首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

2.
3.
4.
5.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

6.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

7.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host antiviral immunity against hepatitis B virus (HBV) infection in vivo. However, the molecular mechanism by which these antiviral cytokines suppress HBV replication remains elusive. Using an immortalized murine hepatocyte (AML12)-derived cell line supporting tetracycline-inducible HBV replication, we show in this report that both IFN-α and IFN-γ efficiently reduce the amount of intracellular HBV nucleocapsids. Furthermore, we provide evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings thus reveal a novel antiviral mechanism of IFNs and provide a basis for a better understanding of HBV pathobiology.Hepatitis B virus (HBV) is a noncytopathic hepatotropic DNA virus which belongs to the family Hepadnaviridae (11, 44). Despite the fact that most adulthood HBV infections are transient, approximately 5 to 10% of infected adults and more than 90% of infected neonates fail to clear the virus and develop a lifelong persistent infection, which may progress to chronic hepatitis, cirrhosis, and primary hepatocellular carcinoma (4, 33, 34). It has been shown by several research groups that resolution of HBV and other animal hepadnavirus infection in vivo depends on both killing of infected hepatocytes by viral antigen-specific cytotoxic T lymphocytes and noncytolytic suppression of viral replication, which is most likely mediated by inflammatory cytokines, such as gamma interferon (IFN-γ) and tumor necrosis factor α (TNF-α) (10, 12, 15, 20, 26, 27, 48). Moreover, together with five nucleoside or nucleotide analogs that inhibit HBV DNA polymerase, alpha IFN (IFN-α) and pegylated IFN-α are currently available antiviral medications for the management of chronic hepatitis B. Compared to the viral DNA polymerase inhibitors, the advantages of IFN-α therapy include a lack of drug resistance, a finite and defined treatment course, and an increased likelihood for hepatitis B virus surface antigen (HBsAg) clearance (8, 39). However, only approximately 30% of treated patients achieve a sustained virological response to a standard 48-month pegylated IFN-α therapy (6, 32). Thus far, the antiviral mechanism of IFN-α and IFN-γ and the parameters determining the success or failure of IFN-α therapy in chronic hepatitis B remain elusive. Elucidation of the mechanism by which the cytokines suppress HBV replication represents an important step toward understanding the pathobiology of HBV infection and the molecular basis of IFN-α therapy of chronic hepatitis B.Considering the mechanism by which IFNs noncytolytically control HBV infection in vivo, it is possible that the cytokines either induce an antiviral response in hepatocytes to directly limit HBV replication or modulate the host antiviral immune response to indirectly inhibit the virus infection. However, due to the fact that IFN-α and -γ do not inhibit or only modestly inhibit HBV replication in human hepatoma-derived cell lines (5, 22, 23, 30), the direct antiviral effects of the cytokines and their antiviral mechanism against HBV have been studied with either an immortalized hepatocyte cell line derived from HBV transgenic mice or duck hepatitis B virus (DHBV) infection of primary duck hepatocytes (37, 53). While these studies revealed that IFN treatment significantly reduced the amount of encapsidated viral pregenomic RNA (pgRNA) in both mouse and duck hepatocytes, further mechanistic analyses suggested that IFN-α inhibited the formation of pgRNA-containing nucleocapsids in murine hepatocytes (52) but shortened the half-life of encapsidated pgRNA in DHBV-replicating chicken hepatoma cells (21). Moreover, the fate of viral DNA replication intermediates or nucleocapsids in the IFN-treated hepatocytes was not investigated in the previous studies.To further define the target(s) of IFN-α and -γ in the HBV life cycle and to create a robust cell culture system for the identification of IFN-stimulated genes (ISGs) that mediate the antiviral response of the cytokines (25), we established an immortalized murine hepatocyte (AML-12)-derived stable cell line that supported a high level of HBV replication in a tetracycline-inducible manner. Consistent with previous reports, we show that both IFN-α and IFN-γ potently inhibited HBV replication in murine hepatocytes (37, 40). With the help of small molecules that inhibit HBV capsid assembly (Bay-4109) (7, 47) and prevent the incorporation of pgRNA into nucleocapsids (AT-61) (9, 29), we obtained evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings provide a basis for further studies toward better understanding of IFN′s antiviral mechanism, which might ultimately lead to the development of strategies to improve the efficacy of IFN therapy of chronic hepatitis B.  相似文献   

8.
9.
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the α-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the α-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria.The tripartite efflux pumps that are found in Gram-negative bacteria have been implicated in their intrinsic resistance to diverse antibiotics, as well as their secretion of protein toxins (10, 12, 24, 31). The bacterial efflux pump is typically assembled from three essential components: an inner membrane transporter (IMT), an outer membrane factor (OMF), and a periplasmic membrane fusion protein (MFP) (10, 12, 24, 31). The IMT provides energy for transporters, like the resistance nodulation cell division (RND) type and the ATP-binding cassette (ABC) type (18). The OMF connects to the IMT in the periplasm, providing a continuous conduit to the external medium. This conduit uses the central channel, which is opened only when in complex with other components (11, 18). The third essential component of the pump is the MFP, which is an adapter protein for the direct interaction between the IMT and OMF in the periplasm (32). The MFP consists of four linearly arranged domains: the membrane-proximal (MP) domain, the β-barrel domain, the lipoyl domain, and the α-hairpin domain (1, 6, 16, 22, 30). The MFP α-hairpin domain is known to interact with OMF, while the other domains are related to interaction with the IMT (15, 22).The Escherichia coli AcrAB-TolC pump, comprised of RND-type IMT-AcrB, MFP-AcrA, and OMF-TolC, is the major contributor to the multidrug resistance phenotype of the bacteria (7, 8, 25). The AcrAB-TolC pump, together with its homolog, the Pseudomonas aeruginosa MexAB-OprM pump (7, 13), has primarily been studied in order to elucidate the molecular mechanisms underlying the actions of the tripartite efflux pumps. Whereas the crystal structures of these proteins have revealed that RND-type IMTs (AcrB and MexB) and OMFs (TolC and OprM) are homotrimeric in their functional states (1, 6, 11, 16, 22, 30), the oligomeric state of MFP remains a topic of debate, despite the presence of crystal structures (3, 5, 17, 18, 22, 27, 30).MacAB-TolC, which was identified as a macrolide-specific extrusion pump (9), has also been implicated in E. coli enterotoxin secretion (29). While MFP-MacA shares high sequence similarity with AcrA and MexA, IMT-MacB is a homodimeric ABC transporter that uses ATP hydrolysis as the driving force (9, 14). MacA forms hexamers, and the funnel-like hexameric structure of MacA is physiologically relevant for the formation of a functional MacAB-TolC pump (30). Although the α-hairpins from AcrA and MacA are commonly involved in the interaction with TolC (30, 32), the interaction mode between AcrA and TolC remains to be elucidated. In this study, we provide experimental evidence showing that the conserved amino acid residues in the AcrA hairpin tip region is important for the action of the AcrAB-TolC efflux pump and is functionally related to the TolC aperture tip region.  相似文献   

10.
Receptors (FcγRs) for the constant region of immunoglobulin G (IgG) are an important link between humoral immunity and cellular immunity. To help define the role of FcγRs in determining the fate of human immunodeficiency virus type 1 (HIV-1) immune complexes, cDNAs for the four major human Fcγ receptors (FcγRI, FcγRIIa, FcγRIIb, and FcγRIIIa) were stably expressed by lentiviral transduction in a cell line (TZM-bl) commonly used for standardized assessments of HIV-1 neutralization. Individual cell lines, each expressing a different FcγR, bound human IgG, as evidence that the physical properties of the receptors were preserved. In assays with a HIV-1 multisubtype panel, the neutralizing activities of two monoclonal antibodies (2F5 and 4E10) that target the membrane-proximal external region (MPER) of gp41 were potentiated by FcγRI and, to a lesser extent, by FcγRIIb. Moreover, the neutralizing activity of an HIV-1-positive plasma sample known to contain gp41 MPER-specific antibodies was potentiated by FcγRI. The neutralizing activities of monoclonal antibodies b12 and 2G12 and other HIV-1-positive plasma samples were rarely affected by any of the four FcγRs. Effects with gp41 MPER-specific antibodies were moderately stronger for IgG1 than for IgG3 and were ineffective for Fab. We conclude that FcγRI and FcγRIIb facilitate antibody-mediated neutralization of HIV-1 by a mechanism that is dependent on the Fc region, IgG subclass, and epitope specificity of antibody. The FcγR effects seen here suggests that the MPER of gp41 could have greater value for vaccines than previously recognized.Fc receptors (FcRs) are differentially expressed on a variety of cells of hematopoietic lineage, where they bind the constant region of antibody (Ab) and provide a link between humoral and cellular immunity. Humans possess two classes of FcRs for the constant region of IgG (FcγRs) that, when cross-linked, are distinguished by their ability to either activate or inhibit cell signaling (69, 77, 79). The activating receptors FcγRI (CD64), FcγRIIa (CD32), and FcγRIII (CD16) signal through an immunoreceptor tyrosine-based activation motif (ITAM), whereas FcγRIIb (CD32) contains an inhibitory motif (ITIM) that counters ITAM signals and B-cell receptor signals. It has been suggested that a balance between activating and inhibitory FcγRs coexpressed on the same cells plays an important role in regulating adaptive immunity (23, 68). Moreover, the inhibitory FcγRIIb, being the sole FcγR on B cells, appears to play an important role in regulating self-tolerance (23, 68). The biologic role of FcγRs may be further influenced by differences in their affinity for immunoglobulin G (IgG); thus, FcγRI is a high-affinity receptor that binds monomeric IgG (mIgG) and IgG immune complexes (IC), whereas FcγRIIa, FcγRIIb, and FcγRIIIa are medium- to low-affinity receptors that preferentially bind IgG IC (10, 49, 78). FcγRs also exhibit differences in their relative affinity for the four IgG subclasses (10), which has been suggested to influence the balance between activating and inhibitory FcγRs (67).In addition to their participation in acquired immunity, FcγRs can mediate several innate immune functions, including phagocytosis of opsonized pathogens, Ab-dependent cell cytotoxicity (ADCC), antigen uptake by professional antigen-presenting cells, and the production of inflammatory cytokines and chemokines (26, 35, 41, 48, 69). In some cases, interaction of Ab-coated viruses with FcγRs may be exploited by viruses as a means to facilitate entry into FcγR-expressing cells (2, 33, 47, 84). Several groups have reported FcγR-mediated Ab-dependent enhancement (ADE) of HIV-1 infection in vitro (47, 51, 58, 63, 94, 96), whereas other reports have implicated FcγRs in efficient inhibition of the virus in vitro (19, 21, 29, 44-46, 62, 98) and possibly as having beneficial effects against HIV-1 in vivo (5, 27, 28, 42). These conflicting results are further complicated by the fact that HIV-1-susceptible cells, such as monocytes and macrophages, can coexpress more than one FcγR (66, 77, 79).HIV-1 entry requires sequential interactions between the viral surface glycoprotein, gp120, and its cellular receptor (CD4) and coreceptor (usually CCR5 or CXCR4), followed by membrane fusion that is mediated by the viral transmembrane glycoprotein gp41 (17, 106). Abs neutralize the virus by binding either gp120 or gp41 and blocking entry into cells. Several human monoclonal Abs that neutralize a broad spectrum of HIV-1 variants have attracted considerable interest for vaccine design. Epitopes for these monoclonal Abs include the receptor binding domain of gp120 in the case of b12 (71, 86), a glycan-specific epitope on gp120 in the case of 2G12 (13, 85, 86), and two adjacent epitopes in the membrane-proximal external region (MPER) of g41 in the cases of 2F5 and 4E10 (3, 11, 38, 93). At least three of these monoclonal Abs have been shown to interact with FcRs and to mediate ADCC (42, 43).A highly standardized and validated assay for neutralizing Abs against HIV-1 that quantifies reductions in luciferase (Luc) reporter gene expression after a single round of virus infection in TZM-bl cells has been developed (60, 104). TZM-bl (also called JC53BL-13) is a CXCR4-positive HeLa cell line that was engineered to express CD4 and CCR5 and to contain integrated reporter genes for firefly Luc and Escherichia coli β-galactosidase under the control of the HIV-1 Tat-regulated promoter in the long terminal repeat terminal repeat sequence (74, 103). TZM-bl cells are permissive to infection by a wide variety of HIV-1, simian immunodeficiency virus, and human-simian immunodeficiency virus strains, including molecularly cloned Env-pseudotyped viruses. Here we report the creation and characterization of four new TZM-bl cell lines, each expressing one of the major human FcγRs. These new cell lines were used to gain a better understanding of the individual roles that FcγRs play in determining the fate of HIV-1 IC. Two FcγRs that potentiated the neutralizing activity of gp41 MPER-specific Abs were identified.  相似文献   

11.
12.
13.
Receptor protein tyrosine phosphatase α (RPTPα) is the mitotic activator of the protein tyrosine kinase Src. RPTPα serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPα Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPα pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPα, and intrinsic catalytic activity of RPTPα was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPα was induced in mitosis. GRB2 binding to RPTPα, which was proposed to compete with Src binding to RPTPα, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPα-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPα, illustrating that Src binding to RPTPα is not mediated by a pTyr-SH2 interaction. Mutation of RPTPα Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPα pSer204 facilitates Src binding, leading to RPTPα-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.Protein tyrosine phosphatases (PTPs) are responsible for dephosphorylation of the phosphotyrosyl residues. The human genome contains approximately 100 genes that encode members of the four PTP families, and most of them have mouse orthologues (2, 48). According to their subcellular localization, the classical PTPs, encoded by less than half of the total PTP genes, are divided into two subfamilies: cytoplasmic and receptor protein tyrosine phosphatases (RPTPs). The majority of the RPTPs contain, besides a variable extracellular domain and a transmembrane domain, two highly homologous phosphatase domains (27), with the membrane-proximal domain comprising most of the catalytic activity (33).RPTPα is a typical RPTP with a small, highly glycosylated extracellular domain (13). RPTPα function is regulated by many mechanisms, including proteolysis (18), oxidation (55), dimerization (7, 23, 24, 47, 52), and phosphorylation of serine and tyrosine residues (16, 17, 49). RPTPα is broadly expressed in many cell types, and over the years, RPTPα has been shown to be involved in a number of signaling mechanisms, including neuronal (15) and skeletal muscle (34) cell differentiation, neurite elongation (8, 9, 56), insulin receptor signaling downregulation (3, 28, 30, 31, 35), insulin secretion (25), activation of voltage-gated potassium channel Kv1.2 (51), long-term potentiation in hippocampal neurons (32, 38), matrix-dependent force transduction (53), and cell spreading and migration (21, 45, 57).The majority of the roles played in these cellular processes involve RPTPα''s ability to activate the proto-oncogenes Src and Fyn by dephosphorylating their C-terminal inhibitory phosphotyrosine (5, 15, 39, 45, 61). Normally, this phosphotyrosine (pTyr527 in chicken Src) binds to the Src homology 2 (SH2) domain, keeping the protein in an inactive closed conformation. A displacement mechanism was proposed for RPTPα-mediated Src activation in which pTyr789 of RPTPα is required to bind the SH2 domain of Src before RPTPα dephosphorylates Tyr527 (58). This model is the subject of debate since other studies show that RPTPα lacking Tyr789 is still able to dephosphorylate and activate Src (12, 26, 29, 56). In normal cells, Src reaches its activation peak during mitosis (4, 11, 40, 42), and with the help of overexpressing cells, it was shown that this activation is triggered mainly by RPTPα. The model that emerged is that RPTPα is activated in mitosis due to serine hyperphosphorylation and detaches from the GRB2 scaffolding protein (59, 60) that normally binds most of the pTyr789 of RPTPα via its SH2 domain (14, 17, 46). Two serine phosphorylation sites were mapped in the juxtamembrane domain of RPTPα, Ser180 and Ser204 (49). The kinases that were found responsible for their phosphorylation were protein kinase C delta (PKCdelta) (10) and CaMKIIalpha (9), but there is no clear evidence that these kinases are activated in mitosis. We set out to investigate the role of serine phosphorylation of RPTPα in mitotic activation of Src.We generated phosphospecific antibodies and show that RPTPα pSer204, but not pSer180, is dephosphorylated in mitotic NIH 3T3 and HeLa cells, concomitantly with activation of Src. Selective inhibitors suggested that PP2A was the phosphatase that dephosphorylated pSer204. RNA interference (RNAi)-mediated knockdown of the catalytic subunit of PP2A demonstrated that indeed PP2A was responsible for mitotic dephosphorylation of RPTPα pSer204. It is noteworthy that PP2A is known to be activated in mitosis. Intrinsic PTP activities of RPTPα were similar in unsynchronized and mitotic cells, and mutation of Ser204 did not activate RPTPα in in vitro PTP assays. Yet, Src binding to RPTPα was induced in mitotic NIH 3T3 cells and RPTPα-S204D with a phosphomimicking mutation at Ser204 coimmunoprecipitated less efficiently with Src. Based on our results, we propose a mechanism for mitotic activation of Src that is triggered by dephosphorylation of RPTPα pSer204, resulting in enhanced affinity for Src and subsequent dephosphorylation and activation of Src.  相似文献   

14.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

15.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

16.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

18.
19.
Halophilic archaea were found to contain in their cytoplasm millimolar concentrations of γ-glutamylcysteine (γGC) instead of glutathione. Previous analysis of the genome sequence of the archaeon Halobacterium sp. strain NRC-1 has indicated the presence of a sequence homologous to sequences known to encode the glutamate-cysteine ligase GshA. We report here the identification of the gshA gene in the extremely halophilic archaeon Haloferax volcanii and show that H. volcanii gshA directs in vivo the synthesis and accumulation of γGC. We also show that the H. volcanii gene when expressed in an Escherichia coli strain lacking functional GshA is able to restore synthesis of glutathione.Many organisms contain millimolar concentrations of low-molecular-weight thiol compounds that participate in a number of important biological functions involving thiol-disulfide exchanges (7). In particular, they serve to maintain an intracellular reducing environment, to provide reducing power for key reductive enzymes, to combat the effects of oxidative and disulfide stress, and to detoxify xenobiotic compounds (7). Glutathione (GSH), a cysteine-containing tripeptide, l-γ-glutamyl-l-cysteinylglycine, is the best-characterized low-molecular-weight thiol (7, 19, 21). GSH is made in a highly conserved two-step ATP-dependent process by two unrelated peptide bond-forming enzymes (3, 21). The γ-carboxyl group of l-glutamate and the amino group of l-cysteine are ligated by the enzyme glutamylcysteine (GC) ligase EC 6.3.2.2 (GshA, encoded by gshA), which is then condensed with glycine in a reaction catalyzed by GSH synthetase (GshB, encoded by gshB) to form GSH (10, 38). GSH is found primarily in gram-negative bacteria and eukaryotes and only rarely in gram-positive bacteria (26). Fahey and coworkers showed that GSH is absent from the high-GC gram-positive actinomycetes which produce, as the major low-molecular-weight thiol, mycothiol, 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)-amido-2-deoxy-α-d-glucopyranoside (13, 26-28, 35). GSH is also absent in Archaea. In Pyrococcus furiosus, coenzyme A SH (CoASH) is the main thiol (11), whereas in Halobacterium salinarum, γGC is the predominant thiol and the organism possesses bis-γGC reductase activity (30, 36). Similarly, Leuconostoc kimchi and Leuconostoc mesenteroides, gram-positive lactic acid bacterial species, were recently found to contain γGC rather than GSH (15). To date, these are the sole procaryotic species reported to naturally produce γGC but not GSH (6, 30). In this report, we describe the identification of the gshA gene in the extremely halophilic archaeon Haloferax volcanii. Copley and Dhillon (6) previously identified, using bioinformatic tools, an open reading frame (ORF) (gene VNG1397C) in Halobacterium sp. strain NRC-1 with limited sequence relatedness to known GshA proteins (6). However, no genetic or biochemical evidence was presented to substantiate their conclusion. Here, we show that Haloferax volcanii strain DS2 (1, 25) contains an ORF that directs in vivo the synthesis and accumulation of γGC. We also show that the H. volcanii ORF, when expressed in Escherichia coli lacking functional GshA, is able to restore synthesis of GSH.  相似文献   

20.
Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes.Botulinum neurotoxins (BoNTs) are the most toxic agents known, and as little as 30 ng neurotoxin is potentially lethal to humans (36). These toxins are responsible for botulism, a disease characterized by flaccid paralysis. Seven antigenically distinct BoNTs are known (types A to G), and BoNT types A, B, E, and F are the principal types associated with human botulism (37). Significant sequence diversity and antigenically variable subtypes have recently been reported for the type A, B, and E neurotoxin genes (14, 22, 23, 42).Apart from the species Clostridium botulinum, which itself consists of four phylogenetically distinct groups of organisms, some strains of other clostridia, namely Clostridium butyricum and Clostridium baratii, are also known to produce BoNTs (2, 4, 7, 13, 20, 26, 34, 44). Also, strains that produce two toxins and strains carrying silent toxin genes have been reported (8, 22, 24, 39). Due to the great physiological variation of the BoNT-producing clostridia, their isolation and identification cannot depend solely on biochemical characteristics (32). Indeed, the standard culture methods take into consideration only C. botulinum and not C. baratii and C. butyricum, and identification and confirmation require detection of BoNT by a standard mouse bioassay (SMB) (12). The SMB is highly sensitive and specific but also expensive, time-consuming, and undesirable because of the use of experimental animals. Detection of neurotoxin gene fragments by PCR is a rapid alternative method for detection and typing of BoNT-producing clostridia (3). Different PCR methods have been described for detecting neurotoxin type A-, B-, E-, and F-producing clostridia (9, 15-18, 21, 40, 41).A previously described multiplex PCR method able to simultaneously detect type A, B, E, and F neurotoxin genes is a useful tool for rapid detection of the BoNT-producing clostridia (31). While this method generally has a high level of inclusivity for detection of type B, E, and F neurotoxin genes, limitations for detection of the recently described subtype A2, A3, and A4 strains have been identified (6, 28). To increase the efficiency of this multiplex PCR method, new primers were designed to detect genes for all identified type A neurotoxin subtypes (19). Additionally, an internal amplification control (IAC) was added according to ISO 22174/2005. The specificity and selectivity of this multiplex PCR method were evaluated in comparison with an SMB (12) using target and nontarget strains, and the robustness was assessed using clinical, food, and environmental samples. Moreover, to evaluate the applicability of this multiplex PCR method, a survey with food and environmental samples was performed in a German food control laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号