共查询到20条相似文献,搜索用时 0 毫秒
1.
A Matsui H Yokoo Y Negishi Y Endo-Takahashi NA Chun I Kadouchi R Suzuki K Maruyama Y Aramaki K Semba E Kobayashi M Takahashi T Murakami 《PloS one》2012,7(8):e44080
Background
Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1), recruits immature myeloid-derived cells and enhances early tumor progression.Methodology/Principal Findings
CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b+Gr1+ myeloid-derived cells at tumor sites in mice and promoted CD31+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b+Gr1highF4/80− cells (∼90%) with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b+Gr1+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation.Conclusions/Significance
These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis. 相似文献2.
Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells 总被引:12,自引:0,他引:12
Shojaei F Wu X Malik AK Zhong C Baldwin ME Schanz S Fuh G Gerber HP Ferrara N 《Nature biotechnology》2007,25(8):911-920
Vascular endothelial growth factor (VEGF) is an essential regulator of normal and abnormal blood vessel growth. A monoclonal antibody (mAb) that targets VEGF suppresses tumor growth in murine cancer models and human patients. We investigated cellular and molecular events that mediate refractoriness of tumors to anti-angiogenic therapy. Inherent anti-VEGF refractoriness is associated with infiltration of the tumor tissue by CD11b+Gr1+ myeloid cells. Recruitment of these myeloid cells is also sufficient to confer refractoriness. Combining anti-VEGF treatment with a mAb that targets myeloid cells inhibits growth of refractory tumors more effectively than anti-VEGF alone. Gene expression analysis in CD11b+Gr1+ cells isolated from the bone marrow of mice bearing refractory tumors reveals higher expression of a distinct set of genes known to be implicated in active mobilization and recruitment of myeloid cells. These findings indicate that, in our models, refractoriness to anti-VEGF treatment is determined by the ability of tumors to prime and recruit CD11b+Gr1+ cells. 相似文献
3.
Background
Tuberculosis is one of the world’s leading killers, stealing 1.4 million lives and causing 8.7 million new and relapsed infections in 2011. The only vaccine against tuberculosis is BCG which demonstrates variable efficacy in adults worldwide. Human infection with Mycobacterium tuberculosis results in the influx of inflammatory cells to the lung in an attempt to wall off bacilli by forming a granuloma. Gr1intCD11b+ cells are called myeloid-derived suppressor cells (MDSC) and play a major role in regulation of inflammation in many pathological conditions. Although MDSC have been described primarily in cancer their function in tuberculosis remains unknown. During M. tuberculosis infection it is crucial to understand the function of cells involved in the regulation of inflammation during granuloma formation. Understanding their relative impact on the bacilli and other cellular phenotypes is necessary for future vaccine and drug design.Methodology/Principal Findings
We compared the bacterial burden, lung pathology and Gr1intCD11b+ myeloid-derived suppressor cell immune responses in M. tuberculosis infected NOS2-/-, RAG-/-, C3HeB/FeJ and C57/BL6 mice. Gr-1+ cells could be found on the edges of necrotic lung lesions in NOS2-/-, RAG-/-, and C3HeB/FeJ, but were absent in wild-type mice. Both populations of Gr1+CD11b+ cells expressed high levels of arginase-1, and IL-17, additional markers of myeloid derived suppressor cells. We then sorted the Gr1hi and Gr1int populations from M. tuberculosis infected NOS-/- mice and placed the sorted both Gr1int populations at different ratios with naïve or M. tuberculosis infected splenocytes and evaluated their ability to induce activation and proliferation of CD4+T cells. Our results showed that both Gr1hi and Gr1int cells were able to induce activation and proliferation of CD4+ T cells. However this response was reduced as the ratio of CD4+ T to Gr1+ cells increased. Our results illustrate a yet unrecognized interplay between Gr1+ cells and CD4+ T cells in tuberculosis. 相似文献4.
Zhao-Hua Zhou Elena Karnaukhova Mohsen Rajabi Kelly Reeder Trina Chen Subhash Dhawan Steven Kozlowski 《PloS one》2014,9(4)
Oversulfated chondroitin sulfate (OSCS), a member of the glycosaminoglycan (GAG) family, was a contaminant in heparin that was linked to the 2008 heparin adverse events in the US. Because of its highly negative charge, OSCS can interact with many components of the contact and immune systems. We have previously demonstrated that OSCS inhibited the complement classical pathway by binding C1 inhibitor and potentiating its interaction with C1s. In the present study, by using surface plasmon resonance, we found OSCS interacts with T cell chemokines that can impact adaptive immunity. The binding of OSCS to stromal cell-derived factor-1 (SDF-1) chemokines, SDF-1α and SDF-1β, caused a significant change in the secondary structures of these chemokines as detected by far-ultraviolet circular dichroism spectra analysis. Functionally, OSCS binding profoundly inhibited SDF-1-induced calcium mobilization and T cell chemotaxis. Imaging flow cytometry revealed T cell morphological changes mediated by SDF-1α were completely blocked by OSCS. We conclude that the OSCS, a past contaminant in heparin, has broad interactions with the components of the human immune system beyond the contact and complement systems, and that may explain, in part, prior OSCS-related adverse events, while suggesting potentially useful therapeutic applications for related GAGs in the control of inflammation. 相似文献
5.
Ryzhov S Novitskiy SV Goldstein AE Biktasova A Blackburn MR Biaggioni I Dikov MM Feoktistov I 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(11):6120-6129
Extracellular adenosine and purine nucleotides are elevated in many pathological situations associated with the expansion of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs). Therefore, we tested whether adenosinergic pathways play a role in MDSC expansion and functions. We found that A(2B) adenosine receptors on hematopoietic cells play an important role in accumulation of intratumoral CD11b(+)Gr1(high) cells in a mouse Lewis lung carcinoma model in vivo and demonstrated that these receptors promote preferential expansion of the granulocytic CD11b(+)Gr1(high) subset of MDSCs in vitro. Flow cytometry analysis of MDSCs generated from mouse hematopoietic progenitor cells revealed that the CD11b(+)Gr-1(high) subset had the highest levels of CD73 (ecto-5'-nucleotidase) expression (Δmean fluorescence intensity [MFI] of 118.5 ± 16.8), followed by CD11b(+)Gr-1(int) (ΔMFI of 57.9 ± 6.8) and CD11b(+)Gr-1(-/low) (ΔMFI of 12.4 ± 1.0) subsets. Even lower levels of CD73 expression were found on Lewis lung carcinoma tumor cells (ΔMFI of 3.2 ± 0.2). The high levels of CD73 expression in granulocytic CD11b(+)Gr-1(high) cells correlated with high levels of ecto-5'-nucleotidase enzymatic activity. We further demonstrated that the ability of granulocytic MDSCs to suppress CD3/CD28-induced T cell proliferation was significantly facilitated in the presence of the ecto-5'-nucleotidase substrate 5'-AMP. We propose that generation of adenosine by CD73 expressed at high levels on granulocytic MDSCs may promote their expansion and facilitate their immunosuppressive activity. 相似文献
6.
Yutaka Kofuku Chie Yoshiura Takumi Ueda Hiroaki Terasawa Takahiro Hirai Sae Tominaga Masako Hirose Yoshitake Maeda Hideo Takahashi Yuya Terashima Kouji Matsushima Ichio Shimada 《The Journal of biological chemistry》2009,284(50):35240-35250
The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its G-protein-coupled receptor (GPCR) CXCR4 play fundamental roles in many physiological processes, and CXCR4 is a drug target for various diseases such as cancer metastasis and human immunodeficiency virus, type 1, infection. However, almost no structural information about the SDF-1-CXCR4 interaction is available, mainly because of the difficulties in expression, purification, and crystallization of CXCR4. In this study, an extensive investigation of the preparation of CXCR4 and optimization of the experimental conditions enables NMR analyses of the interaction between the full-length CXCR4 and SDF-1. We demonstrated that the binding of an extended surface on the SDF-1 β-sheet, 50-s loop, and N-loop to the CXCR4 extracellular region and that of the SDF-1 N terminus to the CXCR4 transmembrane region, which is critical for G-protein signaling, take place independently by methyl-utilizing transferred cross-saturation experiments along with the usage of the CXCR4-selective antagonist AMD3100. Furthermore, based upon the data, we conclude that the highly dynamic SDF-1 N terminus in the 1st step bound state plays a crucial role in efficiently searching the deeply buried binding pocket in the CXCR4 transmembrane region by the “fly-casting” mechanism. This is the first structural analyses of the interaction between a full-length GPCR and its chemokine, and our methodology would be applicable to other GPCR-ligand systems, for which the structural studies are still challenging. 相似文献
7.
The targeted migration of neural stem/progenitor cells (NSPCs) is a prerequisite for the use of stem cell therapy in the treatment of pathologies. This migration is regulated mainly by C-X-C motif chemokine 12 (CXCL12). Therefore, promotion of the migratory responses of grafted cells by upregulating CXCL12 signaling has been proposed as a strategy for improving the efficacy of such cell therapies. However, the effects of this strategy on brain tumors have not yet been examined in vivo. The aim of the present study was thus to elucidate the effects of grafted rat green fluorescent protein (GFP)–labeled NSPCs (GFP-NSPCs) with CXCL12 enhancement on a model of spontaneous rat brain tumor induced by N-ethyl-N-nitrosourea. T2-weighted magnetic resonance imaging was applied to determine the changes in tumor volume and morphology over time. Postmortem histology was performed to confirm the tumor pathology, expression levels of CXCL12 and C-X-C chemokine receptor type 4, and the fate of GFP-NSPCs. The results showed that the tumor volume and hypointense areas of T2-weighted images were both significantly increased in animals treated with combined NSPC transplantation and CXCL12 induction, but not in control animals or in those with tumors that received only one of the treatments. GFP-NSPCs appear to migrate toward tumors with CXCL12 enhancement and differentiate uniquely into a neuronal lineage. These findings suggest that CXCL12 is an effective chemoattractant that facilitates exogenous NSPC migration toward brain tumors and that CXCL12 and NSPC can act synergistically to promote tumor progression with severe hemorrhage. 相似文献
8.
Nobuyuki Kuribayashi Daisuke Uchida Makoto Kinouchi Natsumi Takamaru Tetsuya Tamatani Hirokazu Nagai Youji Miyamoto 《PloS one》2013,8(11)
We have demonstrated that blocking CXCR4 may be a potent anti-metastatic therapy for CXCR4-related oral cancer. However, as CXCR4 antagonists are currently in clinical use to induce the mobilization of hematopoietic stem cells, continuous administration as an inhibitor for the metastasis may lead to persistent leukocytosis. In this study, we investigated the novel therapeutic downstream target(s) of the SDF-1/CXCR4 system, using B88-SDF-1 cells, which have an autocrine SDF-1/CXCR4 system and exhibit distant metastatic potential in vivo. Microarray analysis revealed that 418 genes were upregulated in B88-SDF-1 cells. We identified a gene that is highly upregulated in B88-SDF-1 cells, metabotropic glutamate receptor 5 (mGluR5), which was downregulated following treatment with 1,1’ -[1,4-Phenylenebis(methylene)]bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist. The upregulation of mGluR5 mRNA in the SDF-1/CXCR4 system was predominately regulated by the Ras-extracellular signal-regulated kinase (ERK)1/2 pathway. Additionally, the growth of B88-SDF-1 cells was not affected by the mGluR5 agonist (S)-3,5-DHPG (DHPG) or the mGluR5 antagonists 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP). However, we observed that DHPG promoted B88-SDF-1 cell migration, whereas both MPEP and MTEP inhibited B88-SDF-1 cell migration. To assess drug toxicity, the antagonists were intraperitoneally injected into immunocompetent mice for 4 weeks. Mice injected with MPEP (5 mg/kg) and MTEP (5 mg/kg) did not exhibit any side effects, such as hematotoxicity, allergic reactions or weight loss. The administration of antagonists significantly inhibited the metastasis of B88-SDF-1 cells to the lungs of nude mice. These results suggest that blocking mGluR5 with antagonists such as MPEP and MTEP could prevent metastasis in CXCR4-related oral cancer without causing side effects. 相似文献
9.
Kentaro Uchida Kouji Naruse Masashi Satoh Kenji Onuma Masaki Ueno Shotaro Takano Ken Urabe Masashi Takaso 《Experimental Animals》2013,62(3):255-265
Although recent studies suggest that hyperlipidemia is a risk factor for osteoarthritis
(OA), the link between OA and hyperlipidemia is not fully understood. As the number of
activated, circulating myeloid cells is increased during hyperlipidemia, we speculate that
myeloid cells contribute to the pathology of OA. Here, we characterized myeloid cells in
STR/Ort mice, a murine osteoarthritis model, under hyperlipidemic conditions. Ratios of
myeloid cells in bone marrow, the spleen, and peripheral blood were determined by flow
cytometry. To examine the influence of the hematopoietic environment, including abnormal
stem cells, on the hematopoietic profile of STR/Ort mice, bone marrow transplantations
were performed. The relationship between hyperlipidemia and abnormal hematopoiesis was
examined by evaluating biochemical parameters and spleen weight of F2 animals
(STR/Ort x C57BL/6J). In STR/Ort mice, the ratio of CD11b+Gr1+ cells
in spleens and peripheral blood was increased, and CD11b+Gr1+ cells
were also present in synovial tissue. Splenomegaly was observed and correlated with the
ratio of CD11b+Gr1+ cells. When bone marrow from GFP-expressing mice
was transplanted into STR/Ort mice, no difference in the percentage of
CD11b+Gr1+ cells was observed between transplanted and age-matched
STR/Ort mice. Analysis of biochemical parameters in F2 mice showed that spleen
weight correlated with serum total cholesterol. These results suggest that the increase in
circulating and splenic CD11b+Gr1+ cells in STR/Ort mice originates
from hypercholesterolemia. Further investigation of the function of
CD11b+Gr1+ cells in synovial tissue may reveal the pathology of OA
in STR/Ort mice. 相似文献
10.
Sook-Kyoung Heo Eui-Kyu Noh Dong-Joon Yoon Jae-Cheol Jo Yunsuk Choi SuJin Koh Jin Ho Baek Jae-Hoo Park Young Joo Min Hawk Kim 《PloS one》2015,10(6)
Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the second-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm) in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics. 相似文献
11.
p38 Mitogen-Activated Protein Kinase Functionally Contributes to Chondrogenesis Induced by Growth/Differentiation Factor-5 in ATDC5 Cells 总被引:15,自引:0,他引:15
Koji Nakamura Takuhiro Shirai Setsuo Morishita Sanae Uchida Kazuko Saeki-Miura Fusao Makishima 《Experimental cell research》1999,250(2):351-363
Recent studies of intracellular signal transduction mechanisms for the transforming growth factor-beta (TGF-beta) superfamily have focused on Smad proteins, but have paid little attention to mitogen-activated protein (MAP) kinase cascades. Here we demonstrate that growth/differentiation factor-5 (GDF-5), but neither bone morphogenetic protein-2 (BMP-2) nor TGF-beta1, fully promotes the early phase of the chondrogenic response by inducing cellular condensation followed by cartilage nodule formation in a mouse chondrogenic cell line, ATDC5. We investigated which, if any, of the three major types of MAP kinase plays a functional role in the promotion of chondrogenesis induced by GDF-5. GDF-5 induced phosphorylation of p38 MAP kinase and extracellular signal-regulated kinase (ERK) but not that of c-Jun N-terminal kinase (JNK). The phosphorylation of p38 MAP kinase was also induced by BMP-2 and TGF-beta1. An inhibitor of p38 and p38 beta MAP kinase, SB202190, showed complete inhibition of cartilage nodule formation but failed to affect alkaline phosphatase (ALP) activity induced by GDF-5. Expression of the type II collagen gene, a hallmark of chondrogenesis in vertebrates, was also induced by GDF-5 treatment and strongly suppressed by SB202190. On the other hand, although an inhibitor of MAP/ERK kinase, PD98059, inhibited the rapid phosphorylation of ERK by GDF-5, it inhibited neither ALP activity nor cartilage nodule formation induced by GDF-5. These results strongly suggest that the p38 MAP kinase cascade is involved in GDF-5 signaling pathways and that a role of the p38 MAP kinase pathway is necessary over a longer period to promote chondrogenesis in ATDC5 cells. 相似文献
12.
13.
Background
Agonist antibodies against CD137 (4–1BB) on T lymphocytes are used to increase host anti-tumor immunity, but often leading to severe liver injury in treated mice or in patients during clinical trials. Interleukin-6 (IL-6) has been reported to protect hepatocyte death, but the role of IL-6 in protecting chronic T cell-induced liver diseases is not clearly defined due to lack of relevant animal models. We aimed to define the role of IL-6 in CD8+ T cell-mediated liver injury induced by a CD137 agonistic mAb (clone 2A) in mice.Methods/Principal Findings
We expressed IL-6 in the liver by hydrodynamic gene delivery in mice treated with 2A or control mAb and studied how IL-6 treatment affected host immunity and T cell-mediated liver injury. We found that ectopic IL-6 expression in the liver elevated intrahepatic leukocyte infiltration but prevented CD8+ T cell-mediated liver injury. In IL-6 treated mice, CD8+ T cells proliferation and IFN-γ expression were inhibited in the liver. We discovered that IL-6 increased accumulation of Gr-1+CD11b+ myeloid derived suppressor cells (MDSCs) in the liver and spleen. These MDSCs had the ability to inhibit T cells proliferation and activation. Finally, we showed that the MDSCs were sufficient and essential for IL-6-mediated protection of anti-CD137 mAb-induced liver injury.Conclusions/Significance
We concluded that IL-6 induced Gr-1+CD11b+ MDSCs in the liver to inhibit T cell-mediated liver injury. The findings have defined a novel mechanism of IL-6 in protecting liver from CD8+ T cell-mediated injury. 相似文献14.
Yulin Chen Ying Jian Minjie Liu Liang Zhong Fang Zhang Weifeng Yang Zhao Xu Guofan Chen Yuhua Liu 《PloS one》2014,9(9)
Accumulating evidence indicates that both defects in Treg numbers and/or function as well as resistance of effector T cells to suppression may contribute to the development of human chronic inflammatory diseases. However, which mechanism involved in the progression of atherosclerosis remains unclear. In this study, we evaluated the production and function of CD4+ inflammatory and regulatory T cells in atherosclerosis-prone mice. We found that the hyperactivity and unresponsiveness to Treg-mediated suppression of inflammatory CD4+ T cells occurred in the progression of atherosclerosis, though Treg cells were present in very large numbers and fully functional. We further found that Gr-1+CD11b+ immature myeloid cells were significantly accumulated in atherosclerotic Apo E−/− mice, and they promoted resistance of inflammatory CD4+ T cells to Treg-mediated suppression in vitro and in vivo. we further confirmed that Gr-1+CD11b+ immature myeloid cells produced high level of interleukin 6 which was at least partially responsible for inducing unresponsiveness of inflammatory CD4+ T cells to suppression via activation of Jak/Stat signaling pathway. Taken together, these findings might provide new insights to explore potential targets for immune therapeutic intervention in atherosclerosis. 相似文献
15.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response. 相似文献
16.
Michael Nowak Mohammed S. Arredouani Adrian Tun-Kyi Ingo Schmidt-Wolf Martin G. Sanda Steven P. Balk Mark A. Exley 《PloS one》2010,5(6)
Numerical and functional defects of invariant natural killer T cells (iNKT) have been documented in human and mouse cancers, resulting in a defect in IFN production in several malignancies. iNKT cells recognize glycolipids presented on CD1d molecules by dendritic and related cells, leading to their activation and thereby regulating immune reactions. Activated iNKT cells cytokine secretion and cytotoxicity can inhibit existing and spontaneous tumor growth, progression, and metastasis. We have identified functional iNKT cell defects in the murine TRAMP prostate cancer model. We found that iNKT cells show the ability to migrate into TRAMP prostate tumors. This infiltration was mediated through CCL2: CCR5 chemokine: receptor interaction. Prostate tumor cells expressing CD1d partially activated iNKT cells, as appreciated by up-regulation of CD25, PD-1 and the IL-12R. However, despite inducing up-regulation of these activation markers and, hence, delivering positive signals, prostate tumor cells inhibited the IL-12-induced STAT4 phosphorylation in a cell-cell contact dependent but CD1d-independent manner. Consequently, tumor cells did not induce secretion of IFNγ by iNKT cells. Blocking the inhibitory Ly49 receptor on iNKT cells in the presence of α-GalCer restored their IFNγ production in vivo and in vitro. However, Ly49 blockade alone was not sufficient. Importantly, this defect could be also be reversed into vigorous secretion of IFNγ by the addition of both IL-12 and the exogenous CD1d ligand alpha-galactosylceramide, but not by IL-12 alone, both in vivo and in vitro. These data underscore the potential to optimize iNKT-based therapeutic approaches. 相似文献
17.
Didier Hober Donat de Groote Nathalie Vanpouille Isabelle Dehart Lu Shen Pierre Wattr Michle Maniez-Montreuil 《Microbiology and immunology》1994,38(12):1005-1008
We investigated whether HIV-1 can regulate tumor necrosis factor receptor (TNFR) expression in SupT-1, a CD4 + T-cell line. The cells were infected with HIV-1 containing 1,000 cpm RT activity, as early as day 3 after infection and all along the culture the supernatant level of core protein p24 was >250 pg/ml, and on days 6 and 9 after infection, p24 was found in 10 % of the cells as determined by indirect immunofluorescence assay. The cells were growing without loss of viability. The study of TNFR expression was based on a microassay for measurement of binding of 125I-TNFα to cells, in which free and cell-bound ligand separation was performed by centrifugation through oil. Scatchard analysis of TNFα binding on days 6 and 9 after infection revealed a 90 % increase in the expression of high-affinity membrane receptors in HIV + SupT-1 culture compared with uninfected cells (mean +/-S.D. = 501 +/-148.5 vs. 263 +/-77.8 receptors/cell, n = 9, P< 0.001) with no change in dissociation constants (mean +/? S.D. = 4.36 +/?1.06 vs. 4.00 +/?1.12 × 10?10 m ). 相似文献
18.
Christopherson KW Hangoc G Broxmeyer HE 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(12):7000-7008
CD26/dipeptidylpeptidase IV (DPPIV) is a membrane-bound extracellular peptidase that cleaves dipeptides from the N terminus of polypeptide chains. The N terminus of chemokines is known to interact with the extracellular portion of chemokine receptors, and removal of these amino acids in many instances results in significant changes in functional activity. CD26/DPPIV has the ability to cleave the chemokine CXCL12/stromal cell-derived factor 1alpha (SDF-1alpha) at its position two proline. CXCL12/SDF-1alpha induces migration of hemopoietic stem and progenitor cells, and it is thought that CXCL12 plays a crucial role in homing/mobilization of these cells to/from the bone marrow. We found that CD26/DPPIV is expressed by a subpopulation of CD34(+) hemopoietic cells isolated from cord blood and that these cells have DPPIV activity. The involvement of CD26/DPPIV in CD34(+) hemopoietic stem and progenitor cell migration has not been previously examined. Functional studies show that the N-terminal-truncated CXCL12/SDF-1alpha lacks the ability to induce the migration of CD34(+) cord blood cells and acts to inhibit normal CXCL12/SDF-1alpha-induced migration. Finally, inhibiting the endogenous CD26/DPPIV activity on CD34(+) cells enhances the migratory response of these cells to CXCL12/SDF-1alpha. This process of CXCL12/SDF-1alpha cleavage by CD26/DPPIV on a subpopulation of CD34(+) cells may represent a novel regulatory mechanism in hemopoietic stem and progenitor cells for the migration, homing, and mobilization of these cells. Inhibition of the CD26/DPPIV peptidase activity may therefore represent an innovative approach to increasing homing and engraftment during cord blood transplantation. 相似文献
19.
20.
Emrah Celik Mohd. Hafeez Faridi Vinay Kumar Shashank Deep Vincent T. Moy Vineet Gupta 《Biophysical journal》2013
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents. 相似文献