首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

2.
The extracellular chlamydial infectious particle, or elementary body (EB), is enveloped by an intra- and intermolecular cysteine cross-linked protein shell called the chlamydial outer membrane complex (COMC). A few abundant proteins, including the major outer membrane protein and cysteine-rich proteins (OmcA and OmcB), constitute the overwhelming majority of COMC proteins. The identification of less-abundant COMC proteins has been complicated by limitations of proteomic methodologies and the contamination of COMC fractions with abundant EB proteins. Here, we used parallel liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses of Chlamydia trachomatis serovar L2 434/Bu EB, COMC, and Sarkosyl-soluble EB fractions to identify proteins enriched or depleted from COMC. All well-described COMC proteins were specifically enriched in the COMC fraction. In contrast, multiple COMC-associated proteins found in previous studies were strongly enriched in the Sarkosyl-soluble fraction, suggesting that these proteins are not COMC components or are not stably associated with COMC. Importantly, we also identified novel proteins enriched in COMC. The list of COMC proteins identified in this study has provided reliable information for further understanding chlamydial protein secretion systems and modeling COMC and EB structures.Bacteria in the phylum Chlamydiae are characterized by their complex intracellular developmental cycles. Chlamydiae must assume at least two functionally distinct morphotypes, the intracellular, replicative reticulate body (RB) and the extracellular, infectious elementary body (EB), to replicate and be transmitted to new hosts (50). The divergence of distinct RB and EB forms may have been driven by the different pressures these pathogens face inside host cells during replication and outside host cells during transmission. For example, the outer membrane of EB contains a poorly immunogenic truncated lipopolysaccharide (LPS) (14, 30) and immunodominant epitopes of the major outer membrane protein (MOMP) vary substantially among closely related chlamydial strains (13). EB also lack detectable peptidoglycan (2, 20, 60), although functional murein biosynthetic enzymes (2, 5, 16, 21, 32, 43, 45, 46) are expressed in RB during productive and persistent infection (44). To compensate for the loss of murein, EB are enveloped by a protein P-layer, which lends osmotic stability to the infectious particle (29).Attempts to identify components of the P-layer and outer membrane proteins of Chlamydia were advanced by the observation that these layers can be separated from many soluble EB proteins using the detergent N-lauroyl sarcosine (Sarkosyl). Caldwell et al. dubbed the Sarkosyl-insoluble fraction the chlamydial outer membrane complex (COMC) and noted that purified COMC maintained the shape of intact EB and contained a complete outer membrane, and they reported that a single outer membrane protein, MOMP, accounted for more than 60% of total COMC protein content (15). Other studies revealed that the COMC is stabilized by extensive disulfide bonds between MOMP monomers (26, 27, 53) and between MOMP and two abundant cysteine-rich COMC components (26, 28). Other studies revealed that the COMC is stabilized by extensive disulfide bonds between MOMP monomers (18, 29, 52) and the EB surface (3, 19, 47, 67). More recent data suggest that not all EB outer membrane (OM) proteins are disulfide cross-linked to the COMC. For example, polymorphic membrane protein D localizes to the surface of EB but can be extracted from intact EB with gentle detergents in the absence of reducing agents (17, 61). Thus, not all COMC proteins are exposed on the EB surface, nor are all EB OM proteins components of the COMC.Beyond these well-described and abundant COMC components, other studies have indicated that additional proteins localize to the EB surface and/or COMC of Chlamydia trachomatis (7, 28, 36, 51, 57, 64, 67, 70). However, confirming that specific proteins localize to the COMC or OM of EB can be challenging due to factors such as the contamination of EB preparations with RB proteins and technical limitations of proteomic and surface-labeling protein identification methods (29, 56).Here, we used differential proteomics to identify proteins specifically enriched in the COMC. Isolated COMC were dissolved in 8 M urea, and the extracted proteins were digested with trypsin. The resulting peptides were analyzed by high-sensitivity liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to identify low-abundance proteins. Sarkosyl-soluble fractions and whole EB were analyzed in parallel with COMC, and protein assignments were compared among three replicate runs of each fraction. In total, peptides from 329 L2 proteins were identified. The differential analysis of protein abundance indicated the enrichment of 17 proteins in the COMC. Our results define the cadre of low-abundance COMC proteins, provide a starting point for the identification of surface-exposed EB proteins, and identify EB proteins that are likely to be recognized by innate immunity receptors and/or capable of eliciting neutralizing antibodies in vivo. Finally, our findings and data from other recent studies permit the refinement of existing models of EB and COMC structure.  相似文献   

3.
Adeno-associated virus (AAV) type 2 and 5 proteins Rep52 and Rep40 were polyubiquitinated during AAV-adenovirus type 5 (Ad5) coinfection and during transient transfection in either the presence or absence of Ad5 E4orf6 and E1b-55k. Polyubiquitination of small Rep proteins via lysine 48 (K48) linkages, normally associated with targeting of proteins for proteasomal degradation, was detected only in the presence of E4orf6. The small Rep proteins were ubiquitinated via lysine 63 (K63) following transfection in either the presence or absence of E4orf6 or following coinfection with Ad5. E4orf6/E1b-55k-dependent K48-specific polyubiquitination of small Rep proteins could be inhibited using small interfering RNA (siRNA) to cullin 5.Together, adenovirus type 5 (Ad5) early gene products E1a, E1b-55k, E2a, E4orf6, and virus-associated (VA) RNA can support efficient replication of adeno-associated virus (AAV) (4, 31). E4orf6 and E1b-55k are known to interact with cellular cullin 5 (cul5), elongins B and C, and the ring box protein Rbx1 to form an E3 ubiquitin ligase complex that specifically targets a small population of cellular proteins for degradation by the proteasome (1, 7, 21, 22, 24, 27). This property has been implicated in a number of functions presumed to be required for both Ad and AAV replication (3, 8-10, 17, 23, 24, 34, 35).Previously, only p53, Mre11, DNA ligase IV, and integrin α3 had been shown to be substrates of the Ad5 E3 ubiquitin ligase complex (1, 7, 21, 22, 24, 27); however, we have recently shown (16, 17) that the small Rep proteins and capsid proteins of AAV5 are also degraded in the presence of Ad E4orf6 and E1b-55k in a proteasome-dependent manner. These proteins were restored to levels required during infection by the action of VA RNA (17). The targeting for degradation of AAV5 protein by the E4orf6/E1b-55k E3 ubiquitin ligase complex required functional BC-box motifs in E4orf6 and could be inhibited by depletion of the scaffolding protein cullin 5 using directed small interfering RNA (siRNA) (16). In addition, the degradation of AAV5 protein was partially prevented by overexpression of pUBR7, a plasmid that generates a dominant-negative ubiquitin (16). The role this targeted degradation plays in the life cycle of AAV has not yet been clarified; however, E4orf6 mutants that cannot function in this regard do not support AAV replication as well as wild-type E4orf6 (R. Nayak and D. J. Pintel, unpublished data). Degradation of Mre11 by the Ad5 E3 ligase has also been implicated in allowing efficient Ad5 and AAV replication (24). Ubiquitination of AAV Rep proteins during viral infection, however, has not previously been reported.  相似文献   

4.
5.
6.
7.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

8.
9.
10.
11.
12.
Epac1 is a guanine nucleotide exchange factor for the small G protein Rap and is involved in membrane-localized processes such as integrin-mediated cell adhesion and cell-cell junction formation. Cyclic AMP (cAMP) directly activates Epac1 by release of autoinhibition and in addition induces its translocation to the plasma membrane. Here, we show an additional mechanism of Epac1 recruitment, mediated by activated ezrin-radixin-moesin (ERM) proteins. Epac1 directly binds with its N-terminal 49 amino acids to ERM proteins in their open conformation. Receptor-induced activation of ERM proteins results in increased binding of Epac1 and consequently the clustered localization of Epac1 at the plasma membrane. Deletion of the N terminus of Epac1, as well as disruption of the Epac1-ERM interaction by an interfering radixin mutant or small interfering RNA (siRNA)-mediated depletion of the ERM proteins, impairs Epac1-mediated cell adhesion. We conclude that ERM proteins are involved in the spatial regulation of Epac1 and cooperate with cAMP- and Rap-mediated signaling to regulate adhesion to the extracellular matrix.Cyclic AMP (cAMP) is a second messenger that relays a wide range of hormone responses. The discovery of Epac as a direct effector of cAMP (15, 29) has triggered the elucidation of many cAMP-regulated processes that could not be explained by the previously known effectors protein kinase A (PKA) and cyclic nucleotide-regulated ion channels (21). Both Epac family members, Epac1 and Epac2, act as guanine nucleotide exchange factors (GEFs) for the small G proteins Rap1 and Rap2. Thereby, Epac functions in processes such as exocytosis (28, 48, 59), cell-cell junction formation (13, 20, 30, 53, 64), and cell-extracellular matrix (ECM) adhesion (55). Adhesion to the ECM induced by Epac1 and Rap is mediated by actin-linked integrin molecules and is implicated in diverse biological processes such as homing of endothelial progenitor cells to ischemic tissue (9), remodeling of the vasculature (10, 36), and transendothelial migration of leukocytes (37, 60).Epac1 and Epac2 are multidomain proteins containing a C-terminal catalytic region, which consists of a CDC25 homology domain responsible for GEF activity, a Ras exchange motif (REM), which stabilizes the CDC25 homology domain, and a Ras association (RA) domain. In the autoinhibited state, the catalytic site is sterically covered by the N-terminal regulatory region, which harbors a DEP (Dishevelled, Egl-10, and pleckstrin) domain and one or two cyclic nucleotide-binding domains in Epac1 and Epac2, respectively. As demonstrated by the crystal structures of both active and inactive Epac2, autoinhibition is released by a conformational change induced by the binding of cAMP (56, 57).After its production at the plasma membrane (PM) by adenylate cylases, cAMP becomes compartmentalized due to local degradation by spatially restricted phosphodiesterases (1). Further compartmentalization of cAMP signaling is established by the confined targeting of the cAMP effector proteins. Numerous adaptor proteins that target PKA to distinct subcellular locations and mediate the assembly of large signaling complexes have been identified (3). Similarly, cAMP-Epac signaling appears to be spatially regulated by diverse anchoring mechanisms, which may reflect the many different functions assigned to Epac. For instance, the DNA damage-responsive kinase DNA-PK is regulated by nuclear Epac1 (26), whereas membrane recruitment by activated Ras is essential for the role of Epac2 in neurite outgrowth (34, 35). Recently, we reported that Epac1 translocates to the PM upon the binding of cAMP and that this translocation contributes to Rap-mediated cell-ECM adhesion (51). Although the anchor at the PM remains elusive, it has become clear that the cAMP-dependent translocation of Epac1 involves its DEP domain (amino acids 50 to 148) and requires the cAMP-induced conformation.In this study, we reveal an additional targeting mechanism of Epac1 by showing that its N terminus interacts with members of the ezrin-radixin-moesin (ERM) family. ERM proteins show high sequence similarity and function as scaffolding proteins that link the actin cytoskeleton to the PM (18, 42, 47). Inactive ERM proteins reside in the cytoplasm in an autoinhibited state maintained by an intramolecular interaction between the N-terminal FERM (4.1 protein, ezrin, radixin, moesin) domain and the C-terminal actin binding domain (ABD). This autoinhibition is released by binding to phosphatidylinositol-4,5-bisphosphate (PIP2) and threonine phosphorylation of the ABD, which induce the open conformation of the protein (reviewed in reference 8). Several kinases have been implicated in phosphorylation of this threonine in the ABD, including protein kinase C α (PKC α), PKC θ, NIK, Mst4, and the Rho effector ROCK (2, 40, 46, 50, 61). Active ERM proteins directly link the actin cytoskeleton to the PM and allow the recruitment of multiple signaling proteins. In this manner, ERM proteins function in numerous processes, such as the formation of microvilli, adherens junction stabilization, and leukocyte polarization (12, 18, 42, 47). Here, we demonstrate that ERM proteins also function as PM anchors for Epac1. The underlying interaction is mediated by the N terminus (residues 1 to 49) of Epac1 and is independent of its conformational state. Instead, the interaction is regulated at the level of the ERM proteins, which bind Epac1 when they are in their active, open conformation. G protein-coupled receptor (GPCR)-mediated signaling that results in activation of ERM proteins increases binding of Epac1 and results in a clustered localization of Epac1 at the PM. Together with DEP domain-mediated PM translocation, ERM proteins control cell adhesion mediated by Epac1. In conclusion, our data show that ERM proteins mediate PM recruitment of Epac1 and couple Epac1 activity to integrin-mediated cell adhesion.  相似文献   

13.
Barley stripe mosaic virus (BSMV) spreads from cell to cell through the coordinated actions of three triple gene block (TGB) proteins (TGB1, TGB2, and TGB3) arranged in overlapping open reading frames (ORFs). Our previous studies (D. M. Lawrence and A. O. Jackson, J. Virol. 75:8712-8723, 2001; D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001) have shown that each of these proteins is required for cell-to-cell movement in monocot and dicot hosts. We recently found (H.-S. Lim, J. N. Bragg, U. Ganesan, D. M. Lawrence, J. Yu, M. Isogai, J. Hammond, and A. O. Jackson, J. Virol. 82:4991-5006, 2008) that TGB1 engages in homologous interactions leading to the formation of a ribonucleoprotein complex containing viral genomic and messenger RNAs, and we have also demonstrated that TGB3 functions in heterologous interactions with TGB1 and TGB2. We have now used Agrobacterium tumefaciens-mediated protein expression in Nicotiana benthamiana leaf cells and site-specific mutagenesis to determine how TGB protein interactions influence their subcellular localization and virus spread. Confocal microscopy revealed that the TGB3 protein localizes at the cell wall (CW) in close association with plasmodesmata and that the deletion or mutagenesis of a single amino acid at the immediate C terminus can affect CW targeting. TGB3 also directed the localization of TGB2 from the endoplasmic reticulum to the CW, and this targeting was shown to be dependent on interactions between the TGB2 and TGB3 proteins. The optimal localization of the TGB1 protein at the CW also required TGB2 and TGB3 interactions, but in this context, site-specific TGB1 helicase motif mutants varied in their localization patterns. The results suggest that the ability of TGB1 to engage in homologous binding interactions is not essential for targeting to the CW. However, the relative expression levels of TGB2 and TGB3 influenced the cytosolic and CW distributions of TGB1 and TGB2. Moreover, in both cases, localization at the CW was optimal at the 10:1 TGB2-to-TGB3 ratios occurring in virus infections, and mutations reducing CW localization had corresponding effects on BSMV movement phenotypes. These data support a model whereby TGB protein interactions function in the subcellular targeting of movement protein complexes and the ability of BSMV to move from cell to cell.Plants use macromolecular trafficking pathways through plasmodesmata (PD) as a means to regulate developmental processes and physiological functions, and they also rely on these channels as avenues to communicate and mount defense responses to pathogen challenge (2, 37, 55). Local and systemic plant virus invasion depends on the abilities of viruses to use these pathways to spread from initially infected cells to the vascular tissue and distal regions of the plant. To this end, viruses infecting plants have evolved movement proteins (MPs) that coopt host trafficking pathways to target virus genomes to the PD and to facilitate the cell-to-cell transit of infectious entities (4, 13, 36, 48, 55). Virus MPs vary in size, number, and genome organization, but they share a number of functional characteristics including localization to PD, an ability to increase the size exclusion limits of PD, and RNA binding activities (3, 7, 8, 24, 27, 58).Viruses containing triple gene block (TGB) MPs have been the subjects of a number of investigations (4, 6, 39, 53, 54). Interestingly, viruses with a range of diverse genome structures encode MPs in a TGB, but these proteins fall into two major TGB classes that have substantial differences in protein structure and variations in their physical, functional, and cellular interactions (19, 30, 39, 45, 48). For example, the hordeivirus-like TGB1 proteins contain substantial N-terminal extensions that are lacking in the potexvirus-like TGB1 proteins, but the two classes of proteins share a conserved helicase domain at their C termini (39). The available evidence also indicates that hordeivirus-like and potexvirus-like TGB1 proteins share common biochemical features, including RNA binding abilities (3, 13, 23, 35, 44, 56), RNA helicase activities (22), associated NTPase activities (3, 13, 23, 33, 35, 44), and the capacity to form homologous interactions (29, 30, 45). However, the potexvirus-like TGB1 proteins localize at the CW when expressed autonomously and also facilitate increases in PD size exclusion limits, whereas the hordeivirus-like TGB1 proteins lack both these activities (39, 53). Major differences are also evident in the organizations of the potexvirus-like and hordeivirus-like TGB3 proteins, which share no discernible relatedness, differ in the numbers of their transmembrane domains, and indeed appear to have a polyphyletic origin (39).In both TGB classes, the movement strategy employs the coordinated actions of all three proteins. However, the coat protein is dispensable for one or more phases of movement of benyvirus, hordeivirus, pecluvirus, and pomovirus, encoding hordeivirus-like (class I) MPs, but is absolutely required for cell-to-cell movement of potexvirus-like (class II) MPs encoded by allexivirus, carlavirus, foveavirus, and potexvirus (6, 19, 39, 54). These variations clearly demonstrate that the two classes of TGB proteins have profound differences in their functional properties and in their associations with other virus and host proteins. Hence, comparative analyses of the functional and biological properties of the two classes of proteins in their common hosts may reveal important activities relevant to viral pathogenesis. To provide more information about the hordeivirus-like movement mechanisms, we are investigating the TGB interactions of Barley stripe mosaic virus (BSMV).BSMV is the type member of the genus Hordeivirus, which includes Poa semilatent virus (PSLV), Lychnis ringspot virus, and Anthoxanthum latent blanching virus (6, 19). Hordeiviruses have positive-sense, single-stranded RNA genomes consisting of three segments, designated α, β, and γ. The RNAβ segment encodes the coat protein, which is translated directly from genomic RNAβ (gRNAβ), and the TGB proteins, which are expressed from two subgenomic RNAs (sgRNAs), designated sgRNAβ1 and sgRNAβ2 (60). The coat protein is dispensable for the systemic movement of BSMV (41), and mutational analyses indicate that the TGB1, TGB2, and TGB3 proteins are each essential for cell-to-cell movement in monocot and dicot hosts (28). The BSMV TGB1 (58-kDa) protein is expressed from sgRNAβ1 at higher levels than the smaller hydrophobic TGB2 (14-kDa) and TGB3 (17-kDa) proteins, which are coexpressed from the bicistronic sgRNAβ2 during replication (14, 60). BSMV TGB1 has binding activity for both single-stranded and double-stranded RNAs (13) and forms nucleoprotein complexes with each of the BSMV gRNAs and sgRNAs (30). The hordeivirus-like TGB1 proteins differ from the potexvirus-like TGB1 proteins in having longer N-terminal domains with positively charged amino acids, but both classes of proteins have conserved C-terminal NTPase/helicase domains (13, 39, 49). In BSMV, mutations of conserved amino acids within the TGB1 helicase motif abrogate cell-to-cell movement and alter subcellular localization in infected protoplasts (27). Plants infected with a BSMV β-green fluorescent protein-TGB1 (β-GFP-TGB1) reporter virus also exhibited paired foci on both sides of the CW, and the plasma membranes of infected protoplasts developed punctate foci (27). TGB1 and TGB2 are also essential for plasma membrane targeting because β-GFP-TGB1 reporter derivatives that were unable to express TGB2 or TGB3 fluoresce at perinuclear membranes of protoplasts (27). Particle bombardment studies with the related hordeivirus PSLV also suggested that the expression of TGB3 is required to shift the localization of TGB2 from the endoplasmic reticulum (ER) to the peripheral membranes (50), and transgenically expressed PSLV TGB3 appears to be associated with PD due to its colocalization with callose markers (17).We have recently shown that TGB2 and TGB3 interact physically and have identified single amino acids in each protein that are required for these interactions (19, 30). TGB3 also interacts with TGB1, and we have proposed that these interactions facilitate the transport of ribonucleoprotein (RNP) complexes to the PD (30). However, the effects of TGB protein interactions on subcellular localization have not been defined. Moreover, because of possible convergent evolution of the hordeivirus-like and potexvirus-like TGB-containing viruses (39), the mechanisms of action resulting in transport may differ among different genera or even among different virus species within a genus. To obtain more refined information about these processes, we have now expressed fluorescent TGB fusion proteins transiently in Nicotiana benthamiana leaf cells by Agrobacterium tumefaciens infiltration and have assessed the subcellular localization patterns of BSMV wild-type (wt) and mutant TGB derivatives that differ in their interactions. We also have carried out reverse genetic experiments with selected BSMV TGB mutants to provide a biological context for the localization patterns appearing during ectopic Agrobacterium expression. These findings are elaborated in a model for TGB interactions required for the cell-to-cell movement of BSMV.  相似文献   

14.
Clostridium botulinum subtype A2 possesses a botulinum neurotoxin type A (BoNT/A) gene cluster consisting of an orfX cluster containing open reading frames (ORFs) of unknown functions. To better understand the association between the BoNT/A2 complex proteins, first, the orfX cluster proteins (ORFX1, ORFX3, P47, and the middle part of NTNH) from C. botulinum A2 strain Kyoto F and NTNH of A1 strain ATCC 3502 were expressed by using either an Escherichia coli or a C. botulinum expression system. Polyclonal antibodies against individual orfX cluster proteins were prepared by immunizing a rabbit and mice against the expressed proteins. Antibodies were then utilized as probes to determine which of the A2 orfX cluster genes were expressed in the native A2 culture. N-terminal protein sequencing was also employed to specifically detect ORFX2. Results showed that all of the neurotoxin cluster proteins, except ORFX1, were expressed in the A2 culture. A BoNT/A2 toxin complex (TC) was purified which showed that C. botulinum A2 formed a medium-size (300-kDa) TC composed of BoNT/A2 and NTNH without any of the other OrfX cluster proteins. NTNH subtype-specific immunoreactivity was also discovered, allowing for the differentiation of subtypes based on cluster proteins associated with BoNT.Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most potent toxins known in nature and are characterized as category A select agents since they are considered potential bioterrorism threats (3). BoNTs can be distinguished immunologically into seven serotypes by using homologous antitoxins, designated A to G. BoNT/A is of particular interest, since it is frequently implicated in cases of botulism and is a significant threat in bioterrorism (1, 10).BoNT is a 150-kDa protein composed of a heavy chain (100 kDa) and a light chain (50 kDa) linked by a disulfide bond and noncovalent molecular interactions (24). The heavy chain (H) has two functional domains, a transmembrane domain and a receptor binding domain. The light chain (L) is a zinc-dependent protease which specifically cleaves one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors, resulting in the blockage of evoked acetylcholine release at the skeletal neuromuscular junction (8).Previous studies have found that the bont genes of all strains of C. botulinum and neurotoxigenic strains of Clostridium butyricum and Clostridium baratii have a set of genes located upstream of the bont and ntnh genes that are organized as gene clusters (5, 7, 23). The two known primary types of clusters are (i) a hemagglutinin (ha) cluster and (ii) an orfX cluster with open reading frames (ORFs) of unknown functions. The ha cluster consists of genes encoding HA17, HA33, HA70, BotR, and NTNH. The orfX cluster consists of genes encoding ORFX3, ORFX2, ORFX1, P47, P21, and NTNH. Previous studies indicate that BoNT/A subtypes possess either a ha cluster or an orfX cluster associated with their expressed bont gene, depending on the subtype and strain (5, 11, 13-15, 33).It has been shown that the BoNT complex can form stable toxin complexes (TCs) of various sizes, including LL-TC (∼900 kDa), L-TC (∼500 kDa), and M-TC (∼300 kDa) composed of various combinations of HA proteins, NTNH, and BoNT (19, 21, 23, 29, 31, 34). M-TC contains BoNT and NTNH but has no HA proteins, whereas LL-TC and L-TC contain different ratios of the BoNT, NTNH, and HA proteins (21, 22, 29, 34). The biological and structural roles of the complex proteins are not completely characterized, although it has been proposed that they serve the role of protecting BoNT from harsh conditions, including pH, salt, temperature, and digestive enzymes, and that they assist BoNT translocation across the intestinal epithelial layer (2, 6, 17). A recent report indicated that the nontoxic proteins serve as adjuvants and contribute to the immunogenicity of BoNT/A (25).The production of botulinum TCs is known to vary with different serotypes and strains, medium composition, and culture conditions (21, 24, 31). The LL-TC has only been observed in proteolytic strains (group I). Serotype A to D strains produce M-TC and L-TC in their culture medium, while serotype E and F strains produce only M-TC (17, 18).In 1986, a Japanese group isolated four HA-negative C. botulinum strains from infant botulism cases that produced only M-TC (300 kDa). They assigned the strains to subtype A2 (14, 30). In 2004, our laboratory confirmed on a genomic level that the BoNT/A2 subtype contained the orfX cluster instead of the ha cluster (12). Since then, more arrangements and combinations of neurotoxin gene clusters were characterized along with more BoNT subtypes (13, 20, 33). However, the function of the orfX genes and the role of the presumptive protein products and their role in the TCs are still unknown, including whether ORFX proteins can form a TC with the expressed toxin analogous to the ha cluster proteins.In this study, the BoNT/A2 TC was purified from a native culture to determine if the orfX cluster proteins remain associated with BoNT/A2. To better understand the role of the orfX cluster genes, the orfX cluster proteins of C. botulinum A2 strains (ORFX1, ORFX3, P47, and the middle part of NTNH) was expressed using either an Escherichia coli or a C. botulinum expression system in this study. Antibodies against individual expressed orfX cluster proteins were then raised by immunizing a rabbit and mice. These antibodies were then used as probes to investigate the expression pattern of the orfX cluster genes in the native A2 culture. ORFX2, which could not be expressed, was detected by N-terminal protein sequencing.  相似文献   

15.
16.
The chlorosome envelope of Chlorobaculum tepidum contains 10 proteins that belong to four structural motif families. A previous mutational study (N.-U. Frigaard, H. Li, K. J. Milks, and D. A. Bryant, J. Bacteriol. 186:646-653, 2004) suggested that some of these proteins might have redundant functions. Six multilocus mutants were constructed to test the effects of eliminating the proteins of the CsmC/CsmD and CsmB/CsmF motif families, and the resulting strains were characterized physiologically and biochemically. Mutants lacking all proteins of either motif family still assembled functional chlorosomes, and as measured by growth rates of the mutant strains, light harvesting was affected only at the lowest light intensities tested (9 and 32 μmol photons m−2 s−1). The size, composition, and biogenesis of the mutant chlorosomes differed from those of wild-type chlorosomes. Mutants lacking proteins of the CsmC/CsmD motif family produced smaller chlorosomes than did the wild type, and the Qy absorbance maximum for the bacteriochlorophyll c aggregates in these chlorosomes was strongly blueshifted. Conversely, the chlorosomes of mutants lacking proteins of the CsmB/CsmF motif family were larger than wild-type chlorosomes, and the Qy absorption for their bacteriochlorophyll c aggregates was redshifted. When CsmH was eliminated in addition to other proteins of either motif family, chlorosomes had smaller diameters. These data show that the chlorosome envelope proteins of the CsmB/CsmF and CsmC/CsmD families play important roles in determining chlorosome size as well as the assembly and supramolecular organization of the bacteriochlorophyll c aggregates within the chlorosome.Green sulfur bacteria (GSB; phylum Chlorobi) are obligate photolithoautotrophs that utilize chlorosomes for light harvesting (2, 13). Chlorosomes additionally occur in some green-nonsulfur bacteria, also known as filamentous anoxygenic phototrophs (phylum Chloroflexi), and in a recently discovered chlorophototrophic member of the phylum Acidobacteria, “Candidatus Chloracidobacterium thermophilum” (2, 3). Chlorosomes are the largest known light-harvesting organelles and can contain up to 250,000 bacteriochlorophyll (BChl) molecules (13, 29, 30, 39). They do not have a fixed stoichiometric ratio of the major pigment, which may be BChl c, d, or e, to any protein component, and as a result they are highly variable in size, shape, and composition. In spite of this structural heterogeneity (34), the detailed molecular and supramolecular structures of the BChls in chlorosomes of Chlorobaculum tepidum were recently solved by combining systems biology, solid-state nuclear magnetic resonance (NMR), cryo-electron microscopy, and molecular modeling (22). The fundamental structural units were found to be syn-anti monomer stacks that form coaxial nanotubes, which have a 2.1-nm spacing between the adjacent BChl layers. In addition to the major BChl species, chlorosomes contain carotenoids, isoprenoid quinones, wax esters, and a small quantity of BChl a. BChl a is known to be associated with CsmA, the most highly conserved protein in chlorosomes (13).Although the structural organization of the BChl molecules in all chlorosomes may be similar (4, 22, 25, 37, 38), with the exception of CsmA, the composition and sequences of the envelope proteins of chlorosomes of the phyla Chlorobi, Chloroflexi, and Acidobacteria are not well conserved. Blankenship (1) suggested that lateral gene transfer might have been responsible for the presence of the genes for chlorosome biogenesis among some of these three groups of bacteria. However, because chlorosomes are found in each of three, early-diverging bacterial lineages that contain chlorophototrophs, two of which additionally contain homodimeric type 1 reaction centers (2, 3), it is possible that chlorosomes represent one of the earliest types of photosynthetic antennae and were present in a common ancestor of these phyla.A protein-stabilized, glycolipid envelope surrounds the chlorosome BChls, and this membrane can be considered to be an asymmetric bilayer membrane in which glycolipids form the outer leaflet and the hydrophobic tails of BChls form the inner leaflet (13, 24, 50, 53). In C. tepidum, a genetically tractable model GSB, this envelope contains 10 proteins, which are designated CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX (6-8, 14, 47, 50). The structural organization of these proteins has been studied by cross-linking and immunoblotting, which led to a model for the organization of these proteins in the chlorosome envelope (28, 50, 53). CsmA, the only protein for which any detailed structural information is available, probably binds both BChl a and carotenoids (13, 23, 31, 35, 40) and forms a large, paracrystalline array known as the “baseplate” (8, 23, 28, 35, 36, 42). The structure for apo-CsmA in an organic solvent was recently determined by NMR spectroscopy, and a model for the structural organization of CsmA in the chlorosome baseplate of C. tepidum was proposed (35, 36).Sequence comparisons suggest that the chlorosome envelope proteins can be assigned to four motif families: 1, CsmA/CsmE; 2, CsmB/CsmF (CsmH); 3, CsmC/CsmD (CsmH); and 4, CsmI/CsmJ/CsmX (48, 50). CsmA and CsmE are 49% identical and are both synthesized as precursors, which are proteolytically processed by the removal of ∼20 amino acids at their carboxy termini to generate the mature polypeptides (7, 8). CsmB and CsmF are 29% identical and 63% similar in sequence (6, 50). Moreover, the amino-terminal domain of CsmH is related in sequence to these two proteins (50). The CsmC and CsmD proteins are 26% identical and 45% similar in sequence, and these two proteins additionally share sequence similarity to the carboxyl-terminal region of CsmH. The other three chlorosome proteins (CsmI, CsmJ, and CsmX) share some sequence similarities to the precursor forms of CsmA and CsmE in their carboxyl-terminal regions, while their amino-terminal domains are obviously related to adrenodoxin-type [2Fe-2S] ferredoxins (47-50). These sequence relationships strongly imply that gene duplication and divergence have occurred among a small number of ancestral gene types, and these observations additionally suggest that some of these proteins might be functionally redundant (47, 50). This view was supported by mutational studies that showed that only CsmA was essential for the viability of C. tepidum. Mutants lacking any other single chlorosome protein still assembled functional chlorosomes that were similar in pigment composition and functionality to those of the wild type (14).Because of the possible functional redundancy of chlorosome proteins of the different motif classes, double, triple, and quadruple mutants were constructed to study the roles of the CsmC/CsmD/CsmH and CsmB/CsmF/CsmH protein motif families in chlorosome biogenesis and structure. Mutants lacking CsmI, CsmJ, and CsmX, which form the Fe/S motif family of envelope proteins, were also constructed, and these mutants will be described in detail elsewhere (27; H. Li, N.-U. Frigaard, and D. A. Bryant, unpublished data). The results presented here show that functional chlorosomes assemble in the complete absence of proteins of the CsmC/CsmD or CsmB/CsmF motif families, but the size, shape, and composition of the resulting chlorosomes are altered. The results suggest that the chlorosome envelope proteins may also influence the structural organization of the BChls in chlorosomes and thus help to define chlorosome assembly and shape.  相似文献   

17.
18.
Clade B of the New World arenaviruses contains both pathogenic and nonpathogenic members, whose surface glycoproteins (GPs) are characterized by different abilities to use the human transferrin receptor type 1 (hTfR1) protein as a receptor. Using closely related pairs of pathogenic and nonpathogenic viruses, we investigated the determinants of the GP1 subunit that confer these different characteristics. We identified a central region (residues 85 to 221) in the Guanarito virus GP1 that was sufficient to interact with hTfR1, with residues 159 to 221 being essential. The recently solved structure of part of the Machupo virus GP1 suggests an explanation for these requirements.Arenaviruses are bisegmented, single-stranded RNA viruses that use an ambisense coding strategy to express four proteins: NP (nucleoprotein), Z (matrix protein), L (polymerase), and GP (glycoprotein). The viral GP is sufficient to direct entry into host cells, and retroviral vectors pseudotyped with GP recapitulate the entry pathway of these viruses (5, 13, 24, 31). GP is a class I fusion protein comprising two subunits, GP1 and GP2, cleaved from the precursor protein GPC (4, 14, 16, 18, 21). GP1 contains the receptor binding domain (19, 28), while GP2 contains structural elements characteristic of viral membrane fusion proteins (8, 18, 20, 38). The N-terminal stable signal peptide (SSP) remains associated with the mature glycoprotein after cleavage (2, 39) and plays a role in transport, maturation, and pH-dependent fusion (17, 35, 36, 37).The New World arenaviruses are divided into clades A, B, and C based on phylogenetic relatedness (7, 9, 11). Clade B contains the human pathogenic viruses Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Sabia, and Chapare, which cause severe hemorrhagic fevers in South America (1, 10, 15, 26, 34). Clade B also contains the nonpathogenic viruses Amapari (AMAV), Cupixi, and Tacaribe (TCRV), although mild disease has been reported for a laboratory worker infected with TCRV (29).Studies with both viruses and GP-pseudotyped retroviral vectors have shown that the pathogenic clade B arenaviruses use the human transferrin receptor type 1 (hTfR1) to gain entry into human cells (19, 30). In contrast, GPs from nonpathogenic viruses, although capable of using TfR1 orthologs from other species (1), cannot use hTfR1 (1, 19) and instead enter human cells through as-yet-uncharacterized hTfR1-independent pathways (19). In addition, human T-cell lines serve as useful tools to distinguish these GPs, since JUNV, GTOV, and MACV pseudotyped vectors readily transduce CEM cells, while TCRV and AMAV GP vectors do not (27; also unpublished data). These properties of the GPs do not necessarily reflect a tropism of the pathogenic viruses for human T cells, since viral tropism is influenced by many factors and T cells are not a target for JUNV replication in vivo (3, 22, 25).  相似文献   

19.
The vaccinia virus (VACV) complement control protein (VCP) is an immunomodulatory protein that is both secreted from and expressed on the surface of infected cells. Surface expression of VCP occurs though an interaction with the viral transmembrane protein A56 and is dependent on a free N-terminal cysteine of VCP. Although A56 and VCP have been shown to interact in infected cells, the mechanism remains unclear. To investigate if A56 is sufficient for surface expression, we transiently expressed VCP and A56 in eukaryotic cell lines and found that they interact on the cell surface in the absence of other viral proteins. Since A56 contains three extracellular cysteines, we hypothesized that one of the cysteines may be unpaired and could therefore form a disulfide bridge with VCP. To test this, we generated a series of A56 mutants in which each cysteine was mutated to a serine, and we found that mutation of cysteine 162 abrogated VCP cell surface expression. We also tested the ability of other poxvirus complement control proteins to bind to VACV A56. While the smallpox homolog of VCP is able to bind VACV A56, the ectromelia virus (ECTV) VCP homolog is only able to bind the ECTV homolog of A56, indicating that these proteins may have coevolved. Surface expression of poxvirus complement control proteins may have important implications in viral pathogenesis, as a virus that does not express cell surface VCP is attenuated in vivo. This suggests that surface expression of VCP may contribute to poxvirus pathogenesis.Poxviruses, including vaccinia virus (VACV), encode large numbers of immunomodulatory proteins that help them establish an infection and combat the host''s immune response (10, 32). One of these is the vaccinia virus complement control protein (VCP), which is both secreted from and expressed on the surface of infected cells (9, 14, 16, 17). VCP acts against the complement system, a series of soluble proteins that is an important early component of the innate immune system and also shapes adaptive immune responses (15, 42, 43). In response to viral infection, complement can opsonize or inactivate virions and can lyse enveloped virus or infected cells (1, 3, 7, 12). Because of these pressures, a number of viruses, including herpes simplex virus, flaviviruses, and poxviruses, encode novel or host-derived regulators of complement, while others, including HIV and poxviruses, incorporate host complement regulatory proteins into virus particles (7, 11, 31, 39). Many orthopoxviruses encode a complement regulator (8, 20, 23, 29), and the most studied of these is VCP. Structurally, VCP is made up of four short consensus repeats (SCR) that are the basic units of mammalian complement regulators (17, 25), and VCP has been shown to interfere with the complement cascade at multiple steps (2, 16, 20-22, 25, 28-30, 33). Additionally, a VCP knockout virus generates smaller lesions in animal models (14, 16). While some host complement control proteins (CCPs) are secreted, many contain transmembrane domains (or a glycophosphatidylinositol anchor) and are thus expressed on the cell surface (42, 43). Thus, when we found that VCP is also expressed on the infected cell surface and protects infected cells from complement-mediated lysis in vitro (9), we believed this to be an important interaction that required further investigation. We previously found that the N-terminal cysteine on VCP was needed for surface expression and that the VACV transmembrane protein A56 was also required (9). The vaccinia virus A56 protein is a type 1 transmembrane glycoprotein that is found on the surface of infected cells and on extracellular virus particles (4, 18, 26, 27, 36). It interacts with another viral protein, K2 (19, 37, 45), which lacks a transmembrane domain and binds to A56 noncovalently (36). The A56/K2 complex prevents syncytium formation between infected cells and superinfection by interacting with the vaccinia virus entry/fusion complex on virions (24, 38, 40, 41). Here we provide evidence that the N-terminal cysteine on VCP forms an intermolecular disulfide bond with cysteine 162 on the ectodomain of A56. We also demonstrate that similar interactions can occur with other poxvirus CCPs, as the smallpox virus and ectromelia virus homologs of VCP also exhibit A56-dependent surface expression.  相似文献   

20.
Because very little is known about cell division in noncylindrical bacteria and cyanobacteria, we investigated 10 putative cytokinetic proteins in the unicellular spherical cyanobacterium Synechocystis strain PCC 6803. Concerning the eight penicillin-binding proteins (PBPs), which define three classes, we found that Synechocystis can survive in the absence of one but not two PBPs of either class A or class C, whereas the unique class B PBP (also termed FtsI) is indispensable. Furthermore, we showed that all three classes of PBPs are required for normal cell size. Similarly, the putative FtsQ and FtsW proteins appeared to be required for viability and normal cell size. We also used a suitable bacterial two-hybrid system to characterize the interaction web among the eight PBPs, FtsQ, and FtsW, as well as ZipN, the crucial FtsZ partner that occurs only in cyanobacteria and plant chloroplasts. We showed that FtsI, FtsQ, and ZipN are self-interacting proteins and that both FtsI and FtsQ interact with class A PBPs, as well as with ZipN. Collectively, these findings indicate that ZipN, in interacting with FtsZ and both FtsI and FtQ, plays a similar role to the Escherichia coli FtsA protein, which is missing in cyanobacteria and chloroplasts.The peptidoglycan layer (PG) of bacterial cell wall is a major determinant of cell shape, and the target of our best antibiotics. It is built from long glycan strands of repeating disaccharides cross-linked by short peptides (38). The resultant meshwork structure forms a strong and elastic exoskeleton essential for maintaining shape and withstanding intracellular pressure. Cell morphogenesis and division have been essentially studied in the rod-shaped organisms Escherichia coli and Bacillus subtilis, which divide through a single medial plane (8, 10, 21, 23). These organisms have two modes of cell wall synthesis: one involved in cell elongation and the second operating in septation (2). Each mode of synthesis is ensured by specific protein complexes involving factors implicated in the last step of PG synthesis (2). The complete assembly of PG requires a glycosyl transferase that polymerizes the glycan strands and a transpeptidase that cross-links them via their peptide side chains (35). Both activities are catalyzed by penicillin-binding proteins (PBPs), which can be divided into three classes: class A and class B high-molecular-weight (HMW) PBPs and class C low-molecular-weight (LMW) PBPs (35).Class A PBPs exhibit both transglycosylase and transpeptidase activities. In E. coli, they seem to be nonspecialized (2), as they operate in the synthesis of both cylindrical wall (cell elongation) and septal PG (cytokinesis). In B. subtilis, PBP1 (class A) is partially localized to septal sites and its depletion leads to cell division defects (31).Class B PBPs, which comprise two proteins in most bacteria, are monofunctional transpeptidases (35), each involved in longitudinal and septal growth of cell wall, respectively (36). In E. coli, this protein, PBP3, is also termed FtsI, because it belongs to the Fts group of cell division factors whose depletion leads to the filamentation phenotype (11). These at least 10 Fts proteins are recruited to the division site at mid-cell in the following sequential order: FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsL/FtsB, FtsW, FtsI, and FtsN (11). The cytoplasmic protein FtsZ is the first recruited to the division site, where it polymerizes in a ring-like structure (1), which serves as a scaffold for the recruitment of the other Fts proteins and has been proposed to drive the division process (6). Together the Fts proteins form a complex machine coordinating nucleoid segregation, membrane constriction, septal PG synthesis, and possibly membrane fusion.Unlike the other PBPs, class C PBPs do not operate in PG synthesis but rather in maturation or recycling of PG during cell septation (35). They are subdivided into four types. Class C type 5 PBP removes the terminal d-alanine residue from pentapeptide side-chains (dd-carboxypeptidase activity). Types 4 and 7 are able to cleave the peptide cross-links (endopeptidase activity). Finally, type AmpH, which does not have a defined enzymatic activity, is believed to play a role in the normal course of PG synthesis, remodeling or recycling (for a review, see reference 35).In contrast to rod-shaped bacteria, less is known concerning PG synthesis, morphogenesis, and cytokinesis, and their relationships, in spherical-celled bacteria, even though a wealth of them have a strong impact on the environment and/or human health. Furthermore, unlike rod-shaped bacteria spherical-celled bacteria possess an infinite number of potential division planes at the point of greater cell diameter, and they divide through alternative perpendicular planes (26, 36, 37, 39). The spherical cells of Staphylococcus aureus seem to insert new PG strands only at the septum, and accordingly the unique class A PBP localizes at the septum during cell division (36). In contrast, the rugby-ball-shaped cells of Streptococcus pneumoniae synthesize cell wall at both the septum and the neighboring region called “equatorial rings” (36). Accordingly, class A PBP2a and PBP1a were found to operate in elongation and septation, respectively (29).In cyanobacteria, which are crucial to the biosphere in using solar energy to renew the oxygenic atmosphere and which make up the biomass for the food chain (7, 30, 40), cell division is currently investigated in two unicellular models with different morphologies: the rod-shaped Synechococcus elongatus strain PCC 7942 (19, 28) and the spherical-celled Synechocystis strain PCC 6803 (26), which both possess a small fully sequenced genome (http://genome.kazusa.or.jp/cyanobase/) that is easily manipulable (18). In both organisms FtsZ and ZipN/Arc6, a protein occurring only in cyanobacteria (ZipN) and plant chloroplasts (Arc6), were found to be crucial for cytokinesis (19, 26, 28) and to physically interact with each other (25, 26). Also, interestingly, recent studies of cell division in the filamentous cyanobacterium Anabaena (Nostoc) strain PCC 7120, showed that this process is connected with the differentiation of heterocysts, the cells dedicated to nitrogen fixation (34).In a continuous effort to study the cell division machine of the unicellular spherical cyanobacterium Synechocystis, we have presently characterized its eight presumptive PBPs (22) that define three classes and the putative cytokinetic proteins FtsQ and FtsW, as well as their network of interactions between each other and ZipN. Both FtsI and FtsQ were found to be key players in cell division in interacting with ZipN and class A PBPs. Consequently, ZipN in interacting with FtsZ (26), FtsI, and FtQ, like the FtsA protein of E. coli, could play a role similar to FtsA, which is absent in cyanobacteria and chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号