eIF4G, thus bypassing the requirement for the cap-binding eIF4F subunit, eIF4E (reviewed in reference 30). Based on these data, we suggested that vhs is strongly targeted to the picornavirus IRES elements via interactions with eIF4 factors.A growing number of cellular mRNAs have been proposed to bear IRES elements in their 5′ untranslated regions (5′ UTRs). These include many that are involved in cellular stress responses, apoptosis, and cell cycle progression (24, 64, 74). Given the striking ability of picornavirus IRES elements to target vhs RNase activity in vitro, we asked whether viral and cellular IRES elements are able to modify the susceptibility of mRNAs to vhs in vivo. During the course of preliminary experiments designed to test this hypothesis, we unexpectedly discovered that vhs is able to strongly activate gene expression controlled by some cellular IRES elements and HSV 5′ UTR sequences in in vivo bicistronic reporter assays. These observations are the subject of the present report.  相似文献   

6.
7.
8.
9.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host antiviral immunity against hepatitis B virus (HBV) infection in vivo. However, the molecular mechanism by which these antiviral cytokines suppress HBV replication remains elusive. Using an immortalized murine hepatocyte (AML12)-derived cell line supporting tetracycline-inducible HBV replication, we show in this report that both IFN-α and IFN-γ efficiently reduce the amount of intracellular HBV nucleocapsids. Furthermore, we provide evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings thus reveal a novel antiviral mechanism of IFNs and provide a basis for a better understanding of HBV pathobiology.Hepatitis B virus (HBV) is a noncytopathic hepatotropic DNA virus which belongs to the family Hepadnaviridae (11, 44). Despite the fact that most adulthood HBV infections are transient, approximately 5 to 10% of infected adults and more than 90% of infected neonates fail to clear the virus and develop a lifelong persistent infection, which may progress to chronic hepatitis, cirrhosis, and primary hepatocellular carcinoma (4, 33, 34). It has been shown by several research groups that resolution of HBV and other animal hepadnavirus infection in vivo depends on both killing of infected hepatocytes by viral antigen-specific cytotoxic T lymphocytes and noncytolytic suppression of viral replication, which is most likely mediated by inflammatory cytokines, such as gamma interferon (IFN-γ) and tumor necrosis factor α (TNF-α) (10, 12, 15, 20, 26, 27, 48). Moreover, together with five nucleoside or nucleotide analogs that inhibit HBV DNA polymerase, alpha IFN (IFN-α) and pegylated IFN-α are currently available antiviral medications for the management of chronic hepatitis B. Compared to the viral DNA polymerase inhibitors, the advantages of IFN-α therapy include a lack of drug resistance, a finite and defined treatment course, and an increased likelihood for hepatitis B virus surface antigen (HBsAg) clearance (8, 39). However, only approximately 30% of treated patients achieve a sustained virological response to a standard 48-month pegylated IFN-α therapy (6, 32). Thus far, the antiviral mechanism of IFN-α and IFN-γ and the parameters determining the success or failure of IFN-α therapy in chronic hepatitis B remain elusive. Elucidation of the mechanism by which the cytokines suppress HBV replication represents an important step toward understanding the pathobiology of HBV infection and the molecular basis of IFN-α therapy of chronic hepatitis B.Considering the mechanism by which IFNs noncytolytically control HBV infection in vivo, it is possible that the cytokines either induce an antiviral response in hepatocytes to directly limit HBV replication or modulate the host antiviral immune response to indirectly inhibit the virus infection. However, due to the fact that IFN-α and -γ do not inhibit or only modestly inhibit HBV replication in human hepatoma-derived cell lines (5, 22, 23, 30), the direct antiviral effects of the cytokines and their antiviral mechanism against HBV have been studied with either an immortalized hepatocyte cell line derived from HBV transgenic mice or duck hepatitis B virus (DHBV) infection of primary duck hepatocytes (37, 53). While these studies revealed that IFN treatment significantly reduced the amount of encapsidated viral pregenomic RNA (pgRNA) in both mouse and duck hepatocytes, further mechanistic analyses suggested that IFN-α inhibited the formation of pgRNA-containing nucleocapsids in murine hepatocytes (52) but shortened the half-life of encapsidated pgRNA in DHBV-replicating chicken hepatoma cells (21). Moreover, the fate of viral DNA replication intermediates or nucleocapsids in the IFN-treated hepatocytes was not investigated in the previous studies.To further define the target(s) of IFN-α and -γ in the HBV life cycle and to create a robust cell culture system for the identification of IFN-stimulated genes (ISGs) that mediate the antiviral response of the cytokines (25), we established an immortalized murine hepatocyte (AML-12)-derived stable cell line that supported a high level of HBV replication in a tetracycline-inducible manner. Consistent with previous reports, we show that both IFN-α and IFN-γ potently inhibited HBV replication in murine hepatocytes (37, 40). With the help of small molecules that inhibit HBV capsid assembly (Bay-4109) (7, 47) and prevent the incorporation of pgRNA into nucleocapsids (AT-61) (9, 29), we obtained evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings provide a basis for further studies toward better understanding of IFN′s antiviral mechanism, which might ultimately lead to the development of strategies to improve the efficacy of IFN therapy of chronic hepatitis B.  相似文献   

10.
Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.Cap-dependent translation initiation in eukaryotes is a complex process involving many factors and serves as the primary mechanism for eukaryotic translation (37, 44). The first step in the initiation process, recruitment of the m7G (7-methylguanosine)-capped mRNA to the ribosome, is widely considered the rate-limiting step. It begins with recognition of and binding to the m7G cap at the 5′ end of the mRNA by the eukaryotic translation initiation factor 4F (eIF4F) complex, which contains three proteins: eIF4E (a cap-binding protein), eIF4G (a scaffold protein with RNA binding sites), and eIF4A (an RNA helicase). eIF4G''s interaction with eIF3, itself a multisubunit complex that interacts with the 40S ribosome, facilitates the actual recruitment of capped RNA to the ribosome. With the help of several other initiation factors, the small ribosomal subunit scans the mRNA from 5′ to 3′ until a translation initiation codon (AUG) in appropriate context is identified and an 80S ribosomal complex is formed, after which the first peptide bond is formed, thus ending the initiation process (37, 44). The AUG context can play an important role in the efficiency of translation initiation (23, 44). The length, structure, and presence of AUGs or open reading frames in the mRNA 5′ untranslated region (UTR) can negatively affect cap-dependent translation and ribosomal scanning. In general, long and highly structured 5′ UTRs, as well as upstream AUGs leading to short open reading frames, can impede ribosome scanning and lead to reduced translation (23, 44). In addition, 5′ UTRs less than 10 nucleotides (nt) in length are thought to be too short to enable preinitiation complex assembly and scanning (24). Thus, several attributes of the mRNA 5′ UTR are known to negatively affect translation initiation, whereas only the AUG context and the absence of negative elements are known to have a positive effect on translation initiation (44).Two of the important mRNA features associated with cap-dependent translation, the cap and the 5′ UTR, are significantly altered by an RNA processing event known as spliced leader (SL) trans splicing (3, 8, 17, 26, 36, 47). This takes place in members of a diverse group of eukaryotic organisms, including some protozoa, sponges, cnidarians, chaetognaths, flatworms, nematodes, rotifers, crustaceans, and tunicates (17, 28, 39, 55, 56). In SL trans splicing, a separately transcribed small exon (16 to 51 nucleotides [nt]) with its own cap gets added to the 5′ end of pre-mRNAs. This produces mature mRNAs with a unique cap and a conserved sequence in the 5′ UTR. In metazoa, the m7G cap is replaced with a trimethylguanosine (TMG) cap (m2,2,7GpppN) (27, 30, 46, 49). In nematodes, ∼70% of all mRNAs are trans spliced and therefore have a TMG cap and an SL (2). In general, eukaryotic eIF4E proteins do not effectively recognize the TMG cap (35). This raises the issues of how the translation machinery in trans-splicing metazoa effectively recognizes TMG-capped trans-spliced mRNAs, what role the SL sequence plays in translation initiation, and how the conserved translation initiation machinery has adapted to effectively translate trans-spliced mRNAs.Previous work has shown that efficient translation of TMG-capped messages in nematodes requires the SL sequence (22 nt) immediately downstream of the cap (5, 25, 29). In the current studies, we sought to understand the manner in which the SL enhanced the translation of TMG-capped mRNAs. Using a cell-free nematode in vitro translation system, we carried out mutational analyses that define the specific sequences in the SL that are required and sufficient for efficient translation of TMG-capped mRNAs. These analyses led to the discovery of a small, discrete stem-loop immediately adjacent to the TMG cap in trans-spliced messages required for efficient translation. Notably, the sequences involved in the base pairing of the stem are highly conserved in alternative SL sequences found in nematodes. We further show that the nematode eIF4E/G complex plays a major role in facilitating the SL enhancement of TMG-capped mRNA that likely occurs after the initial cap-binding step. The results demonstrate the importance of specific enhancing elements in the 5′ UTR and adaptation in the eIF4F complex necessary for optimal cap-dependent translation.  相似文献   

11.
DNA double-strand breaks can result from closely opposed breaks induced directly in complementary strands. Alternatively, double-strand breaks could be generated during repair of clustered damage, where the repair of closely opposed lesions has to be well coordinated. Using single and multiple mutants of Saccharomyces cerevisiae (budding yeast) that impede the interaction of DNA polymerase δ and the 5′-flap endonuclease Rad27/Fen1 with the PCNA sliding clamp, we show that the lack of coordination between these components during long-patch base excision repair of alkylation damage can result in many double-strand breaks within the chromosomes of nondividing haploid cells. This contrasts with the efficient repair of nonclustered methyl methanesulfonate-induced lesions, as measured by quantitative PCR and S1 nuclease cleavage of single-strand break sites. We conclude that closely opposed single-strand lesions are a unique threat to the genome and that repair of closely opposed strand damage requires greater spatial and temporal coordination between the participating proteins than does widely spaced damage in order to prevent the development of double-strand breaks.Endogenous metabolism or environmental factors such as oxidizing and alkylating agents can produce a wide variety of lesions in DNA. The genomes of mammalian cells experience from 10,000 to as many as 200,000 modifications per day (37, 44). Most lesions are repaired by a complex network of proteins that are part of an elaborate, multistep base excision repair (BER) system that generates single-strand break (SSB) intermediates. Importantly, defects in BER can lead to malignancies and can be associated with age-associated disease, especially neurodegeneration (60).BER is initiated by specific DNA N-glycosylases that remove damaged bases, yielding apurinic/apyrimidinic (AP) sites. Subsequent incision by AP endonucleases results in SSBs, and excision results in a single base gap as a repair intermediate (33, 53). SSBs are expected to be frequent in the genome due to the abundance of base damage as well as intermediates of repair, recombination, replication, and other DNA transactions (15, 16). Because they are generally repaired efficiently by BER and SSB repair enzymes (16, 57), SSBs per se may not be a major source of genome instability. However, if lesions are clustered, the formation of two closely spaced SSBs on opposing strands (or a single SSB and a modified nucleotide or AP site) might pose a special risk in terms of the potential to generate mutations or the possibility of conversion to double-strand breaks (DSBs), which are potent genotoxic lesions. Clustered lesions can arise within cells by chance association of random DNA lesions in a small region or the induction of multiple events in a narrow region, as found for ionizing radiation and various chemicals, such as those used in cancer treatments (47, 58, 59). While efficient BER is important for genome integrity, the repair must be well coordinated to avoid the generation of closely opposed SSB intermediates at closely spaced lesions that could result in the secondary generation of DSBs, especially since cells have limited DSB repair capacity (<50 DSBs/cell in the case of Saccharomyces cerevisiae) (48). While the impact of clustered lesions on repair of DNA has been examined in vitro by use of purified enzymes or cell extracts (13, 14, 27, 39, 56), there has been little opportunity to address specifically the repair of clustered lesions, except for those arising from UV damage (49).Whether formed directly from sugar damage or as BER intermediates, SSBs formed during the repair of base damage often possess 5′-deoxyribose phosphate (5′-dRP) ends that are not suitable for rejoining by DNA ligases (9, 15). In humans, removal and repair of 5′-dRP are accomplished by different combinations of proteins (3, 15) that result in short-patch repair, involving replacement of a single nucleotide (nt), or long-patch repair, involving 2 to 10 nt. The budding yeast Saccharomyces cerevisiae lacks a DNA polymerase β that provides AP lyase activity required for short-patch repair in mammalian cells. Instead, removal and repair of a 5′-dRP rely on the long-patch pathway, involving the successive actions of DNA polymerase δ (Pol δ) for strand displacement, the Rad27/Fen1 endonuclease to remove 5′ flaps, and DNA ligase (Cdc9) to rejoin the resulting nicks (9). The sliding clamp protein PCNA, which interacts with all three players, has been proposed to play a central role in coordinating these processes (18, 19, 34). The coupling between the strand displacement reaction by Pol δ and the flap cutting reaction by Fen1 is highly efficient, with over 90% of the products released by Fen1 being mononucleotides (17).Although the coordination of Pol δ, PCNA, and Rad27/Fen1 provides efficient processing of individual lesions in DNA, closely opposed SSBs that arise during repair of base damage could manifest as DSBs, either directly or as a result of SSB processing. A DNA damaging agent that has been used frequently to characterize long- and short-patch BER is methyl methanesulfonate (MMS). Recently, we described the detection of closely opposed MMS-induced lesions in yeast (42). Since the closely opposed lesions might represent a special challenge to BER, we considered the possibility that they might specifically impact long-patch repair through Pol δ and/or coordination of events with Rad27/Fen1. Pol δ of S. cerevisiae is a heterotrimeric enzyme consisting of Pol3, Pol31, and Pol32 (23). The nonessential Pol32 subunit is involved in translesion DNA synthesis (TLS) (24, 30) and also break-induced replication (41). However, its role in other types of DNA repair remains unclear. Using our in vivo assay for specifically detecting closely spaced methylated DNA lesions (42) and SSBs, we examined the role of Pol32 as well as the cooperation between Pol δ, Rad27/Fen1, and PCNA in the repair of clustered DNA lesions induced by MMS in G1 stationary-phase haploid yeast. We found that Pol32 plays an important role in ensuring that clustered lesions are efficiently repaired and do not transition to DSBs.  相似文献   

12.
13.
14.
The positive-strand RNA genome of Japanese encephalitis virus (JEV) terminates in a highly conserved 3′-noncoding region (3′NCR) of six domains (V, X, I, II-1, II-2, and III in the 5′-to-3′ direction). By manipulating the JEV genomic RNA, we have identified important roles for RNA elements present within the 574-nucleotide 3′NCR in viral replication. The two 3′-proximal domains (II-2 and III) were sufficient for RNA replication and virus production, whereas the remaining four (V, X, I, and II-1) were dispensable for RNA replication competence but required for maximal replication efficiency. Surprisingly, a lethal mutant lacking all of the 3′NCR except domain III regained viability through pseudoreversion by duplicating an 83-nucleotide sequence from the 3′-terminal region of the viral open reading frame. Also, two viable mutants displayed severe genetic instability; these two mutants rapidly developed 12 point mutations in domain II-2 in the mutant lacking domains V, X, I, and II-1 and showed the duplication of seven upstream sequences of various sizes at the junction between domains II-1 and II-2 in the mutant lacking domains V, X, and I. In all cases, the introduction of these spontaneous mutations led to an increase in RNA production that paralleled the level of protein accumulation and virus yield. Interestingly, the mutant lacking domains V, X, I, and II-1 was able to replicate in hamster BHK-21 and human neuroblastoma SH-SY5Y cells but not in mosquito C6/36 cells, indicating a cell type-specific restriction of its viral replication. Thus, our findings provide the basis for a detailed map of the 3′ cis-acting elements in JEV genomic RNA, which play an essential role in viral replication. They also provide experimental evidence for the function of 3′ direct repeat sequences and suggest possible mechanisms for the emergence of these sequences in the 3′NCR of JEV and perhaps in other flaviviruses.Japanese encephalitis virus (JEV), a mosquito-borne flavivirus of the family Flaviviridae, is serologically related to several significant human pathogens, including West Nile virus (WNV), Kunjin virus (KUNV), St. Louis encephalitis virus, and Murray Valley encephalitis virus. It is also phylogenetically close to other clinically important human pathogens, including yellow fever virus (YFV) and dengue virus (DENV) (11, 67). JEV is the leading cause of viral encephalitis in Southeast Asia, including China, Japan, Korea, the Philippines, Thailand, and India, and it has begun to expand throughout the Indonesian archipelago and as far as Australia (21, 43). Despite the fact that JEV is generally asymptomatic, ∼50,000 cases are reported annually, and the disease has a mortality rate of ∼25%, mainly in children and young adults (29, 63). Thus, the geographic expansion and clinical importance of JEV infection have drawn increasing attention from the international public health community (44, 71).Like other flaviviruses, JEV is a spherical enveloped virus (∼50 nm diameter) with a single-stranded positive-sense RNA genome that contains a 5′ cap structure but lacks a 3′ polyadenylated tail. Its genomic RNA of ∼11,000 nucleotides (nt) consists of a single long open reading frame (ORF) with two noncoding regions (NCRs) at the 5′ and 3′ ends (41, 84). The ORF is translated into an ∼3,400-amino acid polyprotein precursor, which is co- or posttranslationally cleaved by a cellular protease(s) or a viral protease complex into 10 mature proteins: (i) three structural proteins, the capsid (C), premembrane (prM; which is further processed into pr and M), and envelope (E) proteins; and (ii) seven nonstructural proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5, as arranged in the genome (13, 41, 84). The nonstructural proteins, together with cellular factors, form a viral replicase complex that directs the replication of the genomic RNA in the cytoplasm of the host cell in association with perinuclear membranes (40, 74). For the synthesis of the genomic RNA to take place, this replicase complex must specifically recognize viral cis-acting RNA elements, defined by primary sequences or secondary/tertiary structures. These RNA elements are found in various locations within the genome but most frequently are located in the 5′- and 3′NCRs (23, 47). The identification and characterization of these cis-acting RNA elements is critical for understanding the complete cycle of JEV genome replication.The availability of the complete nucleotide sequence of YFV genomic RNA (57) has led to the identification of three major conserved elements in the 5′- and 3′-terminal regions of the genomic RNA that contain the short primary sequences and secondary structures required for flavivirus RNA replication. (i) Both ends of the genomic RNA terminate with the conserved dinucleotides 5′-AG and CU-3′ (9, 10, 32, 45, 57, 72, 73) in all flaviviruses except an insect cell fusing agent virus (12). Mutations substituting another nucleotide for one of these four nucleotides in KUNV or WNV replicon RNA are known to abolish or compromise RNA replication (35, 69). (ii) A 3′ stem-loop structure (3′SL) has been recognized in all flaviviruses within the ∼90-nt 3′-terminal region of the genomic RNA (9, 45, 57). The structural and functional importance of this 3′SL in RNA replication has been demonstrated in several flaviviruses (9, 18, 49, 50, 61, 70, 82, 86). (iii) The presence of short 5′ and 3′ cyclization sequences (5′CYC and 3′CYC, respectively) in all mosquito-borne flaviviruses suggests that flavivirus genomes can cyclize via 5′-3′ long-range base-pairing interaction, since the 3′CYC upstream of the 3′SL is complementary to the 5′CYC in the 5′ coding region of the C protein (30). The role of these CYC motifs in RNA replication has been well characterized via cell-based assays in many mosquito-borne flaviviruses, including KUNV (34), WNV (42), YFV (8, 14), and DENV (2, 22, 49), and in cell-free systems in the case of WNV (51) and DENV (1, 3, 79, 80). Other RNA elements that have recently been shown to be important for RNA replication in DENV and WNV include an additional pair of complementary sequences (designated 5′- and 3′UARs) that participate in genome cyclization (3, 4, 17, 87) and a 5′ stem-loop structure (designated 5′SLA) present within the 5′NCR that promotes RNA synthesis in association with the 3′NCR (22).In all flaviviruses, the 3′NCR of the genomic RNA is relatively long (∼400 to ∼800 nt), with an array of conserved primary sequences and secondary structures. Although significant progress has been made in identifying cis-acting elements within the 3′NCRs that are essential for RNA replication, most of these elements (i.e., the 3′CYC, 3′SL, and CU-3′) are limited to the ∼100-nt 3′-terminal region that is highly conserved in these viruses (see recent reviews in references 23 and 47). However, the functional importance of the remaining 5′-proximal region of the 3′NCR, which differs in sequence between the various serological groups, is poorly understood. In particular, comparative sequence analyses and genetic algorithm-based computer modeling have suggested that in addition to the well-studied ∼100-nt 3′-proximal region, the remaining ∼474-nt 5′-proximal region of the 574-nt JEV 3′NCR also contains several RNA elements that may play critical roles in the viral life cycle (52, 55, 56, 68). To date, however, experimental evidence for the functional importance of these potential RNA elements in JEV genomic RNA replication is lacking.In the present study, we have identified and characterized the 3′ cis-acting RNA elements within the JEV 3′NCR and shown that they play an essential and/or regulatory role in genomic RNA replication. In particular, we have constructed and functionally characterized genome-length JEV mutant cDNAs with a series of 5′-to-3′ or 3′-to-5′ progressive deletions within the 3′NCR. In addition to identifying particular mutations within this region that affect either the competence or efficiency of genomic RNA replication, we found that the serial passaging of these mutants in susceptible BHK-21 cells produced a large number of pseudorevertants bearing a wide variety of spontaneous point mutations and sequence duplications, some of which were capable of restoring the replication competence of the defective mutants or enhancing replication efficiency. In addition, we assessed the replication of these mutants in three different cell types (BHK-21, SH-SY5Y, and C6/36 cells). Collectively, these data offer new insights into the functional importance of 3′ cis-acting RNA elements that regulate the cell type-dependent replication of JEV and perhaps other closely related mosquito-borne flaviviruses. Our findings also provide experimental evidence for the emergence of functional 3′ direct repeat sequences that are duplicated from the coding region and 3′NCR of JEV genomic RNA.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号