首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently, claudin-1 (CLDN1) was identified as a host protein essential for hepatitis C virus (HCV) infection. To evaluate CLDN1 function during virus entry, we searched for hepatocyte cell lines permissive for HCV RNA replication but with limiting endogenous CLDN1 expression, thus permitting receptor complementation assays. These criteria were met by the human hepatoblastoma cell line HuH6, which (i) displays low endogenous CLDN1 levels, (ii) efficiently replicates HCV RNA, and (iii) produces HCV particles with properties similar to those of particles generated in Huh-7.5 cells. Importantly, naïve cells are resistant to HCV genotype 2a infection unless CLDN1 is expressed. Interestingly, complementation of HCV entry by human, rat, or hamster CLDN1 was highly efficient, while mouse CLDN1 (mCLDN1) supported HCV genotype 2a infection with only moderate efficiency. These differences were observed irrespective of whether cells were infected with HCV pseudoparticles (HCVpp) or cell culture-derived HCV (HCVcc). Comparatively low entry function of mCLDN1 was observed in HuH6 but not 293T cells, suggesting that species-specific usage of CLDN1 is cell type dependent. Moreover, it was linked to three mouse-specific residues in the second extracellular loop (L152, I155) and the fourth transmembrane helix (V180) of the protein. These determinants could modulate the exposure or affinity of a putative viral binding site on CLDN1 or prevent optimal interaction of CLDN1 with other human cofactors, thus precluding highly efficient infection. HuH6 cells represent a valuable model for analysis of the complete HCV replication cycle in vitro and in particular for analysis of CLDN1 function in HCV cell entry.Hepatitis C virus (HCV) is a liver-tropic plus-strand RNA virus of the family Flaviviridae that has chronically infected about 130 million individuals worldwide. During long-term persistent virus replication, many patients develop significant liver disease which can lead to cirrhosis and hepatocellular carcinoma (54). Current treatment of chronic HCV infection consists of a combination of pegylated alpha interferon and ribavirin. However, this regimen is not curative for all treated patients and is associated with severe side effects (37). Therefore, an improved therapy is needed and numerous HCV-specific drugs targeting viral enzymes are currently being developed (47). These efforts have been slowed down by a lack of small-animal models permissive for HCV replication since HCV infects only humans and chimpanzees. Among small animals, only immunodeficient mice suffering from a transgene-induced disease of endogenous liver cells and repopulated with human primary hepatocytes are susceptible to HCV infection (39).The restricted tropism of HCV likely reflects very specific host factor requirements for entry, RNA replication, assembly, and release of virions. Although HCV RNA replication has been observed in nonhepatic human cells and even nonhuman cells, its efficiency is rather low (2, 11, 59, 67). In addition, so far, efficient production of infectious particles has only been reported with Huh-7 human hepatoma cells, Huh-7-derived cell clones, and LH86 cells (33, 61, 65, 66). Although murine cells sustain HCV RNA replication, they do not produce detectable infectious virions (59). Together, these results suggest that multiple steps of the HCV replication cycle may be blocked or impaired in nonhuman or nonhepatic cells.HCV entry into host cells is complex and involves interactions between viral surface-resident glycoproteins E1 and E2 and multiple host factors. Initial adsorption to the cell surface is likely facilitated by interaction with attachment factors like glycosaminoglycans (4, 31) and lectins (13, 35, 36, 51). Beyond these, additional host proteins have been implicated in HCV entry. Since HCV circulates in the blood associated with lipoproteins (3, 43, 57), it has been postulated that HCV enters hepatocytes via the low-density lipoprotein receptor (LDL-R), and evidence in favor of an involvement of LDL-R has been provided (1, 40, 42, 44). Direct interactions between soluble E2 and scavenger receptor class B type I (SR-BI) (53) and CD81 (49) have been reported, and firm experimental proof has accumulated that these host proteins are essential for HCV infection (5, 6, 16, 26, 28, 33, 41, 61). Finally, more recently, claudin-1 (CLDN1) and occludin, two proteins associated with cellular tight junctions, have been identified as essential host factors for infection (20, 34, 50) and an interaction between E2 and these proteins, as revealed by coimmunoprecipitation assays, was reported (7, 34, 63). Although the precise functions of the individual cellular proteins during HCV infection remain poorly defined, based on kinetic studies with antibodies blocking interactions with SR-BI, CD81, or CLDN1, these factors are likely required subsequent to viral attachment (14, 20, 31, 64). Interestingly, viral resistance to antibodies directed against CLDN1 seems to be slightly delayed compared to resistance to antibodies directed against CD81 and SR-BI (20, 64), suggesting that there may be a sequence of events with the virus encountering first SR-BI and CD81 and subsequently CLDN1. Moreover, in Huh-7 cells, engagement of CD81 by soluble E1/E2 induces Rho GTPase-dependent relocalization of these complexes to areas of cell-to-cell contact, where these colocalized with CLDN1 and occludin (9). Together, these findings are consistent with a model where HCV reaches the basolateral, sinusoid-exposed surface of hepatocytes via the circulation. Upon binding to attachment factors SR-BI and CD81, which are highly expressed in this domain (52), the HCV-receptor complex may be ferried to tight-junction-resident CLDN1 and occludin and finally be endocytosed in a clathrin-dependent fashion (8, 38). Once internalized, the viral genome is ultimately delivered into the cytoplasm through a pH-dependent fusion event (24, 26, 31, 58). Recently, Ploss et al. reported that expression of human SR-BI, CD81, CLDN1, and occludin was sufficient to render human and nonhuman cells permissive for HCV infection (50). These results indicate that these four factors are the minimal cell type-specific set of host proteins essential for HCV entry. Interestingly, HCV seems to usurp at least CD81 and occludin in a very species-specific manner since their murine orthologs permit HCV infection with limited efficiency only (22, 50). Recently, it was shown that expression of mouse SR-BI did not fully restore entry function in Huh-7.5 cells with knockdown of endogenous human SR-BI, suggesting that also SR-BI function in HCV entry is, to some extent, species specific (10).In this study, we have developed a receptor complementation system for CLDN1 that permits the assessment of functional properties of this crucial HCV host factor with cell culture-derived HCV (HCVcc) and a human hepatocyte cell line. This novel model is based on HuH6 cells, which were originally isolated from a male Japanese patient suffering from a hepatoblastoma (15). These cells express little endogenous CLDN1, readily replicate HCV RNA, and produce high numbers of infectious HCVcc particles with properties comparable to those of Huh-7 cell-derived HCV. In addition, we identified three mouse-typic residues of CLDN1 that limit receptor function in HuH6 cells. These results suggest that besides CD81 and occludin, and to a minor degree SR-BI, CLDN1 also contributes to the restricted species tropism of HCV.  相似文献   

3.
Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.Hepatitis C virus (HCV) is a global blood-borne pathogen, with 3% of the world''s population chronically infected. Most infections are asymptomatic, yet 60 to 80% become persistent and lead to severe fibrosis and cirrhosis, hepatic failure, or hepatocellular carcinoma (3). Currently available therapies are limited to the administration of pegylated alpha interferon in combination with ribavirin, which are expensive and often unsuccessful, with significant side effects (23, 36). Thus, the development of novel therapeutic approaches against HCV remains a high priority (18, 40, 60). Targeting the early steps of HCV infection may represent one such option, and much effort is being devoted to uncovering the mechanism of viral attachment and entry.The current view is that HCV entry into target cells occurs after attachment to specific cellular receptors via its surface glycoproteins E1 and E2 (27). The molecules to which HCV initially binds might constitute a diverse collection of cellular proteins, carbohydrates, and lipids that concentrate viruses on the cell surface and determine to a large extent which cell types, tissues, and organisms HCV can infect.CD81, claudin 1 (CLDN1), occludin (OCLN), and scavenger receptor class B type I (SR-BI) were previously shown to play essential roles in HCV cell entry (15, 22, 26, 35, 42, 43, 50, 63, 64).Recent reports suggest that CD81 engagement triggers intracellular signaling responses, ultimately leading to actin remodeling and the relocalization of CD81 to tight junctions (TJ) (11). Thus, CD81 may function as a bridge between the initial interaction of the virus with receptors on the basolateral surface of the hepatocyte and the TJ where two of the HCV entry molecules, CLDN1 and OCLN, are located. CD81 acts as a postbinding factor, and the TJ proteins CLDN1 and OCLN seem to be involved in late steps of HCV entry, such as HCV glycoprotein-dependent cell fusion (9, 11, 22). The discovery of TJ proteins as entry factors has added complexity to the model of HCV entry, suggesting parallels with other viruses like coxsackievirus B infection, where an initial interaction of the viral particle with the primary receptor decay-accelerating factor induces the lateral movement of the virus from the luminal surface to TJ, where coxsackievirus B binds coxsackievirus-adenovirus receptor and internalization takes place (17).Much less is known about the specific role of SR-BI in virus entry: neither the specific step of the entry pathway that SR-BI is involved in nor the protein determinants that mediate such processes are known. SR-BI is a lipoprotein receptor of 509 amino acids (aa) with cytoplasmic C- and N-terminal domains separated by a large extracellular domain (1, 13, 14). It is expressed primarily in liver and steroidogenic tissues, where it mediates selective cholesteryl ester uptake from high-density lipoprotein (HDL) and may act as an endocytic receptor (45, 46, 51, 52). SR-BI was originally identified as being a putative receptor for HCV because it binds soluble E2 (sE2) through interactions with E2 hypervariable region 1 (HVR1) (8, 50). RNA interference studies as well as the ability to block both HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) infections with anti SR-BI antibodies have confirmed its involvement in the HCV entry process (7, 8, 15, 26, 33, 63). Intriguingly, lipoproteins were previously shown to modulate HCV infection through SR-BI (12). It was indeed previously demonstrated that two natural ligands of SR-BI, HDL and oxidized low-density lipoprotein, can improve and inhibit HCV entry, respectively (57, 59). Moreover, small-molecule inhibitors of SR-BI-mediated lipid transfer (block of lipid transfer BLT-3 and BLT-4) abrogate the stimulation of HCV infectivity by human serum or HDL, suggesting that the enhancement of viral infection might be dependent on the lipid exchange activity of SR-BI (20, 58).We previously generated high-affinity monoclonal antibodies (MAbs) specific for human SR-BI and showed that they were capable of inhibiting the binding of SR-BI to sE2 and blocking HCVcc infection of human hepatoma cells (15). The HDL-induced enhancement of infection had no impact on the ability of the anti-SR-BI MAbs to block HCV infection, and the antibodies were effective in counteracting HCV infection even in the absence of lipoproteins. These data demonstrated that SR-BI participates in the HCV infection process as an entry receptor by directly interacting with viral glycoproteins. Here we have used one of the anti-SR-BI MAbs to show that SR-BI participates in an early step of HCV infection. By assays of binding of sE2 to SR-BI molecules from different species and to SR-BI mutants, we identified species-specific SR-BI protein residues that are required for sE2 binding. The functional significance of these observations was confirmed by the finding that SR-BI mutants with reduced binding to sE2 were also impaired in their ability to restore the infectivity of an SR-BI-knocked-down Huh-7.5 cell line. Finally, we demonstrated that SR-BI mutants with impaired sE2 binding can still form oligomeric structures and that they can bind the physiological ligand HDL and mediate cholesterol efflux, suggesting that distinct protein determinants are responsible for the interaction with HDL and the HCV particle.  相似文献   

4.
The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.Hepatitis C virus (HCV) is a small enveloped virus that causes chronic hepatitis worldwide (32). HCV belongs to the genus Hepacivirus of the family Flaviviridae. Its genome comprises 9.6 kb of single-stranded RNA of positive polarity flanked by highly conserved untranslated regions at both the 5′ and 3′ ends (4, 27, 29). The 5′ untranslated region harbors an internal ribosomal entry site (29) that initiates translation of a single open reading frame encoding a large polyprotein comprising about 3,010 amino acids (35). The encoded polyprotein is co- and posttranslationally processed into 10 individual viral proteins (15).In most cases of human infection, HCV is highly potent and establishes lifelong persistent infection, which progressively leads to chronic hepatitis, liver steatosis, cirrhosis, and hepatocellular carcinoma (9, 16, 21). The most effective therapy for treatment of HCV infection is administration of pegylated interferon combined with ribavirin. However, the combination therapy is an arduous regimen for patients; furthermore, HCV genotype 1b does not respond efficiently (19). The prevailing scientific opinion is that a more viable option than interferon treatment is needed.The chimpanzee is the only validated animal model for in vivo studies of HCV infection, and it is capable of reproducing most aspects of human infection (5, 18, 23, 28, 35, 36). The chimpanzee is also the only validated animal for testing the authenticity and infectivity of cloned viral sequences (8, 14, 35, 36). However, chimpanzees are relatively rare and expensive experimental subjects. Cross-species transmission from infected chimpanzees to other nonhuman primates has been tested but has proven unsuccessful for all species evaluated (1).The tupaia (Tupaia belangeri), a tree shrew, is a small nonprimate mammal indigenous to certain areas of Southeast Asia (6). It is susceptible to infection with a wide range of human-pathogenic viruses, including hepatitis B viruses (13, 20, 31), and appears to be permissive for HCV infection (33, 34). In an initial report, approximately one-third of inoculated animals exhibited acute, transient infection, although none developed the high-titer sustained viremia characteristic of infection in humans and chimpanzees (33). The short duration of follow-up precluded any observation of liver pathology. In addition to the putative in vivo model, cultured primary hepatocytes from tupaias can be infected with HCV, leading to de novo synthesis of HCV RNA (37). These reports strongly support tupaias as a valid model for experimental studies of HCV infection. However, longitudinal analyses evaluating the clinical development and pathology of HCV-infected tupaias have yet to be examined. In the present study, we describe the clinical development and pathology of HCV-infected tupaias over an approximately 3-year time course.  相似文献   

5.
6.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host antiviral immunity against hepatitis B virus (HBV) infection in vivo. However, the molecular mechanism by which these antiviral cytokines suppress HBV replication remains elusive. Using an immortalized murine hepatocyte (AML12)-derived cell line supporting tetracycline-inducible HBV replication, we show in this report that both IFN-α and IFN-γ efficiently reduce the amount of intracellular HBV nucleocapsids. Furthermore, we provide evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings thus reveal a novel antiviral mechanism of IFNs and provide a basis for a better understanding of HBV pathobiology.Hepatitis B virus (HBV) is a noncytopathic hepatotropic DNA virus which belongs to the family Hepadnaviridae (11, 44). Despite the fact that most adulthood HBV infections are transient, approximately 5 to 10% of infected adults and more than 90% of infected neonates fail to clear the virus and develop a lifelong persistent infection, which may progress to chronic hepatitis, cirrhosis, and primary hepatocellular carcinoma (4, 33, 34). It has been shown by several research groups that resolution of HBV and other animal hepadnavirus infection in vivo depends on both killing of infected hepatocytes by viral antigen-specific cytotoxic T lymphocytes and noncytolytic suppression of viral replication, which is most likely mediated by inflammatory cytokines, such as gamma interferon (IFN-γ) and tumor necrosis factor α (TNF-α) (10, 12, 15, 20, 26, 27, 48). Moreover, together with five nucleoside or nucleotide analogs that inhibit HBV DNA polymerase, alpha IFN (IFN-α) and pegylated IFN-α are currently available antiviral medications for the management of chronic hepatitis B. Compared to the viral DNA polymerase inhibitors, the advantages of IFN-α therapy include a lack of drug resistance, a finite and defined treatment course, and an increased likelihood for hepatitis B virus surface antigen (HBsAg) clearance (8, 39). However, only approximately 30% of treated patients achieve a sustained virological response to a standard 48-month pegylated IFN-α therapy (6, 32). Thus far, the antiviral mechanism of IFN-α and IFN-γ and the parameters determining the success or failure of IFN-α therapy in chronic hepatitis B remain elusive. Elucidation of the mechanism by which the cytokines suppress HBV replication represents an important step toward understanding the pathobiology of HBV infection and the molecular basis of IFN-α therapy of chronic hepatitis B.Considering the mechanism by which IFNs noncytolytically control HBV infection in vivo, it is possible that the cytokines either induce an antiviral response in hepatocytes to directly limit HBV replication or modulate the host antiviral immune response to indirectly inhibit the virus infection. However, due to the fact that IFN-α and -γ do not inhibit or only modestly inhibit HBV replication in human hepatoma-derived cell lines (5, 22, 23, 30), the direct antiviral effects of the cytokines and their antiviral mechanism against HBV have been studied with either an immortalized hepatocyte cell line derived from HBV transgenic mice or duck hepatitis B virus (DHBV) infection of primary duck hepatocytes (37, 53). While these studies revealed that IFN treatment significantly reduced the amount of encapsidated viral pregenomic RNA (pgRNA) in both mouse and duck hepatocytes, further mechanistic analyses suggested that IFN-α inhibited the formation of pgRNA-containing nucleocapsids in murine hepatocytes (52) but shortened the half-life of encapsidated pgRNA in DHBV-replicating chicken hepatoma cells (21). Moreover, the fate of viral DNA replication intermediates or nucleocapsids in the IFN-treated hepatocytes was not investigated in the previous studies.To further define the target(s) of IFN-α and -γ in the HBV life cycle and to create a robust cell culture system for the identification of IFN-stimulated genes (ISGs) that mediate the antiviral response of the cytokines (25), we established an immortalized murine hepatocyte (AML-12)-derived stable cell line that supported a high level of HBV replication in a tetracycline-inducible manner. Consistent with previous reports, we show that both IFN-α and IFN-γ potently inhibited HBV replication in murine hepatocytes (37, 40). With the help of small molecules that inhibit HBV capsid assembly (Bay-4109) (7, 47) and prevent the incorporation of pgRNA into nucleocapsids (AT-61) (9, 29), we obtained evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings provide a basis for further studies toward better understanding of IFN′s antiviral mechanism, which might ultimately lead to the development of strategies to improve the efficacy of IFN therapy of chronic hepatitis B.  相似文献   

7.
Hepatits B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.There are 40 million people worldwide infected with human immunodeficiency virus type 1 (HIV-1), and 6 to 15% of HIV-1-infected patients are also chronically infected with hepatitis B virus (HBV) (13, 20, 35, 38, 40-42, 47, 50, 61, 69). The highest rates of coinfection with HIV-1 and HBV are in Asia and Africa, where HBV is endemic (33, 68). Following the introduction of highly active antiretroviral therapy (HAART), liver disease is now the major cause of non-AIDS-related deaths in HIV-1-infected patients (12, 13, 38, 59, 65).Coinfection of HBV with HIV-1 alters the natural history of HBV infection. Individuals with HIV-1-HBV coinfection seroconvert from HBV e (precore) antigen (HBeAg) to HBV e antibody less frequently and have higher HBV DNA levels but lower levels of alanine aminotransferase (ALT) and milder necroinflammatory activity on histology than those infected with HBV alone (18, 26, 49). Progression to cirrhosis, however, seems to be more rapid and more common, and liver-related mortality is higher, in HIV-1-HBV coinfection than with either infection alone (47, 59). HBeAg is an accessory protein of HBV and is not required for viral replication or infection; however, chronic HBV infection typically is divided into two distinct phases: HBeAg positive and HBeAg negative (reviewed in reference 15). Most natural history studies of HIV-1-HBV coinfection to date have primarily focused on HBeAg-positive patients from non-Asian countries (23, 44, 46).We previously developed an overlapping peptide library for the HBV genome to detect HBV-specific CD4+ and CD8+ T-cell responses to all HBV gene products from multiple HBV genotypes (17). In a small cross-sectional study of patients recruited in Australia, we found that in coinfected patients, HBV-specific CD4+ T-cell responses, as measured by gamma interferon (IFN-γ) production, were diminished compared to those seen in HBV-monoinfected patients (17). However, patients had varying lengths of exposure to anti-HBV-active HAART at the time of analysis. In this study, therefore, we aimed to characterize the HBV-specific T-cell response in untreated HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected patients and to determine the relationship between the HBV-specific immune response, HBeAg status, and liver disease.  相似文献   

8.
HtrA1 belongs to a family of serine proteases found in organisms ranging from bacteria to humans. Bacterial HtrA1 (DegP) is a heat shock-induced protein that behaves as a chaperone at low temperature and as a protease at high temperature to help remove unfolded proteins during heat shock. In contrast to bacterial HtrA1, little is known about the function of human HtrA1. Here, we report the first evidence that human HtrA1 is a microtubule-associated protein and modulates microtubule stability and cell motility. Intracellular HtrA1 is localized to microtubules in a PDZ (PSD95, Dlg, ZO1) domain-dependent, nocodazole-sensitive manner. During microtubule assembly, intracellular HtrA associates with centrosomes and newly polymerized microtubules. In vitro, purified HtrA1 promotes microtubule assembly. Moreover, HtrA1 cosediments and copurifies with microtubules. Purified HtrA1 associates with purified α- and β-tubulins, and immunoprecipitation of endogenous HtrA1 results in coprecipitation of α-, β-, and γ-tubulins. Finally, downregulation of HtrA1 promotes cell motility, whereas enhanced expression of HtrA1 attenuates cell motility. These results offer an original identification of HtrA1 as a microtubule-associated protein and provide initial mechanistic insights into the role of HtrA1 in theregulation of cell motility by modulating microtubule stability.HtrA1 (for high temperature requirement) belongs to a family of serine proteases and is so named because of its essential role in thermal tolerance in Escherichia coli, which requires HtrA (also known as DegP) for survival at elevated temperatures (14). This survival is attributed to the ability of HtrA proteins to switch from chaperones to proteases that reduce the amount of unfolded and aggregated protein upon heat stress (46). Human, as well as bacterial, HtrA proteins contain trypsin and PDZ (PSD95, Dlg, ZO1) domains that display a high degree of sequence conservation from bacteria to human (14). Of the four human HtrA proteins, HtrA1, HtrA3, and HtrA4 also contain a signal peptide, insulin-like growth factor binding protein (IGFBP), and Kazal-type trypsin inhibitor domains, while HtrA2 lacks these domains. Although HtrA1 contains signal peptide, an intracellular form of HtrA1 has been reported as well (15, 17). The mitochondrial protein HtrA2 is well characterized and has been shown to be involved in apoptosis (27, 37, 39, 47, 52, 53) and neurodegenerative disease (35). However, HtrA1 is the first in the family to be implicated as a tumor suppressor in ovarian cancer and melanoma (3, 5, 13). In addition, HtrA1 is implicated in various pathogenic and developmental processes, including osteoarthritis, Alzheimer''s disease, neuronal maturation and development, age-related macular degeneration, and tumor progression (11, 23, 24, 33, 36, 50, 56). Specific to its role in tumor progression, HtrA1 is downregulated in various cancers, and its downregulation is associated with resistance to chemotherapy and a metastatic phenotype (4, 11, 19). Recently, we developed a mixture-based peptide library to determine the specificities of cleavage site motifs for HtrA1 serine protease. The results identified tubulins as potential substrates of HtrA1. Furthermore, we showed that exogenously expressed HtrA1 disrupts microtubules (MTs) and targets tubulins for degradation (data not shown). These results suggest a potential role for HtrA1 as an MT-associated protein (MAP) and its potential to regulate MT and tubulin stability and MT-associated cellular functions.MTs are highly dynamic noncovalent polymers of α- and β-tubulins that undergo cyclical shrinking (catastrophe) and growing (rescue) (18, 31, 43). The dynamic instability of MTs is central to their diverse biological functions, including the coordination of cell division (40, 55), morphogenesis (25), cell polarity (42), and motility (48). MT instability is, in part, modulated by MAPs (2, 29). Many tumor suppressors, such as adenomatous polyposis coli (APC) (20), RASSF1A (45), and Dlg (6), associate with MTs and impose tumor suppressor activities by regulating their functions related to cell division, polarity, and motility. Deregulation of these processes, as a consequence of loss of function of these tumor suppressors, contributes to unchecked proliferation; cytoarchitecture disruption; and the ability to migrate, invade, and metastasize distant organs (6, 7, 26). Therefore, the regulation of MT stability and dynamics or the lack of it has dire consequences for normal cell functions.Given the fact that HtrA1 is downregulated in various cancers, particularly in metastatic cancer, it is possible that HtrA1 may regulate certain aspects of cancer, namely, the motility of cancer cells, by modulating MT stability and dynamics. Therefore, to better characterize the interaction between HtrA1 and MTs and to gain mechanistic insights into the functional consequences of HtrA1 downregulation in cancer, we investigated the biochemical interaction between HtrA1 and tubulin, the domain within HtrA1 required for localization to MTs, and the effect on cell migration. Here, we describe the identification of HtrA1 as an MT-associated serine protease and a novel role of HtrA1 in the regulation of cell motility.  相似文献   

9.
Ubiquitin conjugation to lysine residues regulates a variety of protein functions, including endosomal trafficking and degradation. While ubiquitin plays an important role in the release of many viruses, the requirement for direct ubiquitin conjugation to viral structural proteins is less well understood. Some viral structural proteins require ubiquitin ligase activity, but not ubiquitin conjugation, for efficient release. Recent evidence has shown that, like other viruses, hepatitis B virus (HBV) requires a ubiquitin ligase for release from the infected cell. The HBV core protein contains two lysine residues (K7 and K96), and K96 has been suggested to function as a potential ubiquitin acceptor site based on the fact that previous studies have shown that mutation of this amino acid to alanine blocks HBV release. We therefore reexamined the potential connection between core lysine ubiquitination and HBV replication, protein trafficking, and virion release. In contrast to alanine substitution, we found that mutation of K96 to arginine, which compared to alanine is more conserved but also cannot mediate ubiquitin conjugation, does not affect either virus replication or virion release. We also found that the core lysine mutants display wild-type sensitivity to the antiviral activity of interferon, which demonstrates that ubiquitination of core lysines does not mediate the interferon-induced disruption of HBV capsids. However, mutation of K96 to arginine alters the nuclear-cytoplasmic distribution of core, leading to an accumulation in the nucleolus. In summary, these studies demonstrate that although ubiquitin may regulate the HBV replication cycle, these mechanisms function independently of direct lysine ubiquitination of core protein.The hepatitis B virus (HBV) particle consists of an enveloped nucleocapsid that contains the viral polymerase (Pol) and an incomplete 3.2-kb double-stranded DNA genome (9). In the cytoplasm, the viral core structural proteins interact to form homodimers, which further self-assemble into capsid particles that package Pol and the viral pregenomic RNA. Encapsidated Pol subsequently reverse transcribes pregenomic RNA to give rise to mature double-stranded relaxed circular DNA-containing capsids. HBV DNA-containing capsids are released from the cell as mature virions after acquiring an envelope consisting of cellular membrane lipids and the viral small, middle, and large envelope proteins (4, 9, 41). Due to the directed insertion of the envelope proteins in the endoplasmic reticulum and Golgi membrane, and the requirement of the large envelope protein for virion release, nucleocapsids are hypothesized to bud at intracellular membranes for release through the constitutive secretory pathway (5). Although the mechanism and site of HBV nucleocapsid envelopment and release remain poorly understood, emerging evidence indicates that the cellular ubiquitin pathway may play a role in this process.Structural proteins of some enveloped RNA viruses contain highly conserved sequences [PPXY, P(T/S)AP, and YPXL] termed late (L) domains that mediate interactions with proteins of the endocytic pathway to facilitate virus budding and release (1). The P(T/S)AP motif binds Tsg101 (8, 10, 19, 27, 47), a key ESCRT (for endosomal sorting complex required for transport) component for the recognition and sorting of ubiquitinated proteins to internal vesicles of the multivesicular body (MVB), while the YPXL motif binds Alix, an ESCRT-associated protein (26, 44, 48). The PPXY motif binds proteins of the Nedd4 family ubiquitin ligases, which are responsible for ubiquitination of proteins targeted for endocytosis and sorting to the MVB (20), suggesting a link between ubiquitin and viral budding (3, 16, 17, 22, 43, 55). The observation that proteasome inhibition, which depletes free cellular ubiquitin by interfering with ubiquitin recycling, results in a viral budding defect similar to that seen in virus L domain mutants further supports the implication that ubiquitin plays a role in mediating virion release (15, 31, 40, 43). Furthermore, fusion of ubiquitin to the Rous sarcoma virus (RSV) PPPY-containing Gag protein and the equine infectious anemia virus (EIAV) Gag protein containing a heterologous PTAP or PPPY motif rescues the virus-like particle release defect induced by proteasome inhibition (18, 31). While the role of L domains in mediating virion release is relatively well established, it remains unclear whether direct ubiquitination of viral structural proteins is generally required for virion release. Mutation of ubiquitin acceptor lysine residues in the RSV Gag protein inhibits virus budding, but such mutations in human immunodeficiency virus type 1 (HIV-1) or murine leukemia virus Gag protein exert no effect on virus release (29, 42). Recently, a retroviral (i.e., prototypic foamy virus) Gag protein engineered to lack ubiquitin acceptor lysines and encoding either the PSAP or PPXY motif of the L domain displayed no defect in viruslike particle release (58). Altogether, these results suggest that recruitment of host proteins to the L domain and ubiquitination of interacting proteins, but not the viral structural proteins, is required for ubiquitin-dependent virion release, at least for some viruses.The HBV core structural protein contains two potential ubiquitin acceptor lysine residues (K7 and K96) and an L-domain-like PPAY motif (Fig. (Fig.1A).1A). Structural studies indicate that residue K96 and the PPAY motif may be exposed on the surface of HBV capsid particles, at least transiently (4, 32, 37). Studies aimed at identifying interaction factors important for HBV particle release demonstrated a number of interesting findings. First, γ2-adaptin, a cellular trafficking adaptor that contains a ubiquitin-interacting motif (UIM), interacts with both the viral large envelope protein and HBV core, and disruption of the HBV/γ2-adaptin interaction inhibits virus secretion (14, 39). Second, core protein interacts with the Nedd4 ubiquitin ligase through the PPAY motif in core (39). Mutation of the tyrosine in the PPAY motif results in disrupted binding of Nedd4, and overexpression of a catalytically inactive Nedd4 mutant inhibits HBV particle secretion (39). Third, mutation of core K96, but not K7, to alanine results in a defective release phenotype, suggesting that K96 may serve as a ubiquitin conjugation site that aids virion release (32, 39). Recently, overexpression of dominant-negative proteins of the MVB machinery, such as the Vps4 ATPases and the ESCRT-III complex-forming CHMP proteins, were also shown to disrupt HBV budding and virion release, while subviral particles comprised only of envelope proteins were released efficiently (21, 24, 49). This suggests that nucleocapsids may release from the cell by a mechanism distinct from constitutive secretion. These studies show that similar to RNA viruses, HBV utilizes components of the cellular protein trafficking machinery to mediate virion release.Open in a separate windowFIG. 1.Generation of core lysine mutants. (A) The 21-kDa HBV core structural protein contains two lysine residues at positions 7 and 96 that serve as potential ubiquitin conjugation sites. These residues are highly conserved among the four major HBV genotypes (6). Core contains a late-domain-like PPXY motif that serves as a binding site for the Nedd4 E3 ubiquitin ligase. Core additionally contains a potential noncanonical SUMOylation motif at position 96. (B) Lysine mutations were generated by site-directed mutagenesis in the core gene contained within the HBV genome under the control of a CMV promoter. K7R contains a lysine-to-arginine mutation at position 7, K96R contains a lysine-to-arginine mutation at position 96, K96A contains a lysine-to-alanine mutation at position 96, and K7R/K96R contains arginine substituted at position 7 and position 96.Although these findings imply that core ubiquitination may be necessary for HBV particle release, direct evidence of core ubiquitination has been elusive (33, 39; unpublished results). As suggested by previous Gag lysine mutagenesis studies, however, ubiquitin may instead indirectly be required through conjugation to an interacting protein that is essential for mediating HBV release (29, 58). Although core K7 and K96 have been previously assayed in the context of virion release by mutation of the lysine residues to alanine (32, 39), we expanded these studies by assaying core mutants with an arginine substitution at position K7 (K7R) and K96 (K96R), as well as a double lysine-to-arginine mutation (K7R/K96R). Compared to alanine, arginine serves as a more conserved mutation for lysine while still abolishing the potential ubiquitin conjugation site. In the present study, we utilized these mutants to comprehensively examine the role of the core lysines in HBV virus release, the formation of replication intermediates, intracellular localization of core, and the interferon (IFN)-mediated antiviral response.  相似文献   

10.
11.
12.
13.
The early steps of the hepatitis B virus (HBV) life cycle are still poorly understood. Indeed, neither the virus receptor at the cell surface nor the mechanism by which nucleocapsids are delivered to the cytosol of infected cells has been identified. Extensive mutagenesis studies in pre-S1, pre-S2, and most of the S domain of envelope proteins revealed the presence of two regions essential for HBV infectivity: the 77 first residues of the pre-S1 domain and a conformational motif in the antigenic loop of the S domain. In addition, at the N-terminal extremity of the S domain, a putative fusion peptide, partially overlapping the first transmembrane (TM1) domain and preceded by a PEST sequence likely containing several proteolytic cleavage sites, was identified. Since no mutational analysis of these two motifs potentially implicated in the fusion process was performed, we decided to investigate the ability of viruses bearing contiguous deletions or substitutions in the putative fusion peptide and PEST sequence to infect HepaRG cells. By introducing the mutations either in the L and M proteins or in the S protein, we demonstrated the following: (i) that in the TM1 domain of the L protein, three hydrophobic clusters of four residues were necessary for infectivity; (ii) that the same clusters were critical for S protein expression; and, finally, (iii) that the PEST sequence was dispensable for both assembly and infection processes.The hepatitis B virus (HBV) is the main human pathogen responsible for severe hepatic diseases like cirrhosis and hepatocellular carcinoma. Even though infection can be prevented by immunization with an efficient vaccine, about 2 billion people have been infected worldwide, resulting in 350 million chronic carriers that are prone to develop liver diseases (56). Current treatments consist either of the use of interferon α, which modulates antiviral defenses and controls infection in 30 to 40% of cases, or of the use of viral polymerase inhibitors that allow a stronger response to treatment but require long-term utilization and frequently lead to the outcome of resistant viruses (34, 55). A better understanding of the virus life cycle, and particularly of the mechanism by which the virus enters the cell, could provide background for therapeutics that inhibit the early steps of infection, as recently illustrated with the HBV pre-S1-derived entry inhibitor (25, 45).HBV belongs to the Hepadnaviridae family whose members infect different species. All viruses of this family share common properties. The capsid containing a partially double-stranded circular DNA genome is surrounded by a lipid envelope, in which two (in avihepadnaviruses infecting birds) or three (in orthohepadnaviruses infecting mammals) envelope proteins are embedded. A single open reading frame bearing several translation initiation sites encodes these surface proteins. Thus, the HBV envelope contains three proteins: S, M, and L that share the same C-terminal extremity corresponding to the small S protein that is crucial for virus assembly (7, 8, 46) and infectivity (1, 31, 53). These proteins are synthesized in the endoplasmic reticulum (ER), assembled, and secreted as particles through the Golgi apparatus (15, 42). The current model for the transmembrane structure of the S domain implies the luminal exposition of both N- and C-terminal extremities and the presence of four transmembrane (TM) domains: the TM1 and TM2 domains, both necessary for cotranslational protein integration into the ER membrane, and the TM3 and TM4 domains, located in the C-terminal third of the S domain (for a review, see reference 6). Among the four predicted TM domains, only the TM2 domain has a defined position between amino acids 80 and 98 of the S domain. The exact localization of the TM1 domain is still unclear, probably because of the relatively low hydrophobicity of its sequence, which contains polar residues and two prolines. The M protein corresponds to the S protein extended by an N-terminal domain of 55 amino acids called pre-S2. Its presence is dispensable for both assembly and infectivity (20, 21, 37). Finally, the L protein corresponds to the M protein extended by an N-terminal domain of 108 amino acids called pre-S1 (genotype D). The pre-S1 and pre-S2 domains of the L protein can be present either at the inner face of viral particles (on the cytoplasmic side of the ER), playing a crucial role in virus assembly (5, 8, 10, 11, 46), or on the outer face (on the luminal side of the ER), available for the interaction with target cells and necessary for viral infectivity (4, 14, 36). The pre-S translocation is independent from the M and S proteins and is driven by the L protein TM2 domain (33). Finally, HBV surface proteins are not only incorporated into virion envelopes but also spontaneously bud from ER-Golgi intermediate compartment membranes (30, 43) to form empty subviral particles (SVPs) that are released from the cell by secretion (8, 40).One approach to decipher viral entry is to interfere with the function of envelope proteins. Thus, by a mutagenesis approach, two envelope protein domains crucial for HBV infectivity have already been identified: (i) the 77 first amino acids of the pre-S1 domain (4, 36) including the myristic acid at the N-terminal extremity (9, 27) and (ii) possibly a cysteine motif in the luminal loop of the S domain (1, 31). In addition, a putative fusion peptide has been identified at the N-terminal extremity of the S domain due to its sequence homology with other viral fusion peptides (50). This sequence, either N-terminal in the S protein or internal in the L and M proteins, is conserved among the Hepadnaviridae family and shares common structural and functional properties with other fusion peptides (49, 50). Finally, a PEST sequence likely containing several proteolytic cleavage sites has been identified in the L and M proteins upstream of the TM1 domain (39). A cleavage within this sequence could activate the fusion peptide.In this study, we investigated whether the putative fusion peptide and the PEST sequence were necessary for the infection process. For this purpose, we constructed a set of mutant viruses bearing contiguous deletions in these regions and determined their infectivity using an in vitro infection model based on HepaRG cells (28). The introduction of mutations either in the L and M proteins or in only the S protein allowed us to demonstrate that, in the TM1 domain of L protein, three hydrophobic clusters not essential for viral assembly were crucial for HBV infectivity while their presence in the S protein was critical for envelope protein expression. In addition, we showed that the PEST sequence was clearly dispensable for both assembly and infection processes.  相似文献   

14.
15.
Hepatitis C virus (HCV) p7 is an integral membrane protein that forms ion channels in vitro and that is crucial for the efficient assembly and release of infectious virions. Due to these properties, p7 was included in the family of viroporins that comprises proteins like influenza A virus M2 and human immunodeficiency virus type 1 (HIV-1) vpu, which alter membrane permeability and facilitate the release of infectious viruses. p7 from different HCV isolates sustains virus production with variable efficiency. Moreover, p7 determinants modulate processing at the E2/p7 and the p7/NS2 signal peptidase cleavage sites, and E2/p7 cleavage is incomplete. Consequently, it was unclear if a differential ability to sustain virus production was due to variable ion channel activity or due to alternate processing at these sites. Therefore, we developed a trans-complementation assay permitting the analysis of p7 outside of the HCV polyprotein and thus independently of processing. The rescue of p7-defective HCV genomes was accomplished by providing E2, p7, and NS2, or, in some cases, by p7 alone both in a transient complementation assay as well as in stable cell lines. In contrast, neither influenza A virus M2 nor HIV-1 vpu compensated for defective p7 in HCV morphogenesis. Thus, p7 is absolutely essential for the production of infectious HCV particles. Moreover, our data indicate that p7 can operate independently of an upstream signal sequence, and that a tyrosine residue close to the conserved dibasic motif of p7 is important for optimal virus production in the context of genotype 2a viruses. The experimental system described here should be helpful to investigate further key determinants of p7 that are essential for its structure and function in the absence of secondary effects caused by altered polyprotein processing.Hepatitis C virus (HCV) is a highly variable enveloped virus. It is the sole member of the genus Hepacivirus within the family Flaviviridae (36). Based on sequence homology, patient isolates are classified into seven genotypes and more than 100 subtypes (17, 52).The genome of HCV is a single-stranded RNA molecule of positive polarity with a size of ∼9.6 kb. It encodes a polyprotein of ca. 3,000 amino acids and contains nontranslated regions (NTRs) at both the 5′ and 3′ termini that are required for translation and RNA replication (33). Cellular and two viral proteases, NS2-3 and NS3-4A, liberate the individual viral proteins. The N-terminal portion of the polyprotein contains the structural proteins core and envelope glycoproteins 1 and 2 (E1, E2), which constitute the virus particle. These proteins are cleaved from the polyprotein by the host cell signal peptidase (18, 24). In the case of the core protein, an additional cleavage step mediated by the signal peptide peptidase liberates its mature C terminus (41). Further downstream of the structural proteins the polyprotein harbors p7, a short membrane-associated polypeptide required for virus assembly and release (27, 55), and the nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Proteins NS3 to NS5B are the minimal components of the membrane-bound replication complexes that catalyze RNA replication (16, 38).Using the novel JFH1-based HCV infection model (35, 61, 65), it has been demonstrated recently that besides the canonical structural proteins core, E1, and E2, NS5A, p7, NS3, and NS2 also are crucial for the production of infectious HCV particles (1, 26, 27, 39, 40, 55, 57). These data highlight that HCV assembly and release is a coordinated process involving both structural and nonstructural proteins. However, how the aforementioned proteins contribute to the production of infectious virus particles remains poorly understood.HCV p7 comprises two helical domains connected by a polar loop. Studies with epitope-tagged p7 variants indicate that both termini of the protein are resident in the lumen of the endoplasmic reticulum (ER) (4) or that, in addition, a second alternative topology with the C terminus exposed to the cytoplasm can be adopted (25). Using such constructs for fluorescent microscopy, a complex localization of p7 was revealed. While most prominent staining generally was observed at the ER (4, 19, 23), pools of p7 also were detected at mitochondria (19) and at the plasma membrane (4). These data suggest that p7 influences virus replication at various sites within infected cells, and that the function and/or localization of p7 is regulated by different trafficking signals that could be exposed in a topology-dependent manner. However, caution is warranted since, due to the lack of antibodies, epitope-tagged p7 variants had to be employed for most analyses, and since localization studies of virus-producing cells with functional p7 still are lacking.One hallmark of p7 is its ability to form cation-selective channels in artificial membranes (20, 46, 49), a property that likely depends on the oligomerization of the protein (7, 21). There are intriguing correlations that link p7''s function as an ion channel protein in vitro to its role in the assembly and release of infectious HCV particles in tissue culture. First, the mutation of the conserved dibasic motif in the polar loop of p7 abrogates ion channel activity and interferes with virus production in tissue culture (20, 27, 55). Second, iminosugars coupled to long alkyl chains like N-nonyl deoxygalactonojirimycin (NN-DGJ) not only interfere with ion channel activity but also repress the release of infectious particles from transfected Huh-7 cells (46, 56). Taken together, these data suggest that the ion channel activity of p7 is crucial for its role in the late steps of the HCV replication cycle, and that this function is amenable to the development of selective inhibitors for antiviral therapy. However, presently it is unknown how mechanistically p7, as an ion channel protein, facilitates HCV assembly and release or if p7 also is a component of virus particles and participates in entry.Besides its function as an ion channel, p7 harbors a signal-like sequence in its C-terminal domain that directs the insertion of the N terminus of NS2 into the lumen of the ER (4). Strikingly, due to structural determinants within the C terminus of E2, p7, and the N terminus of NS2, signalase cleavages at the E2/p7 and the p7/NS2 sites are incomplete, thus yielding E2-p7-NS2 and E2-p7 precursor proteins (3, 18, 34, 42). Although these precursors are not absolutely essential for the production of infectious HCV particles (26, 27), a defined ratio between mature and precursor proteins might play a role to orchestrate optimal virus assembly. Given these circumstances, genetic studies of p7 function are complicated, since mutations may, on the one hand, affect ion channel activity, and on the other hand influence processing at the E2-p7 and p7-NS2 junctions.To circumvent this problem, in this study we developed a complementation system that permits the rescue of genomes with defects in p7 by the ectopic expression of p7 in trans. This enabled us to directly assess the function of p7 in the absence of secondary effects caused by aberrant polyprotein cleavage. Using this approach, we analyzed the role of the native signal sequence of p7 and p7-containing precursor proteins. In addition, we investigated key determinants that are essential for the optimal function of p7 in the course of HCV infectious particle production.  相似文献   

16.
Chronic hepatitis B virus (HBV) infections are associated with persistent immune killing of infected hepatocytes. Hepatocytes constitute a largely self-renewing population. Thus, immune killing may exert selective pressure on the population, leading it to evolve in order to survive. A gradual course of hepatocyte evolution toward an HBV-resistant state is suggested by the substantial decline in the fraction of infected hepatocytes that occurs during the course of chronic infections. Consistent with hepatocyte evolution, clones of >1,000 hepatocytes develop postinfection in the noncirrhotic livers of chimpanzees chronically infected with HBV and of woodchucks infected with woodchuck hepatitis virus (W. S. Mason, A. R. Jilbert, and J. Summers, Proc. Natl. Acad. Sci. U. S. A. 102:1139-1144, 2005; W. S. Mason et al., J. Virol. 83:8396-8408, 2009). The present study was carried out to determine (i) if extensive clonal expansion of hepatocytes also occurred in human HBV carriers, particularly in the noncirrhotic liver, and (ii) if clonal expansion included normal-appearing hepatocytes, not just hepatocytes that appear premalignant. Host DNA extracted from fragments of noncancerous liver, collected during surgical resection of hepatocellular carcinoma (HCC), was analyzed by inverse PCR for randomly integrated HBV DNA as a marker of expanding hepatocyte lineages. This analysis detected extensive clonal expansion of hepatocytes, as previously found in chronically infected chimpanzees and woodchucks. Tissue sections were stained with hematoxylin and eosin (H&E), and DNA was extracted from the adjacent section for inverse PCR to detect integrated HBV DNA. This analysis revealed that clonal expansion can occur among normal-appearing human hepatocytes.Transient hepatitis B virus (HBV) infections, which generally last <6 months, do not cause cirrhosis and cause only minor increases in the risk of hepatocellular carcinoma (HCC) (3, 46). Chronic infections, typically lifelong, can cause cirrhosis and HCC (3). Of the ∼350 million HBV carriers now alive, ca. 60 million will die prematurely of cirrhosis and/or HCC. Cirrhosis, which usually develops late in infection, is a significant risk factor for HCC. Early reports stated that most HCCs occur on a background of cirrhosis. However, later studies suggested that as many as 50% of HCCs may occur in noncirrhotic liver (4), that is, in patients in whom the progression of liver disease still appears rather mild. Thus, liver damage that appears severe by histologic examination is not a prerequisite for HCC.Interestingly, during chronic HBV infections there is, in the face of persistent viremia, a decline over time in the fraction of infected hepatocytes, from 100% to as little as a few percent (5, 12-14, 16, 17, 22, 23, 27, 34, 37, 38). Along with HCC, this is perhaps the most surprising and unexplained outcome of chronic infection. The timing of this decline has not been systematically studied, but it is presumably gradual, occurring over years or decades, and dependent on persistent, albeit low-level, killing of infected hepatocytes by antiviral cytotoxic T lymphocytes (CTLs) (20). It is believed that the liver is largely a closed, self-renewing population. Such a population might be expected to evolve under any strong or persistent selective pressure. In HBV-infected patients, the earliest and most persistent selective pressure is immune killing of infected hepatocytes, which should initially constitute the entire hepatocyte population. Persistent killing of HBV-infected hepatocytes could lead to clonal expansion of mutant or epigenetically altered hepatocytes that had lost the ability to support infection and that were not, therefore, targeted by antiviral CTLs.Such a selective pressure may explain why foci of altered hepatocytes (FAH) and HCC are typically virus negative (1, 6, 11, 26, 29, 31, 35, 40, 41, 44). Normal or preneoplastic hepatocytes (e.g., in FAH) that have evaded the host immune response should undergo clonal expansion, because their death rate is lower than that of surrounding hepatocytes, even if they do not have a higher growth rate. Indeed, clonal expansion of hepatocytes has been detected, in the absence of cirrhosis, in woodchucks chronically infected with woodchuck hepatitis virus (WHV) (19) and in chimpanzees chronically infected with HBV (21). The presence of discrete foci of normal-appearing but virus-negative hepatocytes in chronically infected woodchuck livers (39) suggested, but did not prove, that normal-appearing hepatocytes that had lost the ability to support virus replication might clonally expand.The purpose of the present study was, therefore, to determine if normal-appearing hepatocytes undergo clonal expansion. To address this issue, we focused on noncirrhotic livers, because hepatocyte appearance and organization in many cirrhotic nodules are often considered to indicate premalignancy (7, 24, 25, 44), and this, together with the cellular environment in the cirrhotic liver, may explain why as many as 50% of cirrhotic nodules have been found to be made up of clonally expanded hepatocytes (2, 18, 24, 25, 28, 44). In older HBV patients, cirrhosis, the result of cumulative scarring due to ongoing tissue injury, presumably produces an evolutionary pressure on the hepatocyte population due to restricted blood flow and altered hepatic architecture.Clonal expansion was detected by assaying for integrated HBV DNA by inverse PCR (19, 21). Because integration occurs at random sites in host DNA, each integration event provides a unique genetic marker for the cell in which it occurred, and for any daughter cells. Thus, the clonal expansion of these tagged hepatocytes can be measured by determining how many times a given virus-cell DNA junction is repeated in a liver fragment. Analysis of fragments of nontumorous liver from noncirrhotic HCC patients revealed that at least 1% of hepatocytes are present as clones of >1,000 cells. Examination of 5-μm-thick sections of paraffin-embedded livers from the same patients revealed that clonally expanded hepatocytes were present in liver sections lacking preneoplastic lesions or changes. Therefore, normal-appearing hepatocytes must have undergone clonal expansion. Although clonal expansion was detected by analysis of integrated HBV DNA, the expansion did not appear to be due to the site of integration of the viral DNA into host DNA.These results are consistent with the hypothesis that immune selection and the later emergence of liver cirrhosis, with altered lobular organization and restricted blood flow, may constitute the two major selective pressures on the hepatocyte population that culminate in hepatocellular carcinoma. More-direct proof of the role, if any, of immune selection in hepatocyte evolution and HCC will require, first of all, an assay with a greater ability to detect clonally expanded hepatocytes. The present approach is limited by a number of factors, including a need for integration near a particular restriction endonuclease cleavage site in host DNA and for conservation of particular viral sequences so that the integrated DNA can be amplified using the PCR primers chosen. These issues may explain why the fraction of clonally expanded hepatocytes reported here is much less than that suggested by histologic data showing that more than 50% of hepatocytes appear negative for virus replication in long-term carriers. Further dissection of this issue will also require localization and determination of the virologic status of hepatocyte clones present in tissue sections.  相似文献   

17.
In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally, immunofluorescence and electron microscopy analyses indicated that BFA does not block the formation of membranous web-like structures induced by expression of HCV proteins in a nonreplicative context, suggesting that GBF1 is probably involved not in the formation of HCV replication complexes but, rather, in their activity. Altogether, our results highlight a functional connection between the early secretory pathway and HCV RNA replication.Hepatitis C virus (HCV) is an important human pathogen. It mainly infects human hepatocytes, and this often leads to chronic hepatitis, cirrhosis, or hepatocarcinoma. HCV studies have been hampered for many years by the difficulty in propagating this virus in vitro. Things have recently changed with the development of a cell culture model referred to as HCVcc (34, 60, 65), which allows the study of the HCV life cycle in cell culture and facilitates studies of the interactions between HCV and the host cell.HCV is an enveloped positive-strand RNA virus belonging to the family Flaviviridae (35). The viral genome contains a single open reading frame, which is flanked by two noncoding regions that are required for translation and replication. All viral proteins that are produced after proteolytic processing of the initially synthesized polyprotein are membrane associated (15, 43). This reflects the fact that virtually all steps of the viral life cycle occur in close association with cellular membranes.Interactions of HCV with cell membranes begin during entry. Several receptors, coreceptors, and other entry factors have been discovered over the years, which link HCV entry to specialized domains of the plasma membrane, such as tetraspanin-enriched microdomains and tight junctions (8, 16, 59). The internalization of the viral particle occurs by clathrin-mediated endocytosis (5, 40). The fusion of the viral envelope with the membrane of an acidic endosome likely mediates the transfer of the viral genome to the cytosol of the cell (5, 40, 57). However, little is known regarding the pre- and postfusion intracellular transport steps of entering viruses in the endocytic pathway.HCV RNA replication is also associated with cellular membranes. Replication begins with the translation of the genomic RNA of an incoming virus. This leads to the production of viral proteins, which in turn initiate the actual replication of the viral RNA. Mechanisms regulating the transition from the translation of the genomic RNA to its replication are not yet known. All viral proteins are not involved in RNA replication. Studies performed with subgenomic replicons demonstrated that proteins NS3-4A, NS4B, NS5A, and NS5B are necessary and sufficient for replication (6, 27, 37). RNA replication proceeds through the synthesis of a cRNA strand (negative strand), catalyzed by the RNA-dependent RNA polymerase activity of NS5B, which is then used as a template for the synthesis of new positive strands.Electron microscopy studies using a subgenomic replicon model suggested that replication takes place in membrane structures made of small vesicles, referred to as “membranous webs,” which are induced by the virus (26). Membranous webs are detectable not only in cells carrying subgenomic replicons but also in infected cells (50). They appear to be associated with the endoplasmic reticulum (ER) (26). In addition to the membranous webs, a second type of ER-associated replicase that is smaller and more mobile has recently been described (63). Cellular mechanisms leading to these membrane alterations are still poorly understood. In cells replicating and secreting infectious viruses effectively, the situation appears to be even more complex, since replicase components appear to be, at least in part, associated with cytoplasmic lipid droplets (41, 50, 56). This association depends on the capsid protein (41) and may reflect a coupling between replication and assembly. Indeed, HCV assembly and secretion show some similarities with very-low-density lipoprotein (VLDL) maturation and secretion (24, 64).Our knowledge of the cellular membrane mechanisms involved in the HCV life cycle is still limited. The expression of NS4B alone induces membrane alterations that are reminiscent of membranous webs (19). However, cellular factors that participate in this process are still unknown. On the other hand, several cellular proteins potentially involved in the HCV life cycle have been identified through their interactions with viral proteins. For some of these proteins, a functional role in infection was recently confirmed using RNA interference (48). It is very likely that other cellular factors critical to HCV infection have yet to be identified.To gain more insight into cellular mechanisms underlying HCV infection, we made use of brefeldin A (BFA), a macrocyclic lactone of fungal origin that exhibits a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways (30). BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARFs). ARFs are small GTP-binding proteins of the Ras superfamily. They function as regulators of vesicular traffic, actin remodeling, and phospholipid metabolism by recruiting effectors to membranes. BFA does not actually interfere directly with ARF GTPases but rather interferes with their activation by regulators known as guanine nucleotide exchange factors (GEFs) (14, 25). We now report the identification of an ARF GEF as a cellular BFA-sensitive factor that is required for HCV replication.  相似文献   

18.
19.
20.
We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, with approximately 170 million humans chronically infected. Persistent HCV infection often leads to fibrosis, cirrhosis, and hepatocellular carcinoma (27). There is no vaccine against HCV, and the most widely used therapy involves the administration of type I interferon (IFN-α2Α) combined with ribavirin. However, this treatment is often associated with severe adverse effects and is often ineffective (53).HCV is a member of the Flaviviridae family and is the sole member of the genus Hepacivirus (43). HCV is an enveloped virus with a single-strand positive RNA genome that encodes a unique polyprotein of ∼3,000 amino acids (14, 15). A single open reading frame is flanked by untranslated regions (UTRs), the 5′ UTR and 3′ UTR, that contain RNA sequences essential for RNA translation and replication, respectively (17, 18, 26). Translation of the single open reading frame is driven by an internal ribosomal entry site (IRES) sequence residing within the 5′ UTR (26). The resulting polyprotein is processed by cellular and viral proteases into its individual components (reviewed in reference 55). The E1, E2, and core structural proteins are required for particle formation (5, 6) but not for viral RNA replication or translation (7, 40). These processes are mediated by the nonstructural (NS) proteins NS3, NS4A, NS4B, NS5A, and NS5B, which constitute the minimal viral components necessary for efficient viral RNA replication (7, 40).Expression of the viral polyprotein leads to the formation of virus-like particles (VLPs) in HeLa (48) and Huh-7 cells (23). Furthermore, overexpression of core, E1, and E2 is sufficient for the formation of VLPs in insect cells (3, 4). In the context of a viral infection, the viral structural proteins (65), p7 (31, 49, 61), and all of the nonstructural proteins (2, 29, 32, 41, 44, 63, 67) are required for the production of infectious particles, independent of their role in HCV RNA replication. It is not known whether the nonstructural proteins are incorporated into infectious virions.The current model for HCV morphogenesis proposes that the core protein encapsidates the viral genome in areas where endoplasmic reticulum (ER) cisternae are in contact with lipid droplets (47), forming HCV RNA-containing particles that acquire the viral envelope by budding through the ER membrane (59). We along with others showed recently that infectious particle assembly requires microsomal transfer protein (MTP) activity and apolipoprotein B (apoB) (19, 28, 50), suggesting that these two components of the very-low-density lipoprotein (VLDL) biosynthetic machinery are essential for the formation of infectious HCV particles. This idea is supported by the reduced production of infectious HCV particles in cells that express short hairpin RNAs (shRNAs) targeting apolipoprotein E (apoE) (12, 30).HCV RNA displays various density profiles, depending on the stage of the infection at which the sample is obtained (11, 58). The differences in densities and infectivities have been attributed to the presence of host lipoproteins and antibodies bound to the circulating viral particles (24, 58). In patients, HCV immune complexes that have been purified by protein A affinity chromatography contain HCV RNA, core protein, triglycerides, apoB (1), and apoE (51), suggesting that these host factors are components of circulating HCV particles in vivo.Recent studies using infectious molecular clones showed that both host and viral factors can influence the density profile of infectious HCV particles. For example, the mean particle density is reduced by passage of cell culture-grown virus through chimpanzees and chimeric mice whose livers contain human hepatocytes (39). It has also been shown that a point mutation in the viral envelope protein E2 (G451R) increases the mean density and specific infectivity of JFH-1 mutants (70).HCV particles exist as a mixture of infectious and noninfectious particles in ratios ranging from 1:100 to 1:1,000, both in vivo (10) and in cell culture (38, 69). Extracellular infectious HCV particles have a lower average density than their noninfectious counterparts (20, 24, 38). Equilibrium sedimentation analysis indicates that particles with a buoyant density of ∼1.10 to 1.14 g/ml display the highest ratio of infectivity per genome equivalent (GE) both in cell culture (20, 21, 38) and in vivo (8). These results indicate that these samples contain relatively more infectious particles than any other particle population. Interestingly, mutant viruses bearing the G451R E2 mutation display an increased infectivity-HCV RNA ratio only in fractions with a density of ∼1.1 g/ml (21), reinforcing the notion that this population is selectively enriched in infectious particles.The size of infectious HCV particles has been estimated in vivo by filtration (50 to 80 nm) (9, 22) and by rate-zonal centrifugation (54 nm) (51) and in cell culture by calculation of the Stokes radius inferred from the sedimentation velocity of infectious JFH-1 particles (65 to 70 nm) (20). Previous ultrastructural studies using patient-derived material report particles with heterogeneous diameters ranging from 35 to 100 nm (33, 37, 42, 57, 64). Cell culture-derived particles appear to display a diameter within that range (∼55 nm) (65, 68).In this study we exploited the increased growth capacity of a cell culture-adapted virus bearing the G451R mutation in E2 (70) and the enhanced particle production of the hyperpermissive Huh-7 cell subclone Huh-7.5.1 clone 2 (Huh-7.5.1c2) (54) to produce quantities of infectious HCV particles that were sufficient for electron cryomicroscopy (cryoEM) analyses. These studies revealed two major particle populations with diameters of ∼60 and ∼45 nm. The larger-diameter particles were distinguished by the presence of a membrane bilayer, characterized by electron density attributed to the lipid headgroups in its leaflets. Isopycnic ultracentrifugation showed that the ∼60-nm particles are enriched in fractions with a density of ∼1.1 g/ml, where optimal infectivity-HCV RNA ratios are observed. These results indicate that the predominant morphology of the infectious HCV particle is spherical and pleomorphic and surrounded by a membrane envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号