首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rare serotype and chimeric recombinant adenovirus (rAd) vectors that evade anti-Ad5 immunity are currently being evaluated as potential vaccine vectors for human immunodeficiency virus type 1 and other pathogens. We have recently reported that a heterologous rAd prime-boost regimen expressing simian immunodeficiency virus (SIV) Gag afforded durable partial immune control of an SIV challenge in rhesus monkeys. However, single-shot immunization may ultimately be preferable for global vaccine delivery. We therefore evaluated the immunogenicity and protective efficacy of a single immunization of chimeric rAd5 hexon hypervariable region 48 (rAd5HVR48) vectors expressing SIV Gag, Pol, Nef, and Env against a homologous SIV challenge in rhesus monkeys. Inclusion of Env resulted in improved control of peak and set point SIV RNA levels following challenge. In contrast, DNA vaccine priming did not further improve the protective efficacy of rAd5HVR48 vectors in this system.Heterologous prime-boost vaccine regimens have proven substantially more immunogenic than single vector immunizations in a variety of experimental models, but a single-shot vaccine would presumably be ideal for eventual global delivery. The potential utility of single-shot vaccines against pathogenic simian immunodeficiency virus (SIV) challenges in rhesus monkeys has not been well characterized. We therefore evaluated the protective efficacy of a single immunization of recombinant chimeric adenovirus type 5 (rAd5) hexon hypervariable region 48 (rAd5HVR48) vectors (15) expressing SIV Gag, Pol, Nef, and Env against a pathogenic SIV challenge in rhesus monkeys. These vectors contain the HVRs of the rare Ad48 serotype and have been shown to evade dominant Ad5 hexon-specific neutralizing antibodies (NAbs) (15). We also assessed the potential utility of inclusion of Env as an immunogen (6, 7, 17) and the degree to which DNA vaccine priming would enhance the protective efficacy afforded by a single rAd5HVR48 immunization (2, 7, 18, 21).Thirty adult rhesus monkeys (n = 6/group) lacking the Mamu-A*01, Mamu-B*17, and Mamu-B*08 class I alleles were primed with plasmid DNA vaccines and boosted with rAd5HVR48 vectors as follows: (1) adjuvanted DNA prime, rAd5HVR48 boost; (2) DNA prime, rAd5HVR48 boost; (3) rAd5HVR48 alone; (4) rAd5HVR48 alone (excluding Env); and (5) sham controls. Monkeys in groups 1 to 3 received vectors expressing SIVmac239 Gag, Pol, Nef, and Env, whereas monkeys in group 4 received vectors expressing only Gag, Pol, and Nef. The DNA vaccine adjuvants in group 1 were plasmids expressing the rhesus chemokine MIP-1α and Flt3L, which have been shown to increase recruitment of dendritic cells and to improve DNA vaccine immunogenicity (20). Monkeys were primed intramuscularly with a total dose of 4 mg of DNA vaccines at weeks 0, 4, and 8. All animals then received a single intramuscular immunization of 4 × 1010 viral particles (vp) of rAd5HVR48 at week 24. At week 52, animals were challenged intravenously (i.v.) with 100 monkey infectious doses of SIVmac251 (7, 10).  相似文献   

2.
Effective vaccines for human immunodeficiency virus type 1 (HIV-1) will likely need to stimulate protective immunity in the intestinal mucosa, where HIV-1 infection causes severe CD4+ T-cell depletion. While replication-competent recombinant adenovirus (rAd) vectors can stimulate adenovirus-specific mucosal immunity after replication, oral delivery of replication-defective rAd vectors encoding specific immunogens has proven challenging. In this study, we have systematically identified barriers to effective gut delivery of rAd vectors and identified sites and strategies to induce potent cellular and humoral immunity. Vector-mediated gene transfer by rAd5 was susceptible to low-pH buffer, gastric and pancreatic proteases, and extracellular mucins. Using ex vivo organ explants, we found that transduction with rAd5 was highest in the ileum and colon among all intestinal segments. Transgene expression was 100-fold higher after direct surgical introduction into the ileum than after oral gavage, with rAd5 showing greater potency than the rAd35 or the rAd41 vector. A single immunization of rAd5 encoding HIV-1 gp140B to the ileum stimulated potent CD8+ T-cell responses in the intestinal and systemic compartments, and these responses were further enhanced by intramuscular rAd5 boosting. These studies suggest that induction of primary immune responses by rAd5 gut immunization and subsequent systemic boosting elicits potent antigen-specific gut mucosal responses.Human immunodeficiency virus type 1 (HIV-1) infection is characterized by uncontrolled virus replication and cytopathicity in the intestinal mucosa, the site of major T-cell depletion after primary infection. The gastrointestinal (GI) tract is the predominant site of a pronounced CD4+ T-cell loss in the early stages of HIV infection and simian immunodeficiency virus (SIV) infection in the nonhuman primate model (3, 23, 26, 43). It has been suggested that a mucosal vaccine which generates HIV-specific CD8+ T cells in the gut could prevent the loss of CD4+ cells in gut-associated lymphoid tissue, establishment of infection, or spread of virus (13, 34). Therefore, targeted delivery of vaccines to the GI tract to stimulate mucosal responses has the potential to improve the efficacy of immune protection against HIV-1; however, the site of gene-based transduction and the barriers to vaccine delivery have not been well defined.Adenoviruses (Ads) have been used extensively as vectors for both gene transfer and vaccine development. They offer several advantages as tools for vaccine delivery, such as the ability to transduce both dividing and nondividing cells, relative safety and stability in vivo, ease of production in high titers, and lack of integration (2, 35). These vectors are promising because parenteral administration in both animals and humans has been shown to generate strong and long-lasting humoral and cellular immune responses. The immune responses surpass those achieved with other types of gene vectors and genetic vaccines (5, 38, 46). As a result, recombinant Ad (rAd) vectors have been developed and tested as vaccine vehicles to immunize against a number of pathogens (4, 10, 15, 18, 41).Orally (p.o.) delivered vaccines are attractive in theory because of their ease of administration and potential to deliver antigen to gut-associated lymphoid tissue, permitting induction of immune responses in both mucosal and systemic compartments. At the same time, p.o. delivery of replication-defective rAd vectors has posed a challenge and has met with variable levels of success. Immunization with rAd5 encoding rabies virus antigens, influenza virus antigens, or other antigens has generated some protection against infection in animal models (9, 27, 31, 39, 41), but p.o. immunization has elicited much lower CD8+ T-cell responses than systemic delivery (33), and a much higher dose is required to induce immune responses (37). We have recently shown in an HIV vaccine model that rAd41, a human enteric Ad-based vector, induced potent CD8+ T-cell responses in both systemic and mucosal compartments when primed p.o. or in the ileum (17). The previous study showed that rAd41 vectors delivered through direct ileal injection elicited mucosal cell immunity, but whether other rAd vectors could stimulate these responses and which factors affected delivery and immunogenicity were unknown. In this report, we have investigated the mechanisms associated with the low immunogenicity of rAd5 dosed through the p.o. route in mice. The purpose was to identify barriers to effective delivery of rAd vectors to gut tissues and to ascertain sites and strategies for induction of potent cellular and humoral immunity. To investigate the mechanism of the low immunogenicity of rAd vectors through the p.o. route and develop effective delivery of rAd5 and rare serotype rAd35 vectors as gut mucosal HIV vaccines, we have analyzed the obstacles to p.o. immunization, characterized vector transgene expression, and systematically compared immune responses induced by p.o. and local immunization strategies. These studies demonstrated that the higher immune responses were strongly associated with higher gene expression in the intestine and support further study of gut mucosal immunization in SIV challenge models as a potential HIV vaccine strategy.  相似文献   

3.
A major obstacle to the use of adenovirus vectors derived from common human serotypes, such as human adenovirus 5 (AdHu5), is the high prevalence of virus-neutralizing antibodies in the human population. We previously constructed a variant of chimpanzee adenovirus 68 (AdC68) that maintained the fundamental properties of the carrier but was serologically distinct from AdC68 and resisted neutralization by AdC68 antibodies. In the present study, we tested whether this modified vector, termed AdCDQ, could induce transgene product-specific CD8+ T cells in mice with preexisting neutralizing antibody to wild-type AdC68. Contrary to our expectation, the data show conclusively that antibodies that fail to neutralize the AdCDQ mutant vector in vitro nevertheless impair the vector''s capacity to transduce cells and to stimulate a transgene product-specific CD8+ T-cell response in vivo. The results thus suggest that in vitro neutralization assays may not reliably predict the effects of virus-specific antibodies on adenovirus vectors in vivo.Adenovirus (Ad) vectors are effective at inducing potent CD8+ T-cell responses to immunogens. In animal models, Ad vectors encoding antigens of simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV), used in combination with plasmid-based DNA vectors, generate CD8+ T-cell responses that attenuate infection by SIV (9) and by HIV-SIV chimeras (16). In humans, Ad vectors derived from human serotype 5 (AdHu5) are immunogenic and are well tolerated at immunogenic doses; however, in a recent clinical trial, an AdHu5-based HIV-1 vaccine failed to prevent (and may have facilitated) infection (1a). It is not clear whether CD8+ T-cell responses will be sufficient to prevent or control HIV infection and disease. However, it seems likely that the induction of effective immune responses against HIV will require multiple doses of antigen, with a priming dose followed by one or more booster immunizations. Prime-boost regimens based on the sequential use of DNA and AdHu5 vectors are being tested clinically, and regimens involving the sequential administration of serologically distinct Ad vectors are being explored in preclinical animal models (1, 5, 8, 9).One major obstacle to the use of vectors derived from AdHu5 and other common human serotypes is the high prevalence of virus-neutralizing antibodies (VNAs) in humans. Preexisting VNAs to the vaccine carrier prevent the vector from transducing target cells, which reduces the amount of vaccine antigen that can be produced and dampens the resultant adaptive immune responses (2, 3, 12). Approximately 40 to 45% of the U.S. population has VNAs to AdHu5, and seroprevalence rates are even higher in Asia and Africa (6, 24).We developed vectors derived from chimpanzee Ads to which humans lack preexisting immunity. When tested in a rodent model, one such vector, AdC68, induces potent transgene product-specific CD8+ T-cell responses that can be increased by booster immunizations with serologically distinct Ad vectors (3, 19, 23). However, because the use of multiple serotypes in a prime-boost regimen may prove cumbersome in clinical applications, we have attempted to modify the major neutralizing binding sites within the AdC68 capsid. It has been suggested that the binding sites for Ad-neutralizing antibodies preside primarily within the major capsid protein hexon (4, 10, 14, 15, 17). We defined a single hexon surface loop as the major neutralization site on AdC68 and showed that a mutant vector, AdCDQ, which incorporates a 3-amino-acid mutation within this loop, resists in vitro neutralization by polyclonal antisera obtained from animals immunized against AdC68 (10). Because it is serologically distinct from its parent vector, we expected that AdCDQ could be used in combination with AdC68 in an effective prime-boost regimen.In the present study, we tested whether the AdCDQ vector induces a transgene product-specific CD8+ T-cell response in mice with preexisting neutralizing antibody to wild-type AdC68. Contrary to our expectation, the data show conclusively that antibodies that fail to neutralize the AdCDQ vector in vitro nevertheless impair the vector''s capacity to transduce cells and to stimulate a transgene product-specific CD8+ T-cell response in vivo. The results thus suggest that in vitro neutralization assays may not reliably predict the effects of virus-specific antibodies on Ad vectors in vivo.  相似文献   

4.
In order to better understand the broad applicability of adenovirus (Ad) as a vector for human vaccine studies, we compared four adenovirus (Ad) vectors from families C (Ad human serotype 5 [HAdV-5; here referred to as AdHu5]), D (HAdV-26; here referred to as AdHu26), and E (simian serotypes SAdV-23 and SAdV-24; here referred to as chimpanzee serotypes 6 and 7 [AdC6 and AdC7, respectively]) of the Adenoviridae. Seroprevalence rates and titers of neutralizing antibodies to the two human-origin Ads were found to be higher than those reported previously, especially in countries of sub-Saharan Africa. Conversely, prevalence rates and titers to AdC6 and AdC7 were markedly lower. Healthy human adults from the United States had readily detectable circulating T cells recognizing Ad viruses, the levels of which in some individuals were unexpectedly high in response to AdHu26. The magnitude of T-cell responses to AdHu5 correlated with those to AdHu26, suggesting T-cell recognition of conserved epitopes. In mice, all of the different Ad vectors induced CD8+ T-cell responses that were comparable in their magnitudes and cytokine production profiles. Prime-boost regimens comparing different combinations of Ad vectors failed to indicate that the sequential use of Ad vectors from distinct families resulted in higher immune responses than the use of serologically distinct Ad vectors from the same family. Moreover, the transgene product-specific antibody responses induced by the AdHu26 and AdC vectors were markedly lower than those induced by the AdHu5 vector. AdHu26 vectors and, to a lesser extent, AdC vectors induced more potent Ad-neutralizing antibody responses. These results suggest that the potential of AdHu26 as a vaccine vector may suffer from limitations similar to those found for vectors based on other prevalent human Ads.Due to their ability to induce potent transgene product-specific B- and T-cell responses, replication-defective adenovirus (Ad) vectors are being explored for use as carriers of vaccines for a variety of pathogens, including human immunodeficiency virus type 1 (HIV-1) (7), Plasmodium falciparum (9), and Mycobacterium tuberculosis (20). Initial enthusiasm for the use of Ad vectors based on Ad human serotype 5 (AdHu5) was dampened by the finding that preexisting antibodies to this virus, which are found in ∼40% of humans residing in the United States and up to 90% of humans residing in some African countries (28), can reduce transgene product-specific immune responses (16) by reducing vector uptake (19). Enthusiasm further decreased after the phase IIb STEP trial, in which an AdHu5 vector was tested for induction of protection in cohorts at high risk for HIV-1 infection. The vector failed to show efficacy in reducing acquisition rates or lowering viral loads in individuals who became infected and instead appeared to increase susceptibility to infection in humans with preexisting neutralizing antibodies to the vaccine carrier (4). As a result of these setbacks, the use of Ad vectors based on other less common serotypes of human Ads (1) or Ads isolated from different species, such as chimpanzees (21, 25), bovines (24), and canines (31), to circumvent preexisting neutralizing antibodies is being explored. Of these, vectors based on adenovirus family D (AdHu26) were shown to have a low seroprevalence in some countries (1) and are now viewed as promising carriers for Ad vector-based gene transfer.A number of studies showed that AdHu26 vectors are highly immunogenic in nonhuman primates (NHPs), where they induced potent transgene product-specific CD8+ T-cell responses (13) that, when they were combined in a prime-boost regimen with an AdHu5 vector expressing gag of simian immunodeficiency virus (SIV), achieved a sustained reduction in viral loads upon SIV challenge of vaccinated animals (14). Intriguingly, AdHu26 vectors have been shown to induce a CD8+ T-cell response in NHPs that is qualitatively superior to that induced by AdHu5 vectors. AdHu26-induced CD8+ T cells showed a broader response, recognizing more epitopes within the transgene product, and had a more polyfunctional response, in that vector-induced individual CD8+ T cells produced multiple factors rather than predominantly gamma interferon (IFN-γ) only (13). This suggests that AdHu26 may have fundamental differences in immunogenicity from other Ad vectors.To elucidate this further, we developed a molecular clone of AdHu26 and a number of recombinant AdHu26 vectors from which E1 was deleted and used these to test human samples for the prevalence of AdHu26-neutralizing antibodies and responding CD4+ and CD8+ T cells. In addition, we conducted a series of studies with mice to determine if this species showed an immune response to a transgene product delivered by an AdHu26 vector markedly different from that induced by the same transgene product delivered by other Ad vectors. Our results showed that AdHu26, strictly speaking, is not a rare serotype, especially in African countries, where the seroprevalence rates of antibodies to AdHu26 are high. Similarly, most humans carry AdHu26-reactive T cells, which in some individuals are present at very high frequencies. In mice, AdHu26 induces potent CD8+ T-cell responses that are quantitatively and qualitatively similar to those induced by other Ad vectors. AdHu26 and chimpanzee-origin Ad (AdC) vectors stimulated only marginal transgene product-specific B-cell responses in comparison to those stimulated by AdHu5 vectors but induced more potent neutralizing antibodies to their capsid antigens.  相似文献   

5.
The administration of vectors designed to elicited cell-mediated immune responses may have other consequences that are clinically significant. To explore this possibility, we evaluated T-cell activation during the first 2 months after recombinant adenovirus serotype 5 (rAd5) prime or boost immunizations in rhesus monkeys. We also evaluated the kinetics of T-lymphocyte activation in both the systemic and the mucosal compartments after rAd5 administration in monkeys with preexisting immunity to Ad5. The rAd5 immunization induced lower-frequency Gag epitope-specific CD8+ T cells in the colonic mucosa than in the peripheral blood. There was evidence of an expansion of the simian immunodeficiency virus Gag-specific CD8+ T-cell responses, but not the Ad5 hexon-specific T-cell responses, following a homologous rAd5 boost. A striking but transient T-lymphocyte activation in both the systemic and the mucosal compartments of rhesus monkeys was observed after rAd5 immunization. These findings indicate that the administration of a vaccine vector such as Ad5 can induce a global activation of T cells.Considerable effort has been invested in the development of vaccine strategies for eliciting cell-mediated immune responses to human immunodeficiency virus (HIV). Studies in simian immunodeficiency virus (SIV)/SHIV-infected nonhuman primates and HIV-infected humans demonstrated a central role for cell-mediated immune responses in the containment of HIV replication (1, 12). These findings led to the hypothesis that vaccine-elicited cell-mediated immunity might contribute to improved control of HIV in infected individuals. Studies in the SIV and SHIV/macaque models have supported this hypothesis, demonstrating a decrease in peak plasma virus RNA levels during primary infection, protection against memory CD4+ T-cell lymphocyte loss, and prolonged survival of monkeys that had vaccine-elicited cell-mediated immunity to the virus prior to challenge (8, 15, 16).Despite promising results in preclinical nonhuman primate studies, a prophylactic HIV vaccine trial of the Merck recombinant adenovirus serotype 5 (rAd5) vector expressing HIV gag, pol, and nef genes (STEP trial) was recently halted due to a 2.3-fold increase of HIV acquisition in vaccinees with preexisting neutralizing antibodies (NAbs) to Ad5 (2, 9, 10). This finding raised the possibility that T lymphocytes that are activated in response to vaccination might represent an increased pool of potential targets for HIV infection, and the persistence of such activated cells may increase the susceptibility of the vaccinated individual to acquiring an HIV infection (5, 11). HIV replicates most readily in activated, CCR5+CD4+ T lymphocytes. It has been suggested that vaccines that elicit potent cellular immune responses may also activate subpopulations of CD4+ T lymphocytes. In fact, in the aftermath of the failed STEP trial, it was proposed that the activation of Ad5-specific T cells in individuals with prior Ad5 immunity may have contributed to their increased acquisition of HIV after vaccination.The contribution of cellular activation in mucosal tissues to acquisition of HIV remains unexplored (2). HIV transmission occurs most often across mucosal barriers. There is increasing evidence that CD4+ T lymphocytes are among the first cells infected during the transmission event (4). Activation of mucosal populations of lymphocytes as a consequence of vaccination could contribute to increasing the incidence of HIV transmission at a mucosal site.To examine these issues, the present study was initiated to explore vaccine-induced activation of T-lymphocyte populations in rhesus monkeys. The character and kinetics of the activation of both circulating and mucosal T-lymphocyte populations were evaluated after immunization with a variety of immunogens. These experiments demonstrate a striking but transient T-lymphocyte activation induced by adenovirus-based vaccine vectors in both the systemic and mucosal compartments of rhesus monkeys.  相似文献   

6.
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.The development of an AIDS vaccine is an ongoing and urgent challenge. One of the major hurdles is that the specific correlates of protection against human immunodeficiency virus (HIV) are still largely unknown. Nonetheless, most agree that the full complement of cellular and humoral components of the immune system will be needed to combat this virus. This is especially true given that the virus resides permanently in its host, infects the very cells needed to direct effective immune responses, and evades the immune system, either by changing in appearance or hiding in subcellular compartments.A broadly reactive neutralizing antibody response is likely to be critical as a first line of defense upon initial HIV exposure by aiding in the clearance of cell-free virions, targeting infected cells for destruction, and preventing viral spread through cell-to-cell transmission. The presence of inhibitory antibodies in highly exposed persistently seronegative individuals testifies to the importance of the humoral response (9, 37). Additionally, broadly neutralizing serum has been associated with healthier prognoses for infected individuals (27, 65) and may be vital for protecting offspring from their infected mothers (7, 79) and preventing superinfection by heterologous HIV strains (23, 84). Even if complete protection cannot be achieved by vaccine-derived antibodies, an early, well-poised and effective neutralizing antibody repertoire may be able to lower the set point of the viral load following the initial burst of viremia, an outcome that has been reported to translate into improved disease outcomes and reduced transmission of HIV (66, 74). Further benefits of neutralizing antibodies have been seen with passive immunization studies in macaques, in which administration of broadly neutralizing monoclonal antibodies (MAbs) has demonstrated that it is possible to provide protection from—and even sterilizing immunity against—HIV infection (5, 51, 66). There is also evidence that such antibodies may provide therapeutic benefits for chronically infected individuals, analogous to benefits realized with anti-HIV drug treatment regimens (87).Despite the promising potential of broadly neutralizing MAbs, designing immunogens that can elicit such cross-reactive neutralizing responses against HIV has been a surprisingly difficult task. Since the majority of the host''s B-cell response is directed against the envelope (Env) glycoproteins, gp120 and gp41, vaccine efforts have concentrated on these proteins and derivatives thereof in approaches ranging from the use of Env-based peptide cocktails to recombinant proteins and DNAs made with varied or consensus sequences and diverse, heterologous prime/protein boost regimens (reviewed in references 36, 58, and 70). These iterative studies have shown notable improvements in the potency and breadth of neutralizing responses induced. However, concerns exist regarding immunogens containing extraneous epitopes, as is the case with intact subunits of Env, and the nature of the immune responses they may elicit. A polyclonal burst of antibodies against a multitude of nonfunctional epitopes may include a predominance of antibodies that are (i) low affinity and/or nonfunctional (reviewed in reference 72); (ii) isolate specific (25); (iii) able to interfere with the neutralizing capabilities of otherwise-effective antibodies (via steric hindrance or by inducing various forms of B-cell pathology) (67); or (iv) directed against irrelevant epitopes instead of more conserved (and sometimes concealed) epitopes that might be able to elicit more potent and cross-reactive neutralizing responses (28, 71, 91).We have developed a system that can be used to present essentially any chosen epitope in a stable, well-exposed manner on the surface of the cold-causing human rhinovirus (HRV). HRV is itself a powerful immunogen and is able to elicit T-cell as well as serum and mucosal B-cell responses (reviewed by Couch [22]) and has minimal immunologic similarity to HIV (data not shown). Chimeric viruses displaying optimal epitopes should be able to serve as valuable components in an effective vaccine cocktail or as part of a heterologous prime/boost protocol. We have shown previously that HRV chimeric viruses displaying HIV-1 gp120 V3 loop sequences are able to elicit neutralizing responses against HIV-1 (75, 82, 83).In this study, we focused our attention on presenting part of the membrane-proximal external region (MPER) of the transmembrane glycoprotein gp41, a region of approximately 30 amino acids adjacent to the transmembrane domain (reviewed in references 59 and 97). The MPER plays an important role in the process of HIV fusion to the host cell membrane (60, 78). This region is also involved in binding to galactosylceramide, an important component of cell membranes, thus permitting CD4-independent transcytosis of the virus across epithelial cells at mucosal surfaces (1, 2). These functions likely explain this region''s sequence conservation and the efficacy of antibodies directed against the MPER (97), particularly given that an estimated 80% of HIV-1 infections are sexually transmitted at mucosal membranes. In fact, potent responses against the MPER are associated with stronger and broader neutralizing capabilities in infected individuals (68). A conserved, contiguous sequence of the MPER, the ELDKWA epitope (HIV-1 HxB2 gp41 residues 662 to 668), is recognized by the particularly broadly neutralizing human MAb 2F5 (11, 62, 85) and is highly resistant to escape mutation in the presence of 2F5 (49). 2F5 was also used in the MAb cocktails reported to confer passive, protective immunity in macaques (5, 51). In addition, infected individuals producing neutralizing antibodies directed against the ELDKWA epitope have been seen to exhibit better health (16, 29), including persistent seronegativity (8), and reduced transmission of HIV to offspring (89). While none of the vaccine-induced immune responses generated against this region has been effective thus far (19, 24, 26, 33, 35, 38, 40, 42, 44-48, 50, 53, 54, 56, 57, 61, 63, 69, 93, 96) (see Table S1 in the supplemental material), more appropriate presentations of MPER epitopes should produce valuable immunogens that can contribute to a successful vaccine.In this study, we have grafted the ELDKWA epitope onto a surface loop of HRV connected via linkers of variable lengths and sequences and selected for viruses well recognized and neutralized by MAb 2F5. In so doing, we have been able to create immunogens capable of eliciting antibodies whose activities mimic some of those of 2F5. The combinatorial libraries produced were designed to encode a large set of possible sequences and, hence, structures from which we could search for valuable conformations. This work illustrates that HRV chimeras have the potential to present selected HIV epitopes in a focused and immunogenic manner.  相似文献   

7.
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab′. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate''s negative charge, the hydrophobic alkyl-π stacking arrangement between the β-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.Eliciting broadly neutralizing antibodies (bnAbs) against primary isolates of human immunodeficiency virus type I (HIV-1) has been identified as a major milestone to attain in the quest for a vaccine in the fight against AIDS (12, 28). These antibodies would need to interact with HIV-1 envelope glycoproteins gp41 and/or gp120 (Env), target conserved regions and functional conformations of gp41/gp120 trimeric complexes, and prevent new HIV-1 fusion events with target cells (21, 57, 70, 71). Although a humoral response generating neutralizing antibodies against HIV-1 can be detected in HIV-1-positive individuals, the titers are often very low, and virus control is seldom achieved by these neutralizing antibodies (22, 51, 52, 66, 67). The difficulty in eliciting a broad and potent neutralizing antibody response against HIV-1 is thought to reside in the high degree of genetic diversity of the virus, in the heterogeneity of Env on the surface of HIV-1, and in the masking of functional regions by conformational covering, by an extensive glycan shield, or by the ability of some conserved domains to partition to the viral membrane (24, 25, 29, 30, 38, 39, 56, 68, 69). So far, vaccine trials using as immunogens mimics of Env in different conformations have primarily elicited antibodies with only limited neutralization potency across different HIV-1 clades although recent work has demonstrated more encouraging results (4, 12, 61).The use of conserved regions on gp41 and gp120 Env as targets for vaccine design has been mostly characterized by the very few anti-HIV-1 broadly neutralizing monoclonal antibodies (bnMAbs) that recognize them: the CD4 binding-site on gp120 (bnMAb b12), a CD4-induced gp120 coreceptor binding site (bnMAbs 17b and X5), a mannose cluster on the outer face of gp120 (bnMAb 2G12), and the membrane proximal external region (MPER) of gp41 (bnMAbs 2F5, Z13 and 4E10) (13, 29, 44, 58, 73). The gp41 MPER region is a particularly conserved part of Env that spans residues 659 to 683 (HXB2 numbering) (37, 75). Substitution and deletion studies have linked this unusually tryptophan-rich region to the fusion process of HIV-1, possibly involving a series of conformational changes (5, 37, 41, 49, 54, 74). Additionally, the gp41 MPER has been implicated in gp41 oligomerization, membrane leakage ability facilitating pore formation, and binding to the galactosyl ceramide receptor on epithelial cells for initial mucosal infection mediated by transcytosis (2, 3, 40, 53, 63, 64, 72). This wide array of roles for the gp41 MPER will put considerable pressure on sequence conservation, and any change will certainly lead to a high cost in viral fitness.Monoclonal antibody 2F5 is a broadly neutralizing monoclonal anti-HIV-1 antibody isolated from a panel of sera from naturally infected asymptomatic individuals. It reacts with a core gp41 MPER epitope spanning residues 662 to 668 with the linear sequence ELDKWAS (6, 11, 42, 62, 75). 2F5 immunoglobulin G binding studies and screening of phage display libraries demonstrated that the DKW core is essential for 2F5 recognition and binding (15, 36, 50). Crystal structures of 2F5 with peptides representing its core gp41 epitope reveal a β-turn conformation involving the central DKW residues, flanked by an extended conformation and a canonical α-helical turn for residues located at the N terminus and C terminus of the core, respectively (9, 27, 45, 47). In addition to binding to its primary epitope, evidence is accumulating that 2F5 also undergoes secondary interactions: multiple reports have demonstrated affinity of 2F5 for membrane components, possibly through its partly hydrophobic flexible elongated complementarity-determining region (CDR) H3 loop, and it has also been suggested that 2F5 might interact in a secondary manner with other regions of gp41 (1, 10, 23, 32, 33, 55). Altogether, even though the characteristics of 2F5 interaction with its linear MPER consensus epitope have been described extensively, a number of questions persist about the exact mechanism of 2F5 neutralization at a molecular level.One such ambiguous area of the neutralization mechanism of 2F5 is investigated in this study. Indeed, compared to bnMAb 4E10, 2F5 is the more potent neutralizing antibody although its breadth across different HIV-1 isolates is more limited (6, 35). In an attempt to shed light on the exact molecular requirements for 2F5 recognition of its primary gp41 MPER epitope, we performed structural studies of 2F5 Fab′ with a variety of peptides. The remarkable breadth of possible 2F5 interactions reveals a somewhat surprising promiscuity of the 2F5 binding site. Furthermore, we link our structural observations with the natural variation observed within the gp41 MPER and discuss possible routes of 2F5 escape from a molecular standpoint. Finally, our discovery of 2F5''s ability to tolerate a rather broad spectrum of amino acids in its binding, a spectrum that even includes nonnatural amino acids, opens the door to new ways to design small-molecule immunogens potentially capable of eliciting 2F5-like neutralizing antibodies.  相似文献   

8.
Methods for rapid detection and quantification of infectious viruses in the environment are urgently needed for public health protection. A fluorescence-activated cell-sorting (FACS) assay was developed to detect infectious adenoviruses (Ads) based on the expression of viral protein during replication in cells. The assay was first developed using recombinant Ad serotype 5 (rAd5) with the E1A gene replaced by a green fluorescent protein (GFP) gene. Cells infected with rAd5 express GFP, which is captured and quantified by FACS. The results showed that rAd5 can be detected at concentrations of 1 to 104 PFU per assay within 3 days, demonstrating a linear correlation between the viral concentration and the number of GFP-positive cells with an r2 value of >0.9. Following the same concept, FACS assays using fluorescently labeled antibodies specific to the E1A and hexon proteins, respectively, were developed. Assays targeting hexon showed greater sensitivity than assays targeting E1A. The results demonstrated that as little as 1 PFU Ads was detected by FACS within 3 days based on hexon protein, with an r2 value greater than 0.9 over a 4-log concentration range. Application of this method to environmental samples indicated positive detection of infectious Ads in 50% of primary sewage samples and 33% of secondary treated sewage samples, but none were found in 12 seawater samples. The infectious Ads ranged in quantity between 10 and 165 PFU/100 ml of sewage samples. The results indicate that the FACS assay is a rapid quantification tool for detecting infectious Ads in environmental samples and also represents a considerable advancement for rapid environmental monitoring of infectious viruses.Waterborne viral infection is one of the most important causes of human morbidity in the world. There are hundreds of different types of human viruses present in human sewage, which, if improperly treated, may become the source of contamination in drinking and recreational waters (6, 12, 19). Furthermore, as water scarcity intensifies in the nation, so has consideration of wastewater reuse as a valid and essential alternative for resolving water shortages (31).Currently, routine viral monitoring is not required for drinking or recreational waters, nor is it required for wastewater that is discharged into the environment. This lack of a monitoring effort is due largely to the lack of methods that can rapidly and sensitively detect infectious viruses in environmental samples. In the past 20 years, tremendous progress has been made in detection of viruses in the environment based on molecular technology (32, 33, 35). PCR and quantitative real-time PCR (qPCR) methods have improved both the speed and sensitivity of viral detection compared with detection by the traditional tissue culture method (2, 11, 17, 18). However, they provide little information on viral infectivity, which is crucial for human health risk assessment (22-24, 35). Our previous work using a real-time PCR assay to detect human adenoviruses (Ads) in sewage could not differentiate the infectious viruses in the secondary treated sewage from those killed by chlorination disinfection (15). In this research, we pursued an innovative approach to detecting infectious viruses in water using fluorescence-activated cell sorting (FACS). This method is rapid and sensitive, with an established record in microbiological research (29, 34, 39).FACS is a specialized type of flow cytometry which provides a method for counting and sorting a heterogeneous mixture of biological cells into two or more kinds, one cell at a time, based upon the specific light-scattering and fluorescent characteristics of each cell (4, 25, 34, 38). It is a useful method since it provides fast and quantitative recording of fluorescent signals from individual cells (14, 16, 34, 47). The FACS viral assay is based on the expression of viral protein inside the recipient cell during viral replication (16). Specific antibody labeled with fluorescence is bound to the target viral protein, which results in fluorescence emission from infected cells. Viral particles outside the cell will not be captured, because the size of virus is below the detection limit of flow cytometry. Therefore, detection of cells, which can be captured with fluorescently labeled viral antibody, is a definitive indication of the presence of infectious virus.This research used human Ads as the target for development of the FACS method. The rationale for this choice is as follows. (i) Ads are important human pathogens that may be transmitted by water consumption and water spray (aerosols) (26, 32). The health hazard associated with exposure to Ads has been demonstrated by epidemiological data and clinical research (1, 7, 9, 35, 40, 43). (ii) Ads are among the most prevalent human viruses identified in human sewage and are frequently detected in marine waters and the Great Lakes (17, 32, 33, 35). (iii) Ads are more resistant to UV disinfection than any other bacteria or viruses (3, 5, 10, 24, 41, 42, 44). Thus, they may survive wastewater treatment as increasing numbers of wastewater treatment facilities switch from chlorination to UV to avoid disinfection by-products. (iv) Some serotypes of Ads, including enteric Ad 40 and 41, are fastidious. They are difficult to detect by plaque assay, and a routine assay of infectivity takes 7 to 14 days (8, 20).In this study, recombinant Ad serotype 5 (rAd5) with the E1A gene (the first transcribed gene after infection) replaced by a green fluorescent protein (GFP) gene was first used to test for sensitivity and speed of the assay. Two other viral proteins were then used as targets for development of FACS assays using Ad serotype 2 (Ad2) and Ad41. This study demonstrated the feasibility, sensitivity, and reliability of the assay for detection of infectious Ads in environmental samples.  相似文献   

9.
Taking advantage of the wide tropism of baculoviruses (BVs), we constructed a recombinant BV (BVCAR) pseudotyped with human coxsackie B-adenovirus receptor (CAR), the high-affinity attachment receptor for adenovirus type 5 (Ad5), and used the strategy of piggybacking Ad5-green fluorescent protein (Ad5GFP) vector on BVCAR to transduce various cells refractory to Ad5 infection. We found that transduction of all cells tested, including human primary cells and cancer cell lines, was significantly improved using the BVCAR-Ad5GFP biviral complex compared to that obtained with Ad5GFP or BVCARGFP alone. We determined the optimal conditions for the formation of the complex and found that a high level of BVCAR-Ad5GFP-mediated transduction occurred at relatively low adenovirus vector doses, compared with transduction by Ad5GFP alone. The increase in transduction was dependent on the direct coupling of BVCAR to Ad5GFP via CAR-fiber knob interaction, and the cell attachment of the BVCAR-Ad5GFP complex was mediated by the baculoviral envelope glycoprotein gp64. Analysis of the virus-cell binding reaction indicated that the presence of BVCAR in the complex provided kinetic benefits to Ad5GFP compared to the effects with Ad5GFP alone. The endocytic pathway of BVCAR-Ad5GFP did not require Ad5 penton base RGD-integrin interaction. Biodistribution of BVCAR-Ad5Luc complex in vivo was studied by intravenous administration to nude BALB/c mice and compared to Ad5Luc injected alone. No significant difference in viscerotropism was found between the two inocula, and the liver remained the preferred localization. In vitro, coagulation factor X drastically increased the Ad5GFP-mediated transduction of CAR-negative cells but had no effect on the efficiency of transduction by the BVCAR-Ad5GFP complex. Various situations in vitro or ex vivo in which our BVCAR-Ad5 duo could be advantageously used as gene transfer biviral vector are discussed.Adenoviruses (Ads) are extensively used today as gene transfer vectors for in vitro, ex vivo, and in vivo gene transfer protocols (reviewed in reference 65). Cell entry of human Ad type 5 (Ad5), the serotype most widely used as a gene vector, occurs most efficiently by the receptor-mediated endocytosis pathway (reviewed in references 64 and 65), via the coxsackievirus B-adenovirus receptor (CAR) (3, 77) and αvβ3/αvβ5 integrins (84, 85), although alternative receptors have been described (11, 12, 14, 27). Cell surface expression of CAR differs with different cell types, and this represents one of the major determinants of the efficiency of Ad5-mediated transduction (43). The ubiquitous nature of CAR is responsible for transduction of nontarget tissues by Ad vectors. Paradoxically, many target cells such as dermal fibroblasts, synoviocytes, mesenchymal stem cells (MSCs), peripheral blood mononuclear cells (PBMCs), and dendritic cells (DCs), express no or very low levels of CAR at their surface and are relatively resistant to Ad transduction (14, 15, 19). Much work has been done with different strategies to promote the entry of Ad5 into CAR-defective cells. These strategies include (i) the genetic modification of Ad capsid proteins to carry cell ligands (2, 15, 20, 28, 49, 50), (ii) pseudotyping Ad5 vectors with fibers from other serotypes (13, 57, 74, 86), (iii) using bispecific adapters or peptides (25, 40), (iv) chemical modification of Ad (9, 42), and (v) tethering on nanoparticles (7). The limitations to these strategies are that modifications of the Ad capsid are susceptible to negatively affecting the virus growth or viability, due to an alteration of virion assembly, stability, the viral uncoating process, and/or intracellular trafficking (13, 51).Other viruses which are gaining popularity as gene transfer vectors are the baculoviruses (BVs). Autographa californica multiple nucleopolyhedrosis virus (AcMNPV) is an insect virus with a large double-stranded DNA genome packaged in a membrane-enveloped, rod-shaped protein capsid (70). Since the 1980s, the BV-insect cell expression system has been highly exploited for the production of recombinant proteins. In the mid-1990s, it was shown that recombinant BVs carrying reporter genes under cytomegalovirus (CMV) or retroviral Rous sarcoma virus promoter efficiently expressed reporter genes in mammalian cells (6, 22, 38, 41, 44, 69), as well as in avian cells (72) and fish cells (45). Since then, BVs have been reported to transduce numerous cells originating from species as various as humans, bovines, and fish (8, 32, 41, 73). As gene transfer vectors, BVs have been found to be rapidly inactivated by human serum complement (23), but exposing decay-accelerating factor (DAF) at the surface of BV by fusion with the baculoviral envelope glycoprotein can overcome this inactivation (33). BVs also have a good biosafety profile due to their incapacity to replicate in mammalian cells (31).Taking advantage of the ability of BVs to transduce a large repertoire of cells of invertebrate and vertebrate origins, including human primary cells, we investigated whether a recombinant AcMNPV could act as a carrier or macroadapter for Ad5 vectors to enter Ad5-refractory cells. To this aim, we pseudotyped AcMNPV virions with the high-affinity receptor for Ad5, the human CAR glycoprotein (BVCAR), to enable the formation of complexes between vector particles of BVCAR and Ad5-green fluorescent protein (Ad5GFP) mediated by Ad5 fiber and CAR interaction. We found that transduction of cell lines which were poorly permissive to Ad5, including human cancer cells and primary cells, was significantly improved using this strategy of piggybacking Ad5 vector on BVCAR. More importantly, the increase in BVCAR-Ad5-mediated transduction was obtained with a low range of Ad5 inputs, i.e., at multiplicities of infection (MOI) of less than 50 Ad5 vector particles per cell. We also found that the cell transduction enhancement observed with BVCAR-Ad5 required the direct coupling of Ad5 to BVCAR via fiber-CAR binding and that the cell attachment of the complex was mediated by the baculoviral envelope glycoprotein gp64. Kinetic analysis of virus-cell binding showed that the presence of BVCAR in the complex was beneficial to Ad5 vector, not only in terms of tropism but also in terms of number of cell-bound virions and rate of cell attachment. In addition, the endocytic pathway of BVCAR-Ad5 did not require Ad5 penton base RGD-integrin interaction. When administered in vivo to nude BALB/c mice, BVCAR-Ad5 complex showed the same biodistribution as that of control Ad5 vector injected alone. In vitro, transduction of CAR-negative cells by BVCAR-Ad5 was insensitive to coagulation factor X (FX), in contrast to Ad5 vector alone.Our novel strategy of gene delivery using the BVCAR-Ad5 duo could be advantageously applied to various situations in vitro or ex vivo, e.g., for transducing Ad5-refractory cells when Ad5 capsid modifications cannot be envisaged, when oncolytic Ads need to be delivered to tumors via nonpermissive cell carriers belonging to the immune system, or when the simultaneous delivery of two transgenes by two separate vectors might be beneficial in terms of timing and/or level of cellular expression of the transgene products.  相似文献   

10.
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC90] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.Human cytomegalovirus (HCMV) is a member of the herpesvirus family which is widely distributed in the human population and can cause severe disease in immunocompromised patients and upon infection of the fetus. HCMV infection causes clinical disease in 75% of patients in the first year after transplantation (58), while primary maternal infection is a major cause of congenital birth defects including hearing loss and mental retardation (5, 33, 45). Because of the danger posed by this virus, development of an effective vaccine is considered of highest priority (51).HCMV infection requires initial interaction with the cell surface through binding to heparan sulfate proteoglycans (8) and possibly other surface receptors (12, 23, 64, 65). The virus displays a broad host cell range (24, 53), being able to infect several cell types such as endothelial cells, epithelial cells (including retinal cells), smooth muscle cells, fibroblasts, leukocytes, and dendritic cells (21, 37, 44, 54). Endothelial cell tropism has been regarded as a potential virulence factor that might influence the clinical course of infection (16, 55), whereas infection of leukocytes has been considered a mechanism of viral spread (17, 43, 44). Extensive propagation of HCMV laboratory strains in fibroblasts results in deletions or mutations of genes in the UL131A-128 locus (1, 18, 21, 36, 62, 63), which are associated with the loss of the ability to infect endothelial cells, epithelial cells, and leukocytes (15, 43, 55, 61). Consistent with this notion, mouse monoclonal antibodies (MAbs) to UL128 or UL130 block infection of epithelial and endothelial cells but not of fibroblasts (63). Recently, it has been shown that UL128, UL130, and UL131A assemble with gH and gL to form a five-protein complex (thereafter designated gH/gL/UL128-131A) that is an alternative to the previously described gCIII complex made of gH, gL, and gO (22, 28, 48, 63).In immunocompetent individuals T-cell and antibody responses efficiently control HCMV infection and reduce pathological consequences of maternal-fetal transmission (13, 67), although this is usually not sufficient to eradicate the virus. Albeit with controversial results, HCMV immunoglobulins (Igs) have been administered to transplant patients in association with immunosuppressive treatments for prophylaxis of HCMV disease (56, 57), and a recent report suggests that they may be effective in controlling congenital infection and preventing disease in newborns (32). These products are plasma derivatives with relatively low potency in vitro (46) and have to be administered by intravenous infusion at very high doses in order to deliver sufficient amounts of neutralizing antibodies (4, 9, 32, 56, 57, 66).The whole spectrum of antigens targeted by HCMV-neutralizing antibodies remains poorly characterized. Using specific immunoabsorption to recombinant antigens and neutralization assays using fibroblasts as model target cells, it was estimated that 40 to 70% of the serum neutralizing activity is directed against gB (6). Other studies described human neutralizing antibodies specific for gB, gH, or gM/gN viral glycoproteins (6, 14, 26, 29, 34, 41, 52, 60). Remarkably, we have recently shown that human sera exhibit a more-than-100-fold-higher potency in neutralizing infection of endothelial cells than infection of fibroblasts (20). Similarly, CMV hyperimmunoglobulins have on average 48-fold-higher neutralizing activities against epithelial cell entry than against fibroblast entry (10). However, epitopes that are targeted by the antibodies that comprise epithelial or endothelial cell-specific neutralizing activity of human immune sera remain unknown.In this study we report the isolation of a large panel of human monoclonal antibodies with extraordinarily high potency in neutralizing HCMV infection of endothelial and epithelial cells and myeloid cells. With the exception of a single antibody that recognized a conserved epitope of UL128, all other antibodies recognized conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex.  相似文献   

11.
Immune responses against adenovirus (Ad) vectors pose a possible concern for the outcome of treatment efficacy. To address the role of preexisting immunity in oncolytic Ad vector antitumor efficacy following intratumoral injection of vector as well as tumor-to-tissue spread of the vector, we employed the Syrian hamster model. These animals are immunocompetent, and their tumors and tissues are permissive for replication of Ad type 5 (Ad5). We used the adenovirus death protein-overexpressing Ad5-based vector INGN 007. Subcutaneous tumors were established in groups of hamsters that were or were not immunized with Ad5. Half of the hamsters in these groups were immunosuppressed with cyclophosphamide. For all groups, tumors injected with INGN 007 grew significantly more slowly than those injected with buffer. Under immunocompetent conditions, there was no significant effect of preexisting immunity on vector antitumor efficacy. Soon after the tumors in naïve animals were injected with vector, the hamsters developed neutralizing antibody (NAb) and the difference in NAb titers between the naïve and immunized groups diminished. Under immunosuppressed conditions, preexisting NAb did significantly reduce vector efficacy. Thus, NAb do reduce vector efficacy to some extent, but immunosuppression is required to observe the effect. Regarding vector toxicity, there was spillover of vector from the tumor to the liver and lungs in naïve immunocompetent hamsters, and this was nearly eliminated in the immunized hamsters. Thus, preexisting immunity to Ad5 does not affect INGN 007 antitumor efficacy following intratumoral injection, but immunity prevents vector spillover from the tumor to the liver and lungs.Oncolytic (replication-competent) viral vectors are being investigated as a treatment for cancer (2, 19, 25, 27). Recently, an oncolytic adenovirus serotype 5 (Ad5)-based vector was approved for cancer therapy in humans for the first time (14, 42). Oncolytic vectors based on Ad, reovirus, herpes simplex virus type 1 (HSV-1), poxvirus, poliovirus, Newcastle disease virus, measles virus, and vesicular stomatitis virus (VSV) are being studied extensively in both preclinical and clinical settings (16, 20, 24). Oncolytic Ad vectors are popular due to the Ad safety profile and ease of manipulation and handling (6, 13, 18, 23).Oncolytic Ad vectors infect and kill cancer cells as a result of the normal Ad life cycle by replicating in cells and releasing progeny viruses. These vectors rely on replication and spread through the tumor to achieve efficacy. A majority of the human population is seropositive for Ad5, which is acquired as a childhood infection (4, 15, 39). Elimination of the vector by preexisting immunity to Ad or vector elimination by the adaptive immune response generated after administration of the vector poses a possible concern with respect to achieving significant antitumor efficacy. A key question is whether the oncolytic Ad vector can efficiently eliminate tumor cells faster than its own clearance by the immune system. Several studies show that suppressing the immune system enhances the efficacy of oncolytic vectors (10, 12, 31).Alternatively, studies show that activation of the adaptive immune system by the vector might increase tumor cell killing, thereby increasing vector antitumor efficacy (11, 21, 27, 34). Studies with oncolytic HSV and VSV show that these vectors induce long-term antitumor immunity (11, 21, 27, 34). Therefore, apart from direct cell lysis, oncolytic vectors may be able to achieve antitumor efficacy by activating the antitumor immune response. Therefore, induced or preexisting immunity to the vector can be either a hurdle or beneficial for vector efficacy.Most efforts to address the effect of preexisting immunity were performed by gene transfer studies with replication-defective Ad vectors (28, 41). These studies showed that preexisting immunity significantly reduces gene transfer and expression in the target organ. In contrast, other studies showed that preexisting immunity does not prevent gene transfer (26) and does not affect vector antitumor efficacy (1). Little work has been done to address the role of induced or preexisting immunity on the efficacy and toxicity of oncolytic Ad vectors (3, 39). Studies with these vectors have been difficult because of a lack of immunocompetent and permissive animal models. Ad replication is generally species specific, and human Ads replicate poorly in cells from most nonhuman species. Consequently, Ad vectors are commonly evaluated in immunodeficient mice bearing human tumor xenografts. However, this model cannot adequately address the effect of the host immune system on the vector-infected tumor or the toxicity of the vector in normal tissues.We recently developed a novel Syrian hamster model for the study of oncolytic Ad5-based vectors (30). These animals are both replication permissive for Ad5 and immunocompetent. In the present study, we modeled the effect of preexisting immunity to Ad5 on the efficacy of an oncolytic Ad vector, INGN 007, and the spillover of the vector from the site of injection to the liver and lungs.  相似文献   

12.
While the simian immunodeficiency virus (SIV)-infected rhesus monkey is an important animal model for human immunodeficiency virus type 1 (HIV-1) infection of humans, much remains to be learned about the evolution of the humoral immune response in this model. In HIV-1 infection, autologous neutralizing antibodies emerge 2 to 3 months after infection. However, the ontogeny of the SIV-specific neutralizing antibody response in mucosally infected animals has not been defined. We characterized the kinetics of the autologous neutralizing antibody response to the transmitted/founder SIVmac251 using a pseudovirion-based TZM-bl cell assay and monitored env sequence evolution using single-genome amplification in four rhesus animals that were infected via intrarectal inoculations. We show that the SIVmac251 founder viruses induced neutralizing antibodies at 5 to 8 months after infection. Despite their slow emergence and low titers, these neutralizing antibodies selected for escape mutants that harbored substitutions and deletions in variable region 1 (V1), V2, and V4 of Env. The neutralizing antibody response was initially focused on V4 at 5 to 8 months after infection and then targeted V1/V2 and V4 by 16 months. These findings reveal a striking delay in the development of neutralizing antibodies in SIVmac-infected animals, thus raising questions concerning the suitability of SIVmac251 as a challenge strain to screen AIDS vaccines that elicit neutralizing antibodies as a means to prevent virus acquisition. They also illustrate the capacity of the SIVmac quasispecies to modify antigenic determinants in response to very modest titers of neutralizing antibodies.While neutralizing antibodies (Nabs) mediate protection in humans against a diversity of viral pathogens (38, 53, 72), it is unclear how they impact human immunodeficiency virus type 1 (HIV-1) infection. One reason that the contribution of neutralizing antibodies to the control of HIV-1 remains uncertain is that HIV-specific neutralizing antibodies develop relatively late in natural infection. High titers of HIV-specific autologous neutralizing antibodies usually emerge as late as 2 to 3 months after infection and continue to evolve throughout the first years of infection (18, 25, 57, 66, 74). Such neutralizing antibodies have been shown to influence HIV-1 evolution within a host and to be responsible for viral escape mutations (47, 48, 58, 59). A better understanding of why there is a prolonged time associated with the maturation of the neutralizing antibody response in HIV-1 infection and whether conserved viral epitopes exist that could mediate antibody protection is important for the development of effective HIV-1 vaccine strategies.The simian immunodeficiency virus (SIV)/rhesus macaque model of AIDS provides an important system to study AIDS immunopathogenesis and to evaluate HIV-1 vaccine strategies. SIVmac251, an uncloned, pathogenic, CCR5-tropic virus isolate comprised of a swarm of quasispecies that are closely related (33), and SIVmac239, an infectious molecular clone derived from SIVmac251, are the two most commonly used rhesus monkey SIV challenge viruses utilized in AIDS vaccine research in the nonhuman primate (NHP) model. SIVmac239 has been shown to be relatively resistant to antibody-mediated neutralization by both autologous antibodies and a wide range of monoclonal antibodies (29, 30). The env sequence evolution in SIVmac239-infected rhesus monkeys and SIVMne-CL8-infected pigtailed macaques has been well described (8, 50, 51). Some of these changes in Env have been shown to result in viral escape from neutralizing antibodies (7, 10, 34, 60). In particular, a recent study by Sato et al. characterized SIVmac239 env sequence changes that were associated with viral escape in a rhesus monkey with an unusually high titer of neutralizing antibodies after intravenous infection (67). However, the antibody-mediated neutralization of SIVmac251 has not been tested rigorously using standardized assays that are currently being used to measure neutralization of HIV-1, thereby precluding a direct comparison of the neutralization sensitivities of HIV-1 and SIV. Furthermore, it is also unclear whether more typical titers of neutralizing antibodies against SIV239/251 exert selection pressure on the viral population in animals that acquire infection mucosally.The aims of this study were to elucidate the kinetics of the neutralizing antibody response against the transmitted viruses and the sequence evolution of env in association with humoral immunity in mucosally infected rhesus macaques. We hypothesized that a low titer of SIVmac Env-specific neutralizing antibodies exerts potent selection pressure on the viral quasispecies. To test this hypothesis, we utilized a pseudovirion-based TZM-bl reporter gene neutralization assay and single genome amplification (SGA) in order to characterize the humoral immune pressures driving viral sequence evolution in four rhesus monkeys that were infected with SIVmac251 via intrarectal inoculations.  相似文献   

13.
We have shown that following priming with replicating adenovirus type 5 host range mutant (Ad5hr)-human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) recombinants, boosting with gp140 envelope protein enhances acute-phase protection against intravenous simian/human immunodeficiency virus (SHIV)89.6P challenge compared to results with priming and no boosting or boosting with an HIV polypeptide representing the CD4 binding site of gp120. We retrospectively analyzed antibodies in sera and rectal secretions from these same macaques, investigating the hypothesis that vaccine-elicited nonneutralizing antibodies contributed to the better protection. Compared to other immunized groups or controls, the gp140-boosted group exhibited significantly greater antibody activities mediating antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cell-mediated viral inhibition (ADCVI) in sera and transcytosis inhibition in rectal secretions. ADCC and ADCVI activities were directly correlated with antibody avidity, suggesting the importance of antibody maturation for functionality. Both ADCVI and percent ADCC killing prechallenge were significantly correlated with reduced acute viremia. The latter, as well as postchallenge ADCVI and ADCC, was also significantly correlated with reduced chronic viremia. We have previously demonstrated induction by the prime/boost regimen of mucosal antibodies that inhibit transcytosis of SIV across an intact epithelial cell layer. Here, antibody in rectal secretions was significantly correlated with transcytosis inhibition. Importantly, the transcytosis specific activity (percent inhibition/total secretory IgA and IgG) was strongly correlated with reduced chronic viremia, suggesting that mucosal antibody may help control cell-to-cell viral spread during the course of infection. Overall, the replicating Ad5hr-HIV/SIV priming/gp140 protein boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities associated with control of both acute and chronic viremia.A major goal of human immunodeficiency virus (HIV) vaccine development is the elicitation of protective antibodies capable of neutralizing the diversity of isolates in the worldwide pandemic (6, 61). Indeed, passively administered neutralizing antibodies have been shown to protect against pathogenic HIV/simian immunodeficiency virus (SIV) challenge in rhesus macaque models (4, 44, 45, 57). However, the extent to which other antibody-mediated protective mechanisms impact HIV/SIV infection is still unclear. Whether these alternate biologic activities would augment vaccine-induced protection has not been definitively established.In HIV-infected individuals, as in SIV- or simian/human immunodeficiency virus (SHIV)-infected rhesus macaques, systemic nonneutralizing antibodies appear early during acute infection, often preceding a neutralizing antibody response (21, 55). Although neutralizing antibody activity is critical for sterilizing immunity, recent studies suggest that antibodies may contribute to protection by other functional activities, such as antibody-dependent cellular cytotoxicity (ADCC) (20, 29), antibody-dependent cell-mediated viral inhibition (ADCVI) (22, 23), and transcytosis inhibition (19, 35, 59). Antibodies in secretions may directly block viral entry into intestinal and endocervical tissues by inhibiting transcytosis across epithelium, whereas local or serum-derived antibodies that mediate ADCC or ADCVI may exert protective effects by eliminating small foci of infected cells during the brief window of time that exists between transmission of virus across an epithelial cell barrier to the lamina propria and subsequent systemic spread (32). In support of this notion, mutation of the Fc portion of the broadly neutralizing monoclonal antibody, IgGb12, thereby preventing interaction with the FcγR on effector cells, rendered the antibody less able to mediate protection upon subsequent passive transfer and challenge of rhesus macaques (34). Thus, neutralizing antibodies themselves may mediate protection by additional functional activities.ADCC bridges innate and adaptive immunity. Mechanistically, it involves FcγR-bearing effector cells, such as NK cells, macrophages, neutrophils, and γδ T cells, and antibodies specific for antigens expressed on the surface of target cells. Upon interaction of these three components, the target cells are killed. Since the effector cells are not major histocompatibility complex restricted, ADCC is broadly applicable to diverse populations. Because the antibody specificity need not be restricted to neutralizing epitopes, ADCC may increase the breadth of antibody reactivity. In fact, we have shown that an HIV clade B immunization regimen elicited antibodies that mediated ADCC across several HIV clades (28). Antibodies that mediate ADCC have been shown to arise early in infection, before neutralizing antibodies (55, 60). They are present in the majority of infected individuals, and they have been associated with slow disease progression following both HIV and SIV infection (5, 8).ADCVI is closely related to ADCC, also requiring antibody that forms a bridge between an infected target cell and an FcγR-bearing effector cell (24). However, ADCVI is a broader activity not restricted solely to target cell lysis but, rather, encompassing several mechanisms by which viral replication following infection of target cells is inhibited. Thus, it may include ADCC activity but also involve noncytotoxic mechanisms of virus control, such as the secretion of inhibitory chemokines or FcγR-mediated phagocytosis of immune complexes (24, 25).Most HIV infections occur via a mucosal route, including cervicovaginal and rectal tissues (39, 52). Several nonmutually exclusive mechanisms for HIV-1 transmission across mucosal epithelia have been proposed (13, 56). Transcytosis of infectious virus across polarized columnar epithelial cells following contact of virally infected cells with apical epithelial cell surfaces is one mechanism for mucosal HIV entry (12). Rather than fusion and infection, interactions between the viral envelope proteins and epithelial surface molecules, such as glycosphingolipid galactosyl-ceramide (GalCer) (13, 47), an important component of endocytotic “raft” membrane microdomains, lead to transcytosis of the virus across the epithelial barrier and its trapping by submucosal dendritic cells which disseminate it to their target CD4+ T cells. Studies have shown that mucosal immunoglobulin A (IgA) antibody, a major component of the mucosal immune response, could block mucosal HIV-1 entry via transcytosis in vitro (2, 19). Therefore, mucosal antibodies blocking adherence of virus to epithelial cells and preventing HIV-1 transcytosis across the epithelial barrier and subsequent CD4+ T cell infection may afford additional protection against HIV/SIV infection.We have been pursuing a replicating adenovirus (Ad)-HIV/SIV prime/protein subunit boost AIDS vaccine approach (30, 51), which has elicited strong, durable protection against HIV, SIV, and SHIV challenges (11, 18, 41, 42, 50). An underlying goal of these studies has been elucidation of immune responses that correlate with protective efficacy. Recently, we studied the contribution of novel protein boosts to immunogenicity and protective efficacy in a SHIV89.6P model (49). Immunized rhesus macaques were primed with Ad type 5 host range mutant (Ad5hr)-HIV89.6Pgp140, -SIV239gag, and -SIV239nef recombinants. One group was not boosted, one was boosted with HIV89.6P gp140ΔCFI protein (gp140 envelope with deletions in the cleavage site, fusion peptide, and part of the interspace between the two heptad repeats) (40), and one was boosted with a novel HIV-1 polypeptide “peptomer” representing the CD4 binding site of the envelope (54). The best protection was seen in the gp140-boosted group, with significant reductions in both acute and chronic viremia. Although Env-specific antibody and cellular responses were readily detected, none directly correlated with the better protection. Furthermore, neutralizing antibodies against SHIV89.6P did not develop until 4 weeks postchallenge. Therefore, we hypothesized that vaccine-elicited nonneutralizing anti-Env antibodies might have contributed to the better control of acute and/or chronic viremia in the gp140 group. Here, we report retrospective evaluations of sera and rectal secretions from macaques in this comparative study for serum binding antibody avidity, an important characteristic of functional antibodies (38, 58), and nonneutralizing activities of systemic and mucosal antibodies, including ADCC, ADCVI, and transcytosis inhibition.  相似文献   

14.
A candidate pediatric dengue virus (DENV) vaccine based on nonpropagating Venezuelan equine encephalitis virus replicon particles (VRP) was tested for immunogenicity and protective efficacy in weanling mice in the presence and absence of potentially interfering maternal antibodies. A gene cassette encoding envelope proteins prM and E from mouse-adapted DENV type 2 (DENV2) strain NGC was cloned into a VEE replicon vector and packaged into VRP, which programmed proper in vitro expression and processing of DENV2 envelope proteins upon infection of Vero cells. Primary immunization of 3-week-old weanling BALB/c mice in the footpad with DENV2 VRP resulted in high levels of DENV-specific serum immunoglobulin G antibodies and significant titers of neutralizing antibodies in all vaccinates. A booster immunization 12 weeks after the prime immunization resulted in increased neutralizing antibodies that were sustained for at least 30 weeks. Immunization at a range of doses of DENV2 VRP protected mice from an otherwise-lethal intracranial DENV2 challenge. To model vaccination in the presence of maternal antibodies, weanling pups born to DENV2-immune or DENV2-naïve dams were immunized with either DENV2 VRP or live DENV2 given peripherally. The DENV2 VRP vaccine induced neutralizing-antibody responses in young mice regardless of the maternal immune status. In contrast, live-DENV2 vaccination performed poorly in the presence of preexisting anti-DENV2 antibodies. This study demonstrates the feasibility of a VRP vaccine approach as an early-life DENV vaccine in populations with high levels of circulating DENV antibodies and suggests the utility of VRP-based vaccines in other instances where maternal antibodies make early vaccination problematic.Dengue viruses (DENV) are members of the family Flaviviridae and one of the most important groups of emerging viruses of global significance today (36, 66). There are four distinct antigenic serotypes (DENV1, DENV2, DENV3, and DENV4), all of which are capable of causing a spectrum of diseases in humans ranging from asymptomatic infections to debilitating classical dengue fever and severe and often fatal dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) (36, 68). DENV is transmitted to humans primarily by the mosquito Aedes aegypti. The lack of effective mosquito control, as well as demographic and economic changes, has contributed to the dramatic expansion and worldwide distribution of DENV epidemic activity in tropical and subtropical areas (36). It is estimated that up to 100 million infections and several hundred thousand cases of DHF/DSS occur each year, with more than 2.5 billion people living in areas at risk of infection in 2004 (21, 68). DHF is a leading cause of hospitalization and death among children in many countries in Southeast and South Asia, and the WHO has reported a rising trend in disease over the past decade (68). At the peak of epidemic times, as many as 70 children with severe DHF may present to a single hospital in a day, 20 of them with potentially fatal DSS (58). Although DHF/DSS in infants has not been comprehensively studied, it is estimated that more than 5% of all DHF/DSS cases occur in infants (26, 33, 41, 43, 56, 67, 70).In the absence of vector control effective on a global scale, there is a clear need for a DENV vaccine. However, the development of a DENV vaccine has faced significant challenges that have resulted in the lack of a licensed vaccine after 70 years of research (17). In many areas where there is cocirculation of two or more serotypes, there is a high probability that individuals will be infected more than once in their lifetimes. Preexisting homotypic immunity protects from a secondary infection with the same serotype, and this protection seems to last for life (24, 25). However, preexisting heterotypic nonneutralizing immunity to a secondary infection with a different DENV serotype is a risk factor for the development of severe DHF/DSS (23, 27, 61). These considerations suggest that a safe and efficacious DENV vaccine must be tetravalent and induce a long-term and balanced immune response to all four serotypes simultaneously in order to avoid sensitizing the vaccine recipient to a more severe outcome during a subsequent DENV infection. Additionally, primary infections during the first year of life that result in DHF/DSS have been associated with the presence of subneutralizing levels of maternal anti-DENV antibodies, which may increase the risk of enhanced infection and disease by antibody-mediated enhancement (26, 33, 41, 56). To protect infants and children in dengue-endemic countries from severe dengue, the ideal DENV vaccine should be given during the first 6 months of life. In addition, an infant DENV vaccine has to be effective in the face of circulating anti-DENV maternal antibodies, which in dengue-endemic countries are present in more than 95% of newborns and have disappeared by 12 months of age (63).There are a number of DENV vaccine candidates in preclinical and clinical trials (reviewed in references 10 and 66), including live attenuated virus, DNA plasmids (49), subunit vaccines (11, 16), and adenovirus vectors (29, 31). Live attenuated virus vaccines are the more advanced candidates in phase I and II clinical trials. They have been attenuated either empirically (4), by engineering attenuating mutations into a DENV cDNA infectious clone (5, 15), or by chimerization with other flaviviruses (22, 39, 46). Further clinical development of these candidates has been delayed due to several problems. (i) Balanced immune responses to the four serotypes have proven difficult to achieve with tetravalent cocktails of live vaccine candidates, in which each component differs in its level of attenuation or in which interference among the live components of the vaccine may occur. (ii) Determination of virulence in primate models may not accurately predict attenuation for humans. In fact, an attenuated DENV3 candidate vaccine that was deemed safe in mice and primates produced dengue fever in human volunteers (51). (iii) In many DENV-endemic regions of Asia, the dengue seroprevalence is very high, and over 95% of children born have maternal dengue antibody. Human safety as assessed in a phase I trial in seronegative populations may not accurately reflect safety in persons seropositive for one of the DENV serotypes or infants with maternal antibodies. (iv) The presence of such antibodies also might interfere with live attenuated dengue vaccines. If vaccine is administered during the first year of life, passively transferred anti-DENV maternal antibodies would likely interfere with the replication and immunogenicity of one or more components of the tetravalent cocktail. If the vaccine is administered later in childhood or in adulthood, antibodies to an earlier natural infection may be boosted and yet interfere with the immunogenicity of a heterologous component of the multivalent live vaccine.We propose that nonpropagating Venezuelan equine encephalitis virus (VEE) replicon particles (VRP) are well suited to address the difficulties faced in DENV vaccine development. Three properties of the VEE vectors may contribute to their ability to overcome maternal-antibody interference to a significant degree. (i) The DENV antigens are not exposed on the VRP surface; therefore, preexisting DENV-neutralizing antibodies should not affect delivery of the DENV genes to the target cells. (ii) Unlike live attenuated vaccines that depend on multiple rounds of replication and are thus more susceptible to interference by preexisting anti-DENV antibodies, nonpropagating VRP vectors express high levels of the heterologous gene in a single round of infection. (iii) Due to the tropism mediated by the VEE glycoproteins that targets the VRP to the lymph node (35), and due to the adjuvant activity of the VRP (57), antigen presentation is facilitated and enhanced.The safety of nonpropagating VEE replicon vectors has been tested in many different animals, including over 2,000 rodents, 100 macaques, and more than 20 horses. No clinical signs of disease have been observed with any of these animals, including neonatal mice inoculated intracranially (i.c.) with 5 × 107 infectious units (IU) and RAG−/− mice inoculated with 107 IU of a VRP vaccine (48; A. West and N. Davis, personal communication). Safety has also been demonstrated in young adult volunteers in the United States, South Africa, and Botswana undergoing phase I clinical trials with a VRP expressing the Gag protein of clade C human immunodeficiency virus type 1. No serious adverse events were reported with doses as high as 108 IU (12). VRP vectors confer long-lived humoral and cellular immune responses to a wide variety of viral and bacterial antigens tested in animal models, resulting in strong and complete protective immune responses to influenza virus in rodents and chickens (48, 52), Lassa fever and ebola viruses in rodents (69), equine arteritis virus in rodents and horses (2), and Marburg virus in primates (28).Here, we demonstrate the ability of VRP vaccine vectors to deliver the immunogenic membrane prM and E protein genes of DENV2 into young mice and to induce a protective humoral immune response, even in the presence of maternal antibodies that otherwise interfere with immunization with a model live DENV2 vaccine. This study shows the feasibility of a VRP vaccine approach as an early-life DENV vaccine to protect infants during that window of time when maternal antibodies are no longer protective but still may interfere with active immunization induced by a live attenuated vaccine.  相似文献   

15.
Human respiratory syncytial virus (HRSV) fusion (F) protein is an essential component of the virus envelope that mediates fusion of the viral and cell membranes, and, therefore, it is an attractive target for drug and vaccine development. Our aim was to analyze the neutralizing mechanism of anti-F antibodies in comparison with other low-molecular-weight compounds targeted against the F molecule. It was found that neutralization by anti-F antibodies is related to epitope specificity. Thus, neutralizing and nonneutralizing antibodies could bind equally well to virions and remained bound after ultracentrifugation of the virus, but only the former inhibited virus infectivity. Neutralization by antibodies correlated with inhibition of cell-cell fusion in a syncytium formation assay, but not with inhibition of virus binding to cells. In contrast, a peptide (residues 478 to 516 of F protein [F478-516]) derived from the F protein heptad repeat B (HRB) or the organic compound BMS-433771 did not interfere with virus infectivity if incubated with virus before ultracentrifugation or during adsorption of virus to cells at 4°C. These inhibitors must be present during virus entry to effect HRSV neutralization. These results are best interpreted by asserting that neutralizing antibodies bind to the F protein in virions interfering with its activation for fusion. Binding of nonneutralizing antibodies is not enough to block this step. In contrast, the peptide F478-516 or BMS-433771 must bind to F protein intermediates generated during virus-cell membrane fusion, blocking further development of this process.Human respiratory syncytial virus (HRSV), a member of the Pneumovirus genus of the Paramyxoviridae family, is the main cause of severe lower respiratory tract infections in very young children (36), and it is a pathogen of considerable importance in the elderly (24, 26) and in immunocompromised adults (22). Currently, there is no effective vaccine against the virus although it is known that passive administration of neutralizing antibodies to individuals at high risk is an effective immunoprophylaxis (37, 38).The HRSV genome is a single-stranded negative-sense RNA molecule of approximately 15 kb that encodes 11 proteins (16, 53). Two of these proteins are the main surface glycoproteins of the virion. These are (i) the attachment (G) protein, which mediates virus binding to cells (44), and (ii) the fusion (F) protein, which promotes both fusion of the viral and cell membranes at the initial stages of the infectious cycle and fusion of the membrane of infected cells with those of adjacent cells to form characteristic syncytia (72). These two glycoproteins are the only targets of neutralizing antibodies either induced in animal models (19, 63, 65, 70) or present in human sera (62).The G protein is a highly variable type II glycoprotein that shares neither sequence identity nor structural features with the attachment protein of other paramyxoviruses (75). It is synthesized as a precursor of about 300 amino acids (depending on the strain) that is modified posttranslationally by the addition of a large number of N- and O-linked oligosaccharides and is also palmitoylated (17). The G protein is oligomeric (probably a homotetramer) (23) and promotes binding of HRSV to cell surface proteoglycans (35, 40, 49, 67). Whether this is the only interaction of G with cell surface components is presently unknown.The F protein is a type I glycoprotein that is synthesized as an inactive precursor of 574 amino acids (F0) which is cleaved by furin during transport to the cell surface to yield two disulfide-linked polypeptides, F2 from the N terminus and F1 from the C terminus (18). Like other viral type I fusion proteins, the mature F protein is a homotrimer which is in a prefusion, metastable, conformation in the virus particle. After fusion, the F protein adopts a highly stable postfusion conformation. Stability of the postfusion conformation is determined to great extent by two heptad repeat (HR) sequences, HRA and HRB, present in the F1 chain. Mixtures of HRA and HRB peptides form spontaneously heterotrimeric complexes (43, 51) that assemble in six-helix bundles (6HB), consisting of an internal core of three HRA helices surrounded by three antiparallel HRB helices, as determined by X-ray crystallography (79).The three-dimensional (3D) structure of the HRSV F protein has not been solved yet. Nevertheless, the structures of the pre- and postfusion forms of two paramyxovirus F proteins have revealed substantial conformational differences between the pre- and postfusion conformations (77, 78). The present hypothesis about the mechanism of membrane fusion mediated by paramyxovirus F proteins proposes that, following binding of the virus to the cell surface, the prefusion form of the F glycoprotein is activated, and membrane fusion is triggered. The F protein experiences then a series of conformational changes which include the exposure of a hydrophobic region, called the fusion peptide, and its insertion into the target membrane. Subsequent refolding of this intermediate leads to formation of the HRA and HRB six-helix bundle, concomitant with approximation of the viral and cell membranes that finally fuse, placing the fusion peptide and the transmembrane domain in the same membrane (4, 20). The formation of the 6HB and the associated free energy change are tightly linked to the merger of the viral and cellular membranes (60).Antibodies play a major role in protection against HRSV. Animal studies have demonstrated that immunization with either F or G glycoproteins induces neutralizing antibodies and protects against a viral challenge (19, 63, 70). Furthermore, transfer of these antibodies (31, 56) or of anti-F or anti-G monoclonal antibodies (MAbs) protects mice, cotton rats, or calves against either a human or bovine RSV challenge, respectively (65, 68, 73). Likewise, infants at high risk of severe HRSV disease are protected by the prophylactic administration of immunoglobulins with high anti-HRSV neutralizing titers (33). Finally, a positive correlation was found between high titers of serum neutralizing antibodies and protection in adult volunteers challenged with HRSV (34, 74), while an inverse correlation was found between high titers of neutralizing antibodies and risk of infection in children (29) and in the elderly (25).Whereas all the anti-G monoclonal antibodies reported to date are poorly neutralizing (1, 28, 48, 71), some anti-F monoclonal antibodies have strong neutralization activity (1, 3, 5, 28, 46). It is believed that HRSV neutralization by anti-G antibodies requires simultaneous binding of several antibodies to different epitopes, leading to steric hindrance for interaction of the G glycoprotein with the cell surface. Indeed, it has been shown that neutralization is enhanced by mixtures of anti-G monoclonal antibodies (1, 50), mimicking the effect of polyclonal anti-G antibodies. In contrast, highly neutralizing anti-F monoclonal antibodies do not require cooperation by other antibodies to block HRSV infectivity efficiently (1).In addition to neutralizing antibodies, other low-molecular-weight compounds directed against the F protein are potent inhibitors of HRSV infectivity. Synthetic peptides that reproduce sequences of heptad repeat B inhibit both membrane fusion promoted by the F protein and HRSV infectivity (42). Also, other small molecules obtained by chemical synthesis have been shown to interact with F protein and inhibit HRSV infectivity. These HRSV entry inhibitors have been the topic of intense research in recent years (55).This study explores the mechanisms of HRSV neutralization by different inhibitors of membrane fusion, including anti-F monoclonal antibodies, an HRB peptide, and the synthetic compound BMS-433771 (13-15). The results obtained indicate that antibodies and low-molecular-weight compounds block membrane fusion at different stages during virus entry.  相似文献   

16.
The prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines were examined in rhesus macaques using an intrarectal high-dose simian immunodeficiency virus SIVmac239 challenge model. Cohorts of Mamu-A*01+/B*17 Indian rhesus macaques were immunized with one of several combinations of Ad5 vectors expressing Gag, Pol, Nef, and Env gp140; for comparison, a Mamu-A*01+ cohort was immunized using the Ad5 vector alone. There was no sign of immunological interference between antigens in the immunized animals. In general, expansion of the antigen breadth resulted in more favorable virological outcomes. In particular, the order of efficacy trended as follows: Gag/Pol/Nef/Env ≈ Gag/Pol > Gag ≈ Gag/Pol/Nef > Nef. However, the precision in ranking the vaccines based on the study results may be limited by the cohort size, and as such, may warrant additional testing. The implications of these results in light of the recent discouraging results of the phase IIb study of the trivalent Ad5 HIV-1 vaccine are discussed.There is a significant body of evidence suggesting that anti-human immunodeficiency virus type 1 (HIV-1) cellular immunity plays a prominent role in controlling viral infection and progression to disease (15, 32, 33). This stimulated substantial research into vaccines capable of eliciting this type of immunity, and several vaccine candidates (5, 6, 8-13, 22, 29-31, 35) have reached various stages of clinical development. However, the viability of this general vaccine approach was recently undermined by the findings in a phase II trial (called the Step Study) that immunization with a replication-defective adenovirus serotype 5 (Ad5) vaccine expressing HIV-1 clade B Gag, Pol, and Nef was not effective in either reducing acquisition rates and/or lowering set point viral loads in infected subjects (2, 25). In fact, more infections were originally observed in the vaccine group than in the placebo arm (2).The outcomes of the Step Study led to several important questions. Do the results argue against the concept of a HIV-1 vaccine based on the induction of specific T lymphocytes? On the other hand, if cytotoxic T-lymphocyte (CTL) responses are intrinsically valuable for an effective vaccine, what are the shortcomings in the vaccine-induced immunity that contributed to the lack of efficacy in the Step trial? What is the predictive value of preclinical challenge studies for selection of future clinical vaccine candidates? The potential role of CTL responses in an effective vaccine is also challenged by the recently reported phase III study results for the ALVAC vCP1521 prime-AIDSVAX B/E boost vaccine. The efficacy of this vaccine in a low-risk population was recently shown to trend toward prevention of HIV acquisition and not reduction of viral loads (30). Unlike the Step study vaccine, the ALVAC/AIDSVAX vaccine approach utilized a heterologous prime-boost regimen and contained an Env component that may have contributed to the type of outcome observed here. A better understanding of the immune correlates for this vaccine may be possible following further experimental investigations of the samples collected from the phase III study and earlier-stage trials.Despite the proven efficacy of Ad5 vaccination against simian-human immunodeficiency virus 89.6P (SHIV89.6P) challenge, subsequent primate studies provided equivocal results. In a homologous prime-boost regimen, Ad5 vaccine expressing Gag was ineffective against a high-dose simian immunodeficiency virus SIVmac239 challenge (4, 24). The same study compared this regimen with the DNA prime/Ad5 boost regimen that was found to be efficacious in Mamu-A*01+ monkeys; the level of protection in the overall study was correlated with the breadth of epitopes recognized and the frequency of induced antigen-specific CTLs. In this study, we examine whether the expansion of antigens to include Pol, Nef, and Env gp140 using the Ad5/Ad5 regimen would improve the outcome against the same high-dose SIV challenge. Of particular interest is the combination of Gag, Pol, and Nef, for which the homologous human vaccine was utilized in the Step study (29).  相似文献   

17.
18.
Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-γ)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-γ-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.Measles remains a major cause of child mortality despite the availability of a safe and effective live attenuated virus vaccine (LAV). Recent efforts to improve routine vaccination and implement national immunization days have moved measles control toward the World Health Organization''s goal of a 90% reduction in mortality by 2010 compared to 2000 (7). One persistent impediment to measles control in many countries remains the inability to successfully immunize young infants due to the immaturity of the immune system and interference of maternal antibodies with immune responses to LAV (1, 15, 65).Because the decrease in maternal antibody varies from one infant to another, many children in areas with high measles virus (MV) transmission rates are at risk of acquiring measles prior to vaccination (3, 5, 12). Immaturity also affects the quality and quantity of antibody produced in response to the current vaccine, with lower levels of neutralizing antibody and deficient avidity and isotype maturation in younger than in older infants (15, 16, 37, 59). As a result, the recommended age for vaccination is generally 9 months in developing countries to balance the risk of infection with the likelihood of response to the vaccine (24).A vaccine that could be given to children under the age of 6 months would improve measles control by allowing delivery with other infant vaccines and by closing the window of susceptibility prior to delivery of the current vaccine. Increasing the dose of LAV improved the antibody responses in young infants but resulted in an unexpected increase in mortality for girls, so this is not an acceptable approach to lowering the age of vaccination (18, 26, 29). Experience with a formalin-inactivated measles vaccine (FIMV) in the 1960s also led to unexpected complications. FIMV provided only short-term protection, and vaccinated individuals were at risk for more severe disease (atypical measles) upon infection with wild-type MV (14, 36, 54). Therefore, other strategies are necessary for development of a vaccine for young infants.One particularly promising approach for delivery of vaccine antigens is the use of alphavirus replicon particles (55). Alphaviruses are small positive-strand RNA viruses with the nonstructural replicase proteins encoded in the 5′ two-thirds of the genome and the structural proteins in the 3′ one-third. A subgenomic promoter is used to synthesize an abundant, smaller RNA from which the structural proteins are translated (61). Replicons contain the nonstructural protein genes, the 5′ and 3′ end cis-active replication sequences, and the subgenomic promoter that directs expression of a heterologous gene rather than the viral structural proteins. The replicon RNA can be packaged into virus-like particles by providing the structural proteins in trans using transient transfection (6, 33) or with stable packaging cell lines (51) and can be engineered for efficient delivery to antigen-presenting cells (17). Advantages include high-level expression of the vaccine antigen (68), stimulation of innate immunity (25, 31, 32, 64), and general lack of preexisting immunity in the human population.MV encodes six structural proteins of which two, hemagglutinin (H) and fusion (F), are surface glycoproteins involved in attachment and entry. Antibodies that inhibit MV infection in neutralization assays are directed primarily against the H protein, which also contains important CD8+ T-cell epitopes (39, 41). Nonhuman primates, particularly rhesus macaques, develop a disease similar to that of humans and offer the opportunity for assessing both protection from wild-type MV challenge and priming for enhanced disease after immunization with new experimental vaccines (2, 48, 50, 66). Because protection from measles correlates best with the quality and quantity of neutralizing antibodies at the time of exposure (9, 50), most experimental vaccines have used H alone or H and F for induction of MV protective immunity (44, 50, 65, 70).Alphaviruses that have been used for construction of replicon particle vaccines include Sindbis virus (SINV) (6, 68), Semliki Forest virus (33), and Venezuelan equine encephalitis virus (VEEV) (53). Each of the alphavirus vectors studied has its own advantages and disadvantages. For instance, VEEV replicon particles have high levels of gene expression (47), but vaccine production is disadvantaged by the requirement for biosafety level 3 manufacturing. SINV replicon particles avoid the safety concerns of VEEV, but expression levels are lower. Previous studies of a SINV-based replicon particle vaccine expressing MV H (SIN-H) in macaques showed good induction of neutralizing antibody and T-cell responses and protection from rash (44). However, vaccinated monkeys developed viremias after challenge, indicating that they were not protected from infection. In this study, we sought to improve the alphavirus replicon particle approach to vaccination for measles by using a chimeric VEE/SIN vaccine (47) expressing both the MV H and F proteins.  相似文献   

19.
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.The smallpox vaccine, live vaccinia virus (VACV), is frequently considered the gold standard of human vaccines and has been enormously effective in preventing smallpox disease. The smallpox vaccine led to the worldwide eradication of the disease via massive vaccination campaigns in the 1960s and 1970s, one of the greatest successes of modern medicine (30). However, despite the efficacy of the smallpox vaccine, the mechanisms of protection remain unclear. Understanding those mechanisms is key for developing immunologically sound vaccinology principles that can be applied to the design of future vaccines for other infectious diseases (3, 101).Clinical studies of fatal human cases of smallpox disease (variola virus infection) have shown that neutralizing antibody titers were either low or absent in patient serum (24, 68). In contrast, neutralizing antibody titers for the VACV intracellular mature virion (MV or IMV) were correlated with protection of vaccinees against smallpox (68). VACV immune globulin (VIG) (human polyclonal antibodies) is a promising treatment against smallpox (47), since it was able to reduce the number of smallpox cases ∼80% among variola-exposed individuals in four case-controlled clinical studies (43, 47, 52, 53, 69). In animal studies, neutralizing antibodies are crucial for protecting primates and mice against pathogenic poxviruses (3, 7, 17, 21, 27, 35, 61, 66, 85).The specificities and the functions of protective antipoxvirus antibodies have been areas of intensive research, and the mechanics of poxvirus neutralization have been debated for years. There are several interesting features and problems associated with the antibody response to variola virus and related poxviruses, including the large size of the viral particles and the various abundances of many distinct surface proteins (18, 75, 91, 93). Furthermore, poxviruses have two distinct virion forms, intracellular MV and extracellular enveloped virions (EV or EEV), each with a unique biology. Most importantly, MV and EV virions share no surface proteins (18, 93), and therefore, there is no single neutralizing antibody that can neutralize both virion forms. As such, an understanding of virion structure is required to develop knowledge regarding the targets of protective antibodies.Neutralizing antibodies confer protection mainly through the recognition of antigens on the surface of a virus. A number of groups have discovered neutralizing antibody targets of poxviruses in animals and humans (3). The relative roles of antibodies against MV and EV in protective immunity still remain somewhat unclear. There are compelling data that antibodies against MV (21, 35, 39, 66, 85, 90, 91) or EV (7, 16, 17, 36, 66, 91) are sufficient for protection, and a combination of antibodies against both targets is most protective (66). It remains controversial whether antibodies to one virion form are more important than those to the other (3, 61, 66). The most abundant viral particles are MV, which accumulate in infected cells and are released as cells die (75). Neutralization of MV is relatively well characterized (3, 8, 21, 35). EV, while less abundant, are critical for viral spread and virulence in vivo (93, 108). Neutralization of EV has remained more enigmatic (3).B5R (also known as B5 or WR187), one of five known EV-specific proteins, is highly conserved among different strains of VACV and in other orthopoxviruses (28, 49). B5 was identified as a protective antigen by Galmiche et al., and the available evidence indicated that the protection was mediated by anti-B5 antibodies (36). Since then, a series of studies have examined B5 as a potential recombinant vaccine antigen or as a target of therapeutic monoclonal antibodies (MAbs) (1, 2, 7, 17, 40, 46, 66, 91, 110). It is known that humans immunized with the smallpox vaccine make antibodies against B5 (5, 22, 62, 82). It is also known that animals receiving the smallpox vaccine generate antibodies against B5 (7, 20, 27, 70). Furthermore, previous neutralization assays have indicated that antibodies generated against B5 are primarily responsible for neutralization of VACV EV (5, 83). Recently Chen at al. generated chimpanzee-human fusion MAbs against B5 and showed that the MAbs can protect mice from lethal challenge with virulent VACV (17). We recently reported, in connection with a study using murine monoclonal antibodies, that neutralization of EV is highly complement dependent and the ability of anti-B5 MAbs to protect in vivo correlated with their ability to neutralize EV in a complement-dependent manner (7).The focus of the study described here was to elucidate the mechanisms of EV neutralization, focusing on the human antibody response to B5. Our overall goal is to understand underlying immunobiological and virological parameters that determine the emergence of protective antiviral immune responses in humans.  相似文献   

20.
Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism.Human immunodeficiency virus type 2 (HIV-2) infection affects 1 to 2 million individuals, most of whom live in India, West Africa, and Europe (17). HIV-2 has diversified into eight genetic groups named A to H, of which group A is by far the most prevalent worldwide. Nucleotide sequences of Env can differ up to 21% within a particular group and by over 35% between groups.The mortality rate in HIV-2-infected patients is at least twice that of uninfected individuals (26). Nonetheless, the majority of HIV-2-infected individuals survive as elite controllers (17). In the absence of antiretroviral therapy, the numbers of infected cells (39) and viral loads (36) are much lower among HIV-2-infected individuals than among those who are HIV-1 infected. This may be related to a more effective immune response produced against HIV-2. In fact, most HIV-2-infected individuals have proliferative T-cell responses and strong cytotoxic responses to Env and Gag proteins (17, 31). Moreover, autologous and heterologous neutralizing antibodies (NAbs) are raised in most HIV-2-infected individuals (8, 32, 48, 52), and the virus seems unable to escape from these antibodies (52). As for HIV-1, the antibody specificities that mediate HIV-2 neutralization and control are still elusive. The V3 region in the envelope gp125 has been identified as a neutralizing target by some but not by all investigators (3, 6, 7, 11, 40, 47, 54). Other weakly neutralizing epitopes were identified in the V1, V2, V4, and C5 regions in gp125 and in the COOH-terminal region of the gp41 ectodomain (6, 7, 41). A better understanding of the neutralizing determinants in the HIV-2 Env will provide crucial information regarding the most relevant targets for vaccine design.The development of immunogens that elicit the production of broadly reactive NAbs is considered the number one priority for the HIV-1 vaccine field (4, 42). Most current HIV-1 vaccine candidates intended to elicit such broadly reactive NAbs are based on purified envelope constructs that mimic the structure of the most conserved neutralizing epitopes in the native trimeric Env complex and/or on the expression of wild-type or modified envelope glycoproteins by different types of expression vectors (4, 5, 29, 49, 58). With respect to HIV-2, purified gp125 glycoprotein or synthetic peptides representing selected V3 regions from HIV-2 strain SBL6669 induced autologous and heterologous NAbs in mice or guinea pigs (6, 7, 22). However, immunization of cynomolgus monkeys with a subunit vaccine consisting of gp130 (HIV-2BEN) micelles offered little protection against autologous or heterologous challenge (34). Immunization of rhesus (19, 44, 45) and cynomolgus (1) monkeys with canarypox or attenuated vaccinia virus expressing several HIV-2 SBL6669 proteins, including the envelope glycoproteins, in combination with booster immunizations with gp160, gp125, or V3 synthetic peptides, elicited a weak neutralizing response and partial protection against autologous HIV-2 challenge. Likewise, vaccination of rhesus monkeys with immunogens derived from the historic HIV-2ROD strain failed to generate neutralizing antibodies and to protect against heterologous challenge (55). Finally, baboons inoculated with a DNA vaccine expressing the tat, nef, gag, and env genes of the HIV-2UC2 group B isolate were partially protected against autologous challenge without the production of neutralizing antibodies (33). These studies illustrate the urgent need for new vaccine immunogens and/or vaccination strategies that elicit the production of broadly reactive NAbs against HIV-2. The present study was designed to investigate in the mouse model the immunogenicity and neutralizing response elicited by novel recombinant envelope proteins derived from the reference primary HIV-2ALI isolate, when administered alone or in different prime-boost combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号