首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members.Methanogens are integral to carbon cycling, catalyzing the production of methane and carbon dioxide, both potent greenhouse gases, during organic matter degradation in anaerobic soils and sediment (8). Methanogens are widespread in anaerobic environments, including tundra (36), freshwater lake and wetland sediments (9, 12), estuarine and marine sediments (2), acidic peatlands (4, 14), rice field soil (10, 16), animal guts (41), landfills (30), and anaerobic digesters treating animal manure (1), food processing wastewater (27), and municipal wastewater and solid waste (37, 57). Methane produced in anaerobic digesters may be captured and used for energy production, thus offsetting some or all of the cost of operation and reducing the global warming potential of methane release to the atmosphere.Methanogens are difficult to study through culture-based methods, and therefore many researchers have instead used culture-independent techniques to study methanogen populations. The 16S rRNA gene is the most widely used target for gene surveys, and a number of primers and probes have been developed to target methanogen groups (9, 11, 31, 36, 38, 40, 46, 48, 57). To eliminate potential problems with nonspecific amplification, some researchers have developed primers for the gene sequence of the α-subunit of the methyl coenzyme M reductase (mcrA) (17, 30, 49). The Mcr is exclusive to the methanogens with the exception of the methane-oxidizing Archaea (18) and shows mostly congruent phylogeny to the 16S rRNA gene, allowing mcrA analysis to be used in conjunction with, or independently of, that of the 16S rRNA gene (3, 30, 49). A number of researchers have examined methanogen communities with mcrA and have found uncultured clades quite different in sequence from cultured methanogen representatives (9, 10, 12, 14, 17, 22, 28, 47).Previous studies described methanogen communities by quantitation of different clades through the use of rRNA-targeted or rRNA gene-targeted probes with techniques such as dot blot hybridization (1, 27, 37, 38, 48) and fluorescent in situ hybridization (11, 40, 44, 57). Real-time quantitative PCR (qPCR) is an alternate technique capable of determining the copy number of a particular gene present in the DNA extracted from an environmental sample. Only a few studies have used qPCR to quantitatively examine different clades within methanogen communities, and most of these studies have exclusively targeted the 16S rRNA gene (19, 41, 42, 54-56). Far fewer researchers have used qPCR to quantify methanogen clades by targeting the mcrA (21, 34, 45), and these studies were limited to only a few phylogenetic groups.In this paper we present a methodology for determining methanogen gene copy numbers through the use of qPCR targeting the mcrA. Methanogens were quantified in total using methanogen-specific primers in SYBR green assays and also as members of nine different phylogenetic groups using TaqMan probes targeting specific subsets of methanogens.  相似文献   

3.
4.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

5.
6.
7.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

8.
Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.Humic substances can play an important role in the reduction of Fe(III), and possibly other metals, in sedimentary environments (6, 34). Diverse dissimilatory Fe(III)-reducing microorganisms (3, 5, 7, 9, 11, 19-22, 25) can transfer electrons onto the quinone moieties of humic substances (38) or the model compound anthraquinone-2,6-disulfonate (AQDS). Reduced humic substances or AQDS abiotically reduces Fe(III) to Fe(II), regenerating the quinone. Electron shuttling in this manner can greatly increase the rate of electron transfer to insoluble Fe(III) oxides, presumably because soluble quinone-containing molecules are more accessible for microbial reduction than insoluble Fe(III) oxides (19, 22). Thus, catalytic amounts of humic substances have the potential to dramatically influence rates of Fe(III) reduction in soils and sediments and can promote more rapid degradation of organic contaminants coupled to Fe(III) reduction (1, 2, 4, 10, 24).To our knowledge, the mechanisms by which Fe(III)-reducing microorganisms transfer electrons to humic substances have not been investigated previously for any microorganism. However, reduction of AQDS has been studied using Shewanella oneidensis (17, 40). Disruption of the gene for MtrB, an outer membrane protein required for proper localization of outer membrane cytochromes (31), inhibited reduction of AQDS, as did disruption of the gene for the outer membrane c-type cytochrome, MtrC (17). However, in each case inhibition was incomplete, and it was suggested that there was a possibility of some periplasmic reduction (17), which would be consistent with the ability of AQDS to enter the cell (40).The mechanisms for electron transfer to humic substances in Geobacter species are of interest because molecular studies have frequently demonstrated that Geobacter species are the predominant Fe(III)-reducing microorganisms in sedimentary environments in which Fe(III) reduction is an important process (references 20, 32, and 42 and references therein). Geobacter sulfurreducens has routinely been used for investigations of the physiology of Geobacter species because of the availability of its genome sequence (29), a genetic system (8), and a genome-scale metabolic model (26) has made it possible to take a systems biology approach to understanding the growth of this organism in sedimentary environments (23).  相似文献   

9.
10.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

11.
12.
13.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

14.
The pyrene-degrading Mycobacterium sp. strain AP1 grew in nutrient-supplemented artificial seawater with a heavy fuel oil as the sole carbon source, causing the complete removal of all linear (C12 to C40) and branched alkanes from the aliphatic fraction, as well as an extensive degradation of the three- and four-ring polycyclic aromatic hydrocarbons (PAHs) phenanthrene (95%), anthracene (80%), fluoranthene (80%), pyrene (75%), and benzo(a)anthracene (30%). Alkylated PAHs, which are more abundant in crude oils than the nonsubstituted compounds, were selectively attacked at extents that varied from more than 90% for dimethylnaphthalenes, methylphenanthrenes, methylfluorenes, and methyldibenzothiophenes to about 30% for monomethylated fluoranthenes/pyrenes and trimethylated phenanthrenes and dibenzothiophenes. Identification of key metabolites indicated the utilization of phenanthrene, pyrene, and fluoranthene by known assimilatory metabolic routes, while other components were cooxidized. Detection of mono- and dimethylated phthalic acids demonstrated ring cleavage and further oxidation of alkyl PAHs. The extensive degradation of the alkanes, the two-, three-, and four-ring PAHs, and their 1-, 2-, and 3-methyl derivatives from a complex mixture of hydrocarbons by Mycobacterium sp. strain AP1 illustrates the great substrate versatility of alkane- and PAH-degrading mycobacteria.Accidental oil spills cause extensive ecological damage to marine shorelines and also have an enormous impact on related economic activities due to the potential risk to public health. One of the most recent examples is the heavy fuel oil spill from the tanker Prestige in 2002, which affected 1,900 km of coast in northwestern Spain. While the light fractions of the oil evaporate in the early stages of a spill, microbial degradation plays a major role in the removal of the heavier fractions. Stimulation of natural biodegradation processes by nutrient and fertilizer addition has proven to enhance oil degradation in a variety of coastal environments (3, 42, 44).Oil is a complex mixture of hundreds of components that can be separated into saturates, aromatics, resins, and asphaltenes. The saturated hydrocarbons are usually the most abundant, while polycyclic aromatic hydrocarbons (PAHs) cause the greatest concern because of their toxic and genotoxic potentials.Most of the available knowledge on the microbial processes involved in PAH biodegradation has been obtained from studies involving bacterial isolates acting on single substrates that serve as the sole source of carbon and energy for growth (7, 20, 22). The pathways for the complete degradation of hydrocarbons containing two and three aromatic rings by gram-negative bacteria are well characterized for such conditions (7, 22). Conversely, degradation of hydrocarbons containing four or more fused aromatic rings, such as pyrene, has been reported only for soil actinomycetes (20, 25, 29, 30, 36, 45), which use multibranched pathways involving both classical dioxygenation and meta-cleavage reactions and novel ortho-cleavage mechanisms uncommon in gram-negative organisms (23). Due to the relaxed specificity of some degradative enzymes, mainly dioxygenases (15, 37), PAH-degrading strains have a wide range of substrates, being able to act simultaneously on a number of structural analogs and to oxidize them to different extents (18, 37). However, the individual processes involved in the degradation of naturally occurring complex mixtures of PAHs (crude oils and coal derivatives) have rarely been addressed (18, 31).Early studies on biodegradation of crude oil were carried out with bacterial strains able to use this mixture for growth. Since PAHs and other components are contained within a predominantly aliphatic matrix in crude oil, most of these studies reported actions of alkane degraders on individual oil components (2, 34, 38, 41, 50). In addition to alkanes, these alkane degraders selectively depleted some alkylated PAHs (2, 41), a process that has been attributed to partial oxidation due to a monooxygenase attack on the methyl groups to produce the corresponding carboxylic acids (35). Recent studies reported the isolation of a number of two- and three-ring-PAH-degrading bacterial strains from coastal sediments affected by crude oil spills. These strains include members of genera commonly isolated from PAH-contaminated soils, such as Pseudomonas (39, 43) and Sphingomonas (49), as well as less common genera, such as Marinobacter (13), Moraxella (43), Vibrio (51), and Cycloclasticus (12). The last genus seems to play a major role in the fate of low-molecular-weight PAHs in the marine environment, as members of this genus have been isolated from several crude oil-contaminated locations (6, 14, 21). When incubated with crude oil, Cycloclasticus strains degraded most of the two- and three-ring PAHs and some of their alkyl derivatives (C0-4 naphthalene, C0-2 dibenzothiophene, C0-2 phenanthrene, and C0-2 fluorene [numerals indicate the number of methyl groups]). However, neither alkanes, trimethyl derivatives of three-ring PAHs, or higher-molecular-weight PAHs were significantly depleted (21). On the other hand, no attempts were made to identify metabolic intermediates indicative of specific degradation or cometabolic pathways.Alkyl-PAH degradation is isomer specific, a feature that has been used in geochemistry to define source recognition and oil weathering ratios (47). For example, given the resistance of 9-methyl phenanthrene to microbial oxidation in relation to the other isomers, the ratio of 3-methylphenanthrene plus 2-methylphenanthrene to 9-methylphenanthrene plus 1-methylphenanthrene has been utilized as a diagnostic ratio (47). These ratios have been defined on the basis of analysis of environmental samples (47) and results of crude oil biodegradation assays with mixed cultures (10, 48) or single strains (2, 41), mainly alkane-degrading pseudomonads. The actions of high-molecular-weight-PAH-degrading mycobacteria on the alkylated families of PAHs present in crude oil and derivatives have not been addressed.Mycobacterium strains isolated by their ability to grow on pyrene have often been shown to also utilize phenanthrene, fluoranthene, and high-molecular-weight alkanes as single carbon sources (8, 45). In a recent study, we showed that when Mycobacterium strain AP1, isolated from an oil-polluted marine beach, was incubated with a mixture of PAHs from creosote, this strain caused a significant depletion of the three-aromatic-ring PAHs but had a limited action on the higher-molecular-weight PAHs fluoranthene and pyrene (31). Given the wide substrate versatility of pyrene-degrading mycobacteria, especially for alkane degradation, their presence in marine environments (16), and their distinctive reactions during PAH degradation (22, 25, 30), in this study we used strain AP1 to investigate the catabolic potential of mycobacteria in the removal of the most abundant hydrocarbon families and their derivatives from crude oil in a marine medium under laboratory conditions. The identification of key metabolites indicative of previously proposed reactions gave insight into the metabolic and cometabolic processes involved. As a model mixture, we used the heavy fuel oil spilled from the Prestige, a Russian M100 fuel oil especially rich in aromatic hydrocarbons (52%) (27).  相似文献   

15.
Four bifidobacteria, each representing a cluster of strains with specific inulin-type-fructan degradation capacities, were grown in coculture fermentations with Bacteroides thetaiotaomicron LMG 11262, a strain able to metabolize both oligofructose and inulin. In a medium for colon bacteria with inulin as the sole added energy source, the ability of the bifidobacteria to compete for this substrate reflected phenotypical variation. Bifidobacterium breve Yakult, a strain that was not able to degrade oligofructose or inulin, was outcompeted by B. thetaiotaomicron LMG 11262. Bifidobacterium adolescentis LMG 10734, a strain that could degrade oligofructose (displaying a preferential breakdown mechanism) but that did not grow on inulin, managed to become competitive when oligofructose and short fractions of inulin started to accumulate in the fermentation medium. Bifidobacterium angulatum LMG 11039T, a strain that was previously shown to degrade all oligofructose fractions simultaneously and to be able to partially break down inulin, was competitive from the beginning of the fermentation, consuming short fractions of inulin from the moment they appeared. Bifidobacterium longum LMG 11047, representing a cluster of bifidobacteria that shared both high fructose consumption and oligofructose degradation rates and were able to perform partial breakdown of inulin, was the dominating strain in a coculture with B. thetaiotaomicron LMG 11262. These observations indicate that distinct subgroups within the large-intestinal Bifidobacterium population will be stimulated by different groups of prebiotic inulin-type fructans, a variation that could be reflected in differences concerning their health-promoting effects.The vast complexity of the human colon microbiota, the key element of the large-intestinal ecosystem, has inspired researchers to describe it as a postnatally acquired microbial organ located inside a host organ (1, 46). The microbial colon community is estimated to be composed of up to 100 trillion microorganisms, a number exceeding 10 times the total number of somatic and germ cells of a human adult (18, 38). The human microbiome is thought to contain more than 100 times the total number of human genes (1, 18). It not only broadens the digestive abilities of the host (18, 22, 40) but also influences body processes far beyond digestion (7, 33). In spite of its fundamental impact on human health and disease, the human gastrointestinal ecosystem remains largely unexplored (7, 8).Despite the fact that the present knowledge of the composition of the human large-intestinal microbiota is partial, fragmented, and undetailed, the consistency of some observations allows them to be generalized as facts (8, 28, 47). Notwithstanding the huge diversity at the strain level, up to 87% of the human colon inhabitants belong to only two bacterial phyla, the Bacteroidetes and the Firmicutes (1, 8, 14). Within the group of large-intestinal Bacteroidetes, large variations between individuals have been reported (8). However, Bacteroides spp. generally seem to account for up to 20% of the human colon microbiota (26, 32). Moreover, the presence of Bacteroides thetaiotomicron appears to be universal (8, 21). This species, which has been isolated only from human and rodent intestines or feces up to now, has gained importance as a perfect example of a flexible, niche-adapted, human symbiont with a wide carbohydrate consumption range (3, 4, 40).Although B. thetaiotaomicron is considered a human symbiont contributing to the stability of the colon ecosystem, the Bacteroides genus also harbors some notorious pathogens that are linked with severe extraintestinal infections and that have been mentioned as causal agents of acute diarrhea (30, 35). Moreover, besides their enormous saccharolytic potential, Bacteroides spp. are also capable of proteolytic fermentation (22). These considerations make them unsuited as target organisms for stimulation by prebiotics such as inulin-type fructans (23, 31).Most in vivo studies regarding the effect of the addition of inulin or oligofructose to the diet on the composition of the human colon microbiota reveal that Bacteroides spp. are neither stimulated nor repressed through administration of these prebiotics (34). However, at least some Bacteroides spp. are able to degrade inulin-type fructans, including B. thetaiotaomicron (13, 44). Since this species accounts for up to 6% of the colon microbiota (8), it is at least surprising that its numbers are hardly influenced by an increased availability of these prebiotics as substrates for large-intestinal fermentation. A possible explanation for these contradicting observations is to be found in the mechanism of inulin degradation, which in the case of Bacteroides is presumed to be periplasmic or even extracellular (37, 44). Leakage of free fructose toward the extracellular environment appears to be inherent in such breakdown mechanisms (10, 25, 44). Hence, extracellular fructan degraders inevitably provide opportunistic competitors, which are not able to degrade inulin-type fructans themselves, with a valuable source of energy (2, 10, 19). In contrast, a cell-associated or intracellular degradation mechanism is thought to be widespread among Bifidobacterium spp., which are still considered the main target organisms for prebiotic stimulation by inulin-type fructans (15, 16, 39, 44). This mechanism is often reflected in a clearly preferential breakdown of different-chain-length fractions of oligofructose, which approaches degradation of the long fractions only when short ones are depleted (10, 42, 44). The main disadvantage of such a cell-associated or intracellular degradation strategy seems to be the bifidobacterial incapacity to grow on long-chain-length fractions of inulin (36). Reports of the latter are indeed scarce: kinetic pure culture studies report an upper chain length limit for inulin degradation by Bifidobacterium spp., a disadvantage that will presumably not affect extracellular fructan degraders, such as Bacteroides spp. (9). Although the prebiotic effect of inulin-type fructans on the colon Bifidobacterium population is well documented, in vivo stimulation studies usually tend to consider the bifidobacterial community as a whole, ignoring interspecies differences (23). However, since the early days of in vitro prebiotic studies, a large variation in fructan degradation capacities of different Bifidobacterium strains has been reported (17, 36). It is likely that this variety is translated to the in vivo environment, implying that not all bifidobacteria are equally subject to prebiotic stimulation (5, 45). In a recent study, the kinetics of growth, carbohydrate consumption, and metabolite production of 18 Bifidobacterium spp., 17 of which were human intestinal isolates, have been statistically analyzed (9). The existence of four phenotypically distinct clusters among the tested strains, probably reflecting niche-specific adaptation, has been revealed. This rather limited variation was hypothesized to influence the susceptibilities of various bifidobacteria toward prebiotic stimulation by inulin-type fructans and their fitness to compete for these substrates in a complex environment, such as the colon ecosystem (44).The present study aimed at mapping the fructan degradation capacity of B. thetaiotaomicron LMG 11262 growing on oligofructose or inulin. In vitro competitiveness trials with bifidobacterial strains belonging to the different phenotypical clusters mentioned above were designed to investigate the abilities of these strains to compete for inulin in a coculture with an inulin-degrading B. thetaiotaomicron strain.  相似文献   

16.
17.
18.
19.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号