首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Viruses such as hepatitis C and the severe acute respiratory syndrome coronavirus (SARS-CoV) encode proteins that are distributed between mitochondria and the nucleus, but little is known about the factors that control partitioning between these sites. SARS-CoV encodes a unique accessory gene called open reading frame (ORF) 3b that, like other unique accessory genes in SARS-CoV, likely contributes to viral pathogenicity. The ORF 3b protein is 154 amino acids and is predicted to express from the second ORF in subgenomic RNA3. In this report, we have characterized the molecular components that regulate intracellular localization of the ORF 3b protein. We demonstrate unique shuttling behavior of ORF 3b, whereby the protein initially accumulates in the nucleus and subsequently translocates to mitochondria. Following nuclear localization, ORF 3b traffics to the outer membrane of mitochondria via a predicted amphipathic α-helix. Additionally, ORF 3b contains a consensus nuclear export sequence, and we demonstrate that nuclear export and thus mitochondrial translocation are dependent on a leptomycin B-sensitive nuclear export mechanism. We further show that ORF 3b inhibits induction of type I interferon induced by retinoic acid-induced gene 1 and the mitochondrial antiviral signaling protein. Our observations provide insights into the cellular localization of ORF 3b that may enhance our understanding of the mechanisms by which ORF 3b contributes to SARS-CoV pathogenesis. The findings reported here reveal that for multilocalized proteins, consideration of the spatiotemporal distribution may be crucial for understanding viral protein behavior and function.The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2003 and caused a multinational epidemic. SARS-CoV is characterized by a 100-nm enveloped virion containing the spike glycoprotein, the membrane glycoprotein, small envelope protein, and the 3a glycoprotein (19, 22). Additional proteins associated with the viral particle include nucleocapsid phosphoprotein (N) and open reading frame (ORF) 6 protein (21). The 29,751-nucleotide genome of SARS-CoV is composed of single-stranded, positive-sense RNA and is predicted to contain 15 ORFs. The SARS-CoV genome encodes eight smaller ORFs located in the 3′ end of the genome that are predicted to express eight proteins that are novel even among other known human CoVs. Five of these eight group-specific ORFs, including ORFs 3a, 3b, 6, 7a, and 7b, were deleted from recombinant SARS-CoV and found to be dispensable for viral replication both in tissue culture and in mice (40). It is therefore likely that these five accessory proteins promote specialized viral replication or modulate host immune responses (31). Detailed characterization of these novel proteins should contribute to a better understanding of both SARS pathogenesis and the challenges viruses face in host tissues.One of the unique proteins is encoded by ORF 3b, the second ORF in subgenomic RNA3 (32). Also known as X2 or ORF 4, the ORF 3b protein is predicted to be 154 amino acids long, and current evidence suggests that ORF 3b may be expressed during infection (4, 16). The precise determinants of intracellular localization of ORF 3b are not yet understood. Certain studies have reported both mitochondrial and nucleolar localization of ORF 3b, whereas others have detected only nuclear localization (25, 41, 43). Importantly, ORF 3b has been shown to antagonize cellular production of type I interferon (IFN) (25). Additional studies suggest that ORF 3b might be involved in initiating host cell apoptosis although these have been contested (24, 42).In the present study, we report unique localization behavior of ORF 3b, whereby the protein initially accumulates in the nucleus and subsequently translocates to mitochondria. The molecular determinants of subcellular localization include a CRM1-dependent nuclear export sequence and a predicted amphipathic α-helix necessary for binding to the outer membrane of mitochondria. Within this predicted helix, two lysine residues are important to mediate mitochondrial localization. Finally, we confirm previous findings demonstrating an inhibitory role for ORF 3b in type I IFN signaling and suggest that the inhibitory effect of ORF 3b occurs at or downstream of the mitochondrial antiviral signaling (MAVS) protein. These findings may contribute to understanding the mechanism by which ORF 3b contributes to SARS-CoV pathogenesis.  相似文献   

2.
3.
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes several accessory proteins of unknown function. One of these proteins, protein 6 (p6), which is encoded by ORF6, enhances virus replication when introduced into a heterologous murine coronavirus (mouse hepatitis virus [MHV]) but is not essential for optimal SARS-CoV replication after infection at a relatively high multiplicity of infection (MOI). Here, we reconcile these apparently conflicting results by showing that p6 enhances SARS-CoV replication to nearly the same extent as when expressed in the context of MHV if cells are infected at a low MOI and accelerates disease in mice transgenic for the human SARS-CoV receptor.The genome of severe acute respiratory syndrome coronavirus (SARS-CoV) encodes several structural proteins, including the spike, nucleocapsid, membrane, and envelope proteins (13). Integrated between and within these structural proteins are eight accessory proteins (6, 8, 10, 15, 16, 18, 21-27). Our laboratory showed previously that one of these SARS-CoV-specific accessory proteins, encoded by ORF6, showed a clearly recognizable phenotype when introduced into a heterologous attenuated murine coronavirus, mouse hepatitis virus (MHV) strain J2.2-V-1 (rJ2.2.6). rJ2.2.6 grew more rapidly and to higher titers in tissue culture cells and in the murine central nervous system than control viruses, and the presence of p6 increased mortality in mice from 10 to 20% to 80% (7, 19, 20). However, the absence of p6 did not diminish SARS-CoV growth in tissue culture cells when cells were infected with 1 PFU/cell (31). In addition to a role in enhancing virus replication, when expressed in the context of a SARS-CoV infection or by transfection, p6 blocked interferon (IFN)-induced STAT1 nuclear translocation by retention of the nuclear import adaptor molecule karyopherin alpha 2 in the cytoplasm, indicating a role in thwarting innate immune effectors (5, 11). In contrast, p6 did not significantly diminish IFN sensitivity when expressed in the context of rJ2.2 (20).The results described above were puzzling, because p6 seemed to be required for the optimal replication of a heterologous coronavirus but not for that of SARS-CoV. Thus, the objective of this study was to determine whether p6 could enhance SARS-CoV replication in tissue culture cells under any conditions. For this purpose, we examined its function by comparing the growth of a recombinant SARS-CoV (rSARS-CoV) in which p6 was deleted (rSARS-CoVΔ6) with that of wild-type rSARS-CoV at a range of multiplicities of infection (MOIs). Normal mice infected with SARS-CoV readily cleared the infection, making it difficult to detect a role for p6 in vivo. However, mice that are transgenic for expression of the human receptor angiotensin-converting enzyme 2 (hACE2) are exquisitely sensitive to infection with SARS-CoV and are useful for identifying an in vivo role for p6 (14).  相似文献   

4.
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 3 major envelope proteins: spike (S), membrane (M), and envelope (E). Previous work identified a dibasic endoplasmic reticulum retrieval signal in the cytoplasmic tail of SARS-CoV S that promotes efficient interaction with SARS-CoV M. The dibasic signal was shown to be important for concentrating S near the virus assembly site rather than for direct interaction with M. Here, we investigated the sequence requirements of the SARS-CoV M protein that are necessary for interaction with SARS-CoV S. The SARS-CoV M tail was shown to be necessary for S localization in the Golgi region when the proteins were exogenously coexpressed in cells. This was specific, since SARS-CoV M did not retain an unrelated glycoprotein in the Golgi. Importantly, we found that an essential tyrosine residue in the SARS-CoV M cytoplasmic tail, Y195, was important for S-M interaction. When Y195 was mutated to alanine, MY195A no longer retained S intracellularly at the Golgi. Unlike wild-type M, MY195A did not reduce the amount of SARS-CoV S carbohydrate processing or surface levels when the two proteins were coexpressed. Mutating Y195 also disrupted SARS-CoV S-M interaction in vitro. These results suggest that Y195 is necessary for efficient SARS-CoV S-M interaction and, thus, has a significant involvement in assembly of infectious virus.Coronaviruses are enveloped positive-strand RNA viruses that infect a wide variety of mammalian and avian species. These viruses generally cause mild disease in humans and are one major cause of the common cold (34). However, severe acute respiratory syndrome coronavirus (SARS-CoV), a novel human coronavirus which emerged in the Guangdong province in China in 2002 (30, 48), caused a widespread pandemic. SARS-CoV caused severe disease with a mortality rate of approximately 10%, the highest for any human coronavirus to date (62). The phylogeny and group classification of SARS-CoV remain controversial (17), but it is widely accepted to be a distant member of group 2. While SARS-CoV is no longer a major health threat, understanding the basic biology of this human pathogen remains important.Coronaviruses encode three major envelope proteins in addition to various nonstructural and accessory proteins. The envelope protein (E) is the least abundant structural protein in the virion envelope, although it is expressed at robust levels during infection (21). E plays an essential role in assembly for some but not all coronaviruses (31-33, 45) and may also be a viroporin (reviewed in reference 21). The spike glycoprotein (S) is the second most abundant protein in the envelope. S determines host cell tropism, binds the host receptor, and is responsible for virus-cell, as well as cell-cell, fusion (15). The S protein is a type I membrane protein with a large, heavily glycosylated luminal domain and a short cytoplasmic tail that has been shown to be palmitoylated in some coronaviruses (47, 58). The membrane protein (M) is the most abundant protein in the virion envelope and acts as a scaffold for virus assembly. M has three transmembrane domains, a long cytoplasmic tail, and a short glycosylated luminal domain (reviewed in reference 21). Unlike many enveloped viruses, coronaviruses assemble at and bud into the lumen of the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and exit the infected cell by exocytosis (29). In order to accomplish this, the envelope proteins must be targeted to the budding compartment for assembly.For most coronaviruses, the E and M proteins localize in the Golgi region near the budding site independently of other viral structural proteins. We have previously shown for infectious bronchitis virus (IBV) E protein that the cytoplasmic tail contains Golgi targeting information (9). IBV M contains Golgi targeting information in its first transmembrane domain (57), while the transmembrane domains and cytoplasmic tail of mouse hepatitis virus (MHV) M appear to play a role in Golgi targeting (1, 36). Some coronavirus S proteins contain targeting information in their cytoplasmic tails; however, some do not (38, 39, 52, 63). Since S proteins can escape to the cell surface when highly expressed, S may rely on lateral interactions with other viral envelope proteins to localize to the budding site and be incorporated into newly assembling virions.In line with its role in virus assembly, M is necessary for virus-like particle (VLP) formation (3, 10, 26, 40, 55, 59). M has been shown to interact with itself to form homo-oligomers (12). In addition, M interacts with E, S, and the viral nucleocapsid and is essential for virion assembly (reviewed in reference 21). Lateral interactions between the coronavirus envelope proteins are critical for efficient virus assembly. The interaction of S and M has been studied for MHV, and the cytoplasmic tail of each protein is important for interaction (16, 44). Specifically, deletion of an amphipathic region in the MHV M cytoplasmic tail abrogates efficient interaction with MHV S (11). The S and M proteins of IBV, bovine coronavirus, feline infectious peritonitis virus, and SARS-CoV have been shown to interact; however, information about the specific regions that are important for interaction remains elusive (16, 22, 26, 42, 64). Due to the presence of several accessory proteins in the virion envelope (23-25, 28, 51, 53), it is possible that the requirements for SARS-CoV S and M interaction could be different from those of previously studied coronaviruses.In earlier work, we reported that SARS-CoV M retains SARS-CoV S intracellularly at the Golgi region when both proteins are expressed exogenously (39). We also demonstrated that the SARS-CoV S cytoplasmic tail interacts with in vitro-transcribed and -translated SARS-CoV M (39). Here, we show that the SARS-CoV M cytoplasmic tail is necessary for specific retention of SARS-CoV S at the Golgi region. We found a critical tyrosine residue at position 195 to be important for retaining SARS-CoV S Golgi membranes when coexpressed with M. When Y195 was mutated to alanine, the mutant protein, MY195A, did not reduce the amount of SARS-CoV S at the plasma membrane or reduce the extent of S carbohydrate processing as well as wild-type SARS-CoV M does. Additionally, mutation of Y195 in SARS-CoV M disrupted the S-M interaction in vitro. Thus, Y195 is likely to play a critical role in the assembly of infectious SARS-CoV.  相似文献   

5.
6.
Tegument is a unique structure of herpesvirus, which surrounds the capsid and interacts with the envelope. Morphogenesis of gammaherpesvirus is poorly understood due to lack of efficient lytic replication for Epstein-Barr virus and Kaposi''s sarcoma-associated herpesvirus/human herpesvirus 8, which are etiologically associated with several types of human malignancies. Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses and presents an excellent model for studying de novo lytic replication of gammaherpesviruses. MHV-68 open reading frame 33 (ORF33) is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. However, the specific role of ORF33 in gammaherpesvirus replication has not yet been characterized. We describe here that ORF33 is a true late gene and encodes a tegument protein. By constructing an ORF33-null MHV-68 mutant, we demonstrated that ORF33 is not required for viral DNA replication, early and late gene expression, viral DNA packaging or capsid assembly but is required for virion morphogenesis and egress. Although the ORF33-null virus was deficient in release of infectious virions, partially tegumented capsids produced by the ORF33-null mutant accumulated in the cytoplasm, containing conserved capsid proteins, ORF52 tegument protein, but virtually no ORF45 tegument protein and the 65-kDa glycoprotein B. Finally, we found that the defect of ORF33-null MHV-68 could be rescued by providing ORF33 in trans or in an ORF33-null revertant virus. Taken together, our results indicate that ORF33 is a tegument protein required for viral lytic replication and functions in virion morphogenesis and egress.Gammaherpesviruses are associated with tumorigenesis. Like other herpesviruses, they are characterized as having two distinct stages in their life cycle: lytic replication and latency (15, 16, 18, 21, 54). Latency provides the viruses with advantages to escape host immune surveillance and to establish lifelong persistent infection and contributes to transformation and development of malignancies. However, it is through lytic replication that viruses propagate and transmit among hosts to maintain viral reservoirs. Both viral latency and lytic replication play important roles in tumorigenesis. The gammaherpesvirus subfamily includes Epstein-Barr virus (EBV), Kaposi''s sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 and murine gammaherpesvirus 68 (MHV-68), among others. EBV is associated with Burkitt''s lymphoma, nasopharyngeal carcinoma, Hodgkin''s disease, and lymphoproliferative diseases in immunodeficient patients (28). KSHV is etiologically linked with Kaposi''s sarcoma, primary effusion lymphoma, and multicentric Castleman''s disease (11-13, 22, 52). Neither in vivo nor in vitro studies of EBV and KSHV are convenient due to their propensity to establish latency in cell culture and their limited host ranges.MHV-68 is genetically related to these two human gammaherpesviruses, especially to KSHV, based on the alignment of their genomic sequences and other biological properties (55). As a natural pathogen of wild rodents, MHV-68 also infects laboratory mice (6, 40, 46) and replicates to a high titer in a variety of fibroblast and epithelial cell lines. These advantages make MHV-68 an excellent model for studying the lytic replication of gammaherpesviruses in vitro and certain aspects of virus-host interactions in vivo. In addition, the MHV-68 genome has been cloned as a bacterial artificial chromosome (BAC) that can propagate in Escherichia coli (1, 2, 36, 51), making it convenient to study the function of each open reading frame (ORF) by genetic methods. Exploring the functions of MHV-68 ORFs will likely shed light on the functions of their homologues in human gammaherpesviruses.Gammaherpesviral particles have a characteristic multilayered architecture. An infectious virion contains a double-stranded DNA genome, an icosahedral capsid shell, a thick, proteinaceous tegument compartment, and a lipid bilayer envelope spiked with glycoproteins (14, 30, 47, 49). As a unique structure of herpesviruses, the tegument plays important roles in multiple aspects of the viral life cycle, including virion assembly and egress (38, 48, 53), translocation of nucleocapsids into the nucleus, transactivation of viral immediate-early genes, and modulation of host cell gene expression, innate immunity, and signal transduction (9, 10, 23, 60). Some components of MHV-68 tegument have been identified by a mass spectrometric study (8), and the functions of some tegument proteins have been revealed, such as ORF45, ORF52, and ORF75c (7, 24, 29).MHV-68 ORF33 is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. Its homologues include human herpes simplex virus type 1 (HSV-1) UL16, human herpes simplex virus type 2 (HSV-2) UL16, human cytomegalovirus (HCMV) UL94, EBV BGLF2, KSHV ORF33, and rhesus monkey rhadinovirus (RRV) ORF33. HSV-1 UL16 has been identified as a tegument protein and may function in viral DNA packaging, virion assembly, budding, and egress (5, 32, 35, 41, 44). HCMV UL94 is a virion associated protein and might function in virion assembly and budding (31, 57). EBV BGLF2, KSHV ORF33, and RRV ORF33 are also virion-associated proteins, but their functions are not clear (26, 43, 59). The mass spectrometric study of MHV-68 did not identify ORF33 as a virion component (8), although ORF33 is found to be essential for viral lytic replication by transposon mutagenesis of the MHV-68 genome cloned as a BAC (51). However, insertion of the 1.2-kbp Mu transposon in that study may influence the expression of ORFs approximate to ORF33. Consequently, the role ORF33 plays in viral replication needs to be confirmed, preferably through site-directed mutagenesis. Whether ORF33 is a tegument protein and the exact viral replication stage in which it functions also need to be investigated.We determined that MHV-68 ORF33 encodes a tegument protein and is expressed with true late kinetics. To explore the function of ORF33 in viral lytic phase, we used site-directed mutagenesis and generated an ORF33-null mutant, taking advantage of the MHV-68 BAC system. We showed that the ORF33-null mutant is capable of viral DNA replication, early and late gene expression, capsid assembly, and DNA packaging, but incapable of virion release. The defect of ORF33-null mutant can be rescued in trans by an ORF33 expression plasmid.  相似文献   

7.
The original annotation of the vaccinia virus (VACV) genome was limited to open reading frames (ORFs) of at least 65 amino acids. Here, we characterized a 35-amino-acid ORF (O3L) located between ORFs O2L and I1L. ORFs similar in length to O3L were found at the same genetic locus in all vertebrate poxviruses. Although amino acid identities were low, the presence of a characteristic N-terminal hydrophobic domain strongly suggested that the other poxvirus genes were orthologs. Further studies demonstrated that the O3 protein was expressed at late times after infection and incorporated into the membrane of the mature virion. An O3L deletion mutant was barely viable, producing tiny plaques and a 3-log reduction in infectious progeny. A mutant VACV with a regulated O3L gene had a similar phenotype in the absence of inducer. There was no apparent defect in virus morphogenesis, though O3-deficient virus had low infectivity. The impairment was shown to be at the stage of virus entry, as cores were not detected in the cytoplasm after virus adsorption. Furthermore, O3-deficient virus did not induce fusion of infected cells when triggered by low pH. These characteristics are hallmarks of a group of proteins that form the entry/fusion complex (EFC). Affinity purification experiments demonstrated an association of O3 with EFC proteins. In addition, the assembly or stability of the EFC was impaired when expression of O3 was repressed. Thus, O3 is the newest recognized component of the EFC and the smallest VACV protein shown to have a function.Vaccinia virus (VACV), the best-studied member of the poxvirus family of cytoplasmic DNA viruses, encodes ∼200 genes, some of which are still uncharacterized (27). The focus of the present study is VACV O3L, a short 35-amino-acid open reading frame (ORF) that was recognized by homology to a 41-amino-acid ORF in molluscum contagiosum virus (37) but not previously investigated. Here, we show that O3L is conserved in all chordopoxviruses, expressed late in infection, and involved in cell entry.Considerable information regarding VACV entry has been obtained during the past several years (28). There are two related infectious forms of VACV: the mature virion (MV) and the enveloped virions (EV). The MV is comprised of a lipoprotein membrane enclosing a nucleoprotein core, whereas the EV has an additional outer membrane that must be disrupted before fusion can occur (24). The MV can enter cells either by fusion at the plasma membrane (7) or by a low-pH-mediated endosomal route involving macropinocytosis (20, 26, 44). Regardless of which route is used, the ability of VACV to enter cells depends on a large number of proteins in the MV membrane that form or are associated with the entry/fusion complex (EFC) (39). Using genetic and biochemical methods, 11 entry/fusion proteins have been identified: A16 (33), A21 (43), A28 (40), F9 (4), G3 (21), G9 (32), H2 (38), I2 (31), J5 (39), L1 (3), and L5 (42). Eight of these proteins (A16, A21, A28, G3, G9, H2, J5, and L5) comprise the EFC, which depends on multiple interactions for assembly or stability. Although the structure of the EFC remains to be elucidated, there is evidence for direct interactions between A28 and H2 (30) and between A16 and G9 (50). An additional role for A16 and G9 involves an interaction with the A56/K2 heterodimer, which is present on the surface of infected cells, to prevent spontaneous cell-cell fusion and superinfection by progeny virus (45, 46, 48-50). Binding of L1 to an unidentified cell receptor has been suggested (16). Roles in membrane fusion have also been considered for A17 and A27 (23).Here we provide physical and functional evidence that O3 (VACWR069.5) is an integral component of the EFC and participates in virus entry and membrane fusion. With just 35 amino acids, O3 is the smallest VACV protein with a defined function.  相似文献   

8.
9.
Hepatitis E virus genotype 1 strain Sar55 replicated in subcloned Caco-2 intestinal cells and Huh7 hepatoma cells that had been transfected with in vitro transcribed viral genomes, and hepatitis E virions were released into the culture medium of both cell lines. Virus egress from cells depended on open reading frame 3 (ORF3) protein, and a proline-rich sequence in ORF3 was important for egress from cultured cells and for infection of macaques. Both intracellular ORF3 protein accumulation and virus release occurred at the apical membrane of polarized Caco-2 cells. ORF3 protein and lipids were intimately associated with virus particles produced in either cell line; ORF2 epitopes were masked in these particles and could not be immunoprecipitated with anti-ORF2.Hepatitis E virus (HEV) remains enigmatic in spite of recent advances (see references 7 and 16 for reviews). HEV is a major cause of acute hepatitis in numerous developing countries, but hepatitis E is infrequently detected in industrialized countries even though seroprevalence rates of anti-HEV as high as 20% in these countries have been reported. Although hepatitis E normally is a self-limited acute disease, recent studies have identified it as an emerging cause of chronic hepatitis in immunocompromised patients. Whereas contaminated drinking water is the source of most infections in developing countries, the sources in industrialized countries are not fully evaluated, but many, if not most, infections appear linked to eating undercooked meat, especially pork. These differences in epidemiology may reflect the fact that most infections in developing countries are caused by genotypes 1 and 2 while those in industrialized countries are mainly due to genotypes 3 and 4.HEV was initially classified as a calicivirus, but subsequent sequence analysis suggested that it was more closely related to the enveloped rubella virus. However, although HEV may be associated with lipids under some conditions (22), HEV virions do not possess an envelope. Four genotypes of HEV that infect humans have been identified (4). Genotypes 1 and 2 infect primates exclusively, whereas genotypes 3 and 4 are zoonotic and commonly also infect swine and rarely other nonprimates. Recent identification of a strain infecting farmed rabbits in China suggests that other reservoirs may exist (32).The capsid protein encoded by open reading frame 2 (ORF2) is able to form infectious virus particles, but these particles remain cell associated. The crystal structure of a truncated recombinant protein has been solved, but the size of the protein in mature virions is unknown (11, 15, 28, 31). The virus is not cytopathic, and it is unclear how it gets out of cells.The 7.2-kb genome of HEV is a capped mRNA that contains three ORFs that encode proteins involved in replication (ORF1), a capsid protein (ORF2), and a small protein of only 113 to 114 amino acids (ORF3). All but the 5′ terminus of ORF3 is overlapped by ORF2, and both proteins are translated from the same bicistronic subgenomic RNA (10). When overexpressed in cell culture, ORF2 is glycosylated, and ORF3 is phosphorylated (26); this phosphorylated ORF3 protein binds to nonglycosylated ORF2 protein in cell culture, but phosphorylation is not required for infection of macaques (9). The virus has been exceedingly difficult to propagate in cell culture, but recently Okamoto and colleagues reported the successful adaptation of both a genotype 3 and a genotype 4 strain to efficient growth in cultures of PLC/PRF/5 hepatoma or A549 lung cells (23, 24).The tiny ORF3 protein is particularly intriguing because it has a significant impact on virus propagation through mechanisms that have yet to be defined. Data from experiments performed with overexpressed ORF3 protein have suggested that, among other things, ORF3 may interact with cellular proteins, including signaling proteins containing Src homology 3 domains (14), bikunin (27), hemopexin (21), and microtubule proteins (13), and it may function to modulate the acute-phase disease response (3), protect cells from mitochondrial depolarization (18), and enhance expression of glycolytic pathway enzymes (17). Yet within transfected hepatoma cells in culture, virions of an ORF3 null mutant of genotype 1 were assembled in the absence of ORF3 protein and were infectious for naïve hepatoma cells (6) although this same ORF3 null mutant was unable to mount a detectable infection in rhesus monkeys (8). Also, swine transfected with genotype 3 mutant genomes encoding a truncated ORF3 protein did not get infected, indicating that an intact ORF3 protein is needed for infectivity in vivo (12). This lack of infectivity in vivo is possibly explained by the recent demonstration that the ORF3 protein of genotype 3 virus is important for export of virions out of cultured cells in vitro (30); however, this dependence on ORF3 for virion egress has not been confirmed in vivo or for strains of the other three genotypes.The four major genotypes of human HEV appear to segregate naturally into two distinct groups. One group contains genotype 1 and 2 strains that lack a zoonotic component and are spread mainly via contaminated water; in contrast, the second group contains genotype 3 and 4 strains which are able to cross species boundaries and are zoonotic since humans have been infected as a result of eating undercooked meat (16, 25). The molecular basis for the two groupings is unknown, and much more extensive comparative analyses are required to determine which variables are epidemiologically relevant. Here, for lack of an efficient cell culture system for genotype 1 or 2 strains, we have utilized an infectious cDNA clone of a genotype 1 strain in order to explore the role of the ORF3 protein in this group.  相似文献   

10.
Mannose-binding lectin (MBL) is a serum protein that plays an important role in host defenses as an opsonin and through activation of the complement system. The objective of this study was to assess the interactions between MBL and severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein (SARS-S). MBL was found to selectively bind to retroviral particles pseudotyped with SARS-S. Unlike several other viral envelopes to which MBL can bind, both recombinant and plasma-derived human MBL directly inhibited SARS-S-mediated viral infection. Moreover, the interaction between MBL and SARS-S blocked viral binding to the C-type lectin, DC-SIGN. Mutagenesis indicated that a single N-linked glycosylation site, N330, was critical for the specific interactions between MBL and SARS-S. Despite the proximity of N330 to the receptor-binding motif of SARS-S, MBL did not affect interactions with the ACE2 receptor or cathepsin L-mediated activation of SARS-S-driven membrane fusion. Thus, binding of MBL to SARS-S may interfere with other early pre- or postreceptor-binding events necessary for efficient viral entry.A novel coronavirus (CoV), severe acute respiratory syndrome-CoV (SARS-CoV), is the causal agent of severe acute respiratory syndrome, which afflicted thousands of people worldwide in 2002 and 2003 (10, 39). SARS-CoV is an enveloped, single- and positive-strand RNA virus that encodes four major structural proteins: S, spike glycoprotein (GP); E, envelope protein; M, membrane glycoprotein; and N, nucleocapsid protein (46, 55). Similar to other coronaviruses, the S glycoprotein of the virus mediates the initial attachment of the virus to host cell receptors, angiotensin-converting enzyme 2 (ACE2) (44) and/or DC-SIGNR (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-related molecule; also CD209L or L-SIGN[liver/lymph node-SIGN]) (32) and subsequent fusion of the viral and cellular membranes to allow viral entry into susceptible target cells. The S glycoprotein of SARS-CoV (SARS-S) is a 1,255-amino-acid (aa) type I membrane glycoprotein (46) with 23 potential N-linked glycosylation sites (55). The S glycoproteins of some coronaviruses are translated as a large polypeptide that is subsequently proteolytically cleaved into two functional subunits, S1 (harboring the receptor-binding domain [RBD]) and S2 (containing the membrane fusion domains) (1, 31, 51), during biogenesis, but others are not. The S glycoprotein on mature SARS-CoV virions does not appear to be cleaved (50, 61), but sequence alignments with other coronavirus S glycoproteins allow definition of S1 and S2 regions (46, 55). More recently, studies showed the proteolysis of the S glycoprotein of SARS-CoV on mature virions by cathepsin L (CTSL) (28, 59), as well as trypsin (43, 61) and factor Xa (11), suggesting that a critical cleavage event may occur during cell entry rather than during virion biogenesis.Mannose-binding lectin (MBL; also known as mannose-binding or mannan-binding protein [MBP]) is a Ca2+-dependent (C-type) serum lectin that plays an important role in innate immunity by binding to carbohydrates on the surface of a wide range of pathogens (including bacteria, viruses, fungi, and protozoa) (8, 14, 18), where it activates the complement system or acts directly as an opsonin (30, 40, 52). In order to activate the complement system, MBL must be in complex with a group of MBL-associated serine proteases (MASPs), MASP-1, -2, and -3. Currently, only the role of MASP-2 in complement activation has been clearly defined (65). The MBL-MASP-2 complex cleaves C4 and C2 to form C3 convertase (C4bC2a), which, in turn, activates the downstream complement cascade. MBL is a pattern recognition molecule (9), and surface recognition is mediated through its C-terminal carbohydrate recognition domains (CRDs), which are linked to collagenous stems by a short coiled-coil of alpha-helices. MBL is a mixture of oligomers assembled from subunits that are formed from three identical polypeptide chains (9) and usually has two to six clusters of CRDs. Within each of the clusters, the carbohydrate-binding sites have a fixed orientation, which allows selective recognition of patterns of carbohydrate residues on the surfaces of a wide range of microorganisms (8, 14, 18). The concentration of MBL in the serum varies greatly and is affected by mutations of the promoter and coding regions of the human MBL gene (45). MBL deficiency is associated with susceptibility to various infections, as well as autoimmune, metabolic, and cardiovascular diseases, although MBL-deficient individuals are generally healthy (13, 37, 67).There are conflicting results with regard to the role of MBL in SARS-CoV infection (29, 42, 72, 73). While the association of MBL gene polymorphisms with susceptibility to SARS-CoV infection was reported in some studies (29, 73), Yuan et al. demonstrated that there were no significant differences in MBL genotypes and allele frequencies among SARS patients and controls (72). Ip et al. observed binding to, and inhibition of, SARS-CoV by MBL (29). However, in other studies, no binding of MBL to purified SARS-CoV S glycoprotein was detected (42).In this study, retroviral particles pseudotyped with SARS-S and in vitro assays were used to characterize the role of MBL in SARS-CoV infection. The data indicated that MBL selectively bound to SARS-S and mediated inhibition of viral infection in susceptible cell lines. Moreover, we identified a single N-linked glycosylation site, N330, on SARS-S that is critical for the specific interactions with MBL.  相似文献   

11.
12.
13.
The herpes simplex virus (HSV) ICP0 protein acts to overcome intrinsic cellular defenses that repress viral α gene expression. In that vein, viruses that have mutations in ICP0''s RING finger or are deleted for the gene are sensitive to interferon, as they fail to direct degradation of promyelocytic leukemia protein (PML), a component of host nuclear domain 10s. While varicella-zoster virus is also insensitive to interferon, ORF61p, its ICP0 ortholog, failed to degrade PML. A recombinant virus with each coding region of the gene for ICP0 replaced with sequences encoding ORF61p was constructed. This virus was compared to an ICP0 deletion mutant and wild-type HSV. The recombinant degraded only Sp100 and not PML and grew to higher titers than its ICP0 null parental virus, but it was sensitive to interferon, like the virus from which it was derived. This analysis permitted us to compare the activities of ICP0 and ORF61p in identical backgrounds and revealed distinct biologic roles for these proteins.Alphaherpesviruses encode orthologs of the herpes simplex virus (HSV) α gene product ICP0. ICP0 is a nuclear phosphoprotein that behaves as a promiscuous activator of viral and cellular genes (7, 11, 28, 29). ICP0 also functions as an E3 ubiquitin ligase to target several host proteins for proteasomal degradation (4, 10, 11, 16, 26). Through this activity, ICP0 promotes degradation of components of nuclear domain 10 (ND10) bodies, including the promyelocytic leukemia protein (PML) and Sp100. These proteins are implicated in silencing of herpesvirus genomes (9, 10, 22, 34). Therefore, ICP0-mediated degradation of ND10 components may disrupt silencing of HSV genes to enable efficient gene expression. This hypothesis provides a plausible mechanistic explanation of how ICP0 induces gene activation.Introduction of DNA encoding the ICP0 orthologs from HSV, bovine herpesvirus, equine herpesvirus, and varicella-zoster virus (VZV) can also affect nuclear structures and proteins (27). In addition, and more specific to this report, ORF61p, the VZV ortholog, activates viral promoters and enhances infectivity of viral DNA like ICP0, the prototype for this gene family (24, 25). However, we have previously demonstrated two key biological differences between the HSV and VZV orthologs. We first showed that unlike ICP0, ORF61p is unable to complement depletion of BAG3, a host cochaperone protein. As a result, VZV is affected by silencing of BAG3 (15), whereas growth of HSV is altered only when ICP0 is not expressed (17). Furthermore, we have shown that while both proteins target components of ND10s, expression of ICP0 results in degradation of both PML and Sp100, whereas ORF61p specifically reduces Sp100 levels (16). These findings suggest that these proteins have evolved separately to provide different functions for virus replication.Virus mutants lacking the ICP0 gene have an increased particle-to-PFU ratio, a substantially lower yield, and decreased levels of α gene expression, in a multiplicity-of-infection (MOI)- and cell-type-dependent manner (2, 4, 8, 33). These mutants are also defective at degrading ND10 components (23). Depletion of PML and Sp100 accelerates virus gene expression and increases plaquing efficiency of HSV ICP0-defective viruses but has no effect on wild-type virus, suggesting that PML and Sp100 are components of an intrinsic anti-HSV defense mechanism that is counteracted by ICP0''s E3 ligase activity (9, 10). Interestingly, ICP0 null viruses are also hypersensitive to interferon (IFN) (26), a property that was suggested to be mediated via PML (3).To directly compare the activities of the two orthologs, we constructed an HSV mutant virus that expresses ORF61p in place of ICP0. The resulting chimeric virus only partially rescues the ICP0 null phenotype. Our studies emphasize the biological differences between ICP0 and ORF61p and shed light on the requirements for PML and Sp100 during infection.  相似文献   

14.
15.
Norovirus GII/4 is a leading cause of acute viral gastroenteritis in humans. We examined here how the GII/4 virus evolves to generate and sustain new epidemics in humans, using 199 near-full-length GII/4 genome sequences and 11 genome segment clones from human stool specimens collected at 19 sites in Japan between May 2006 and February 2009. Phylogenetic studies demonstrated outbreaks of 7 monophyletic GII/4 subtypes, among which a single subtype, termed 2006b, had continually predominated. Phylogenetic-tree, bootscanning-plot, and informative-site analyses revealed that 4 of the 7 GII/4 subtypes were mosaics of recently prevalent GII/4 subtypes and 1 was made up of the GII/4 and GII/12 genotypes. Notably, single putative recombination breakpoints with the highest statistical significance were constantly located around the border of open reading frame 1 (ORF1) and ORF2 (P ≤ 0.000001), suggesting outgrowth of specific recombinant viruses in the outbreaks. The GII/4 subtypes had many unique amino acids at the time of their outbreaks, especially in the N-term, 3A-like, and capsid proteins. Unique amino acids in the capsids were preferentially positioned on the outer surface loops of the protruding P2 domain and more abundant in the dominant subtypes. These findings suggest that intersubtype genome recombination at the ORF1/2 boundary region is a common mechanism that realizes independent and concurrent changes on the virion surface and in viral replication proteins for the persistence of norovirus GII/4 in human populations.Norovirus (NoV) is a nonenveloped RNA virus that belongs to the family Caliciviridae and can cause acute gastroenteritis in humans. The NoV genome is a single-stranded, positive-sense, polyadenylated RNA that encodes three open reading frames, ORF1, ORF2, and ORF3 (68). ORF1 encodes a long polypeptide (∼200 kDa) that is cleaved in the cells by the viral proteinase (3Cpro) into six proteins (4). These proteins function in NoV replication in host cells (19). ORF2 encodes a viral capsid protein, VP1. The capsid gene evolved at a rate of 4.3 × 10−3 nucleotide substitutions/site/year (7), which is comparable to the substitution rates of the envelope and capsid genes of human immunodeficiency virus (30). The capsid protein of NoV consists of a shell (S) and two protruding (P) domains: P1 and P2 (47). The S domain is relatively conserved within the same genetic lineages of NoVs (38) and is responsible for the assembly of VP1 (6). The P1 subdomain is also relatively conserved (38) and has a role in enhancing the stability of virus particles (6). The P2 domain is positioned at the most exposed surface of the virus particle (47) and forms binding clefts for putative infection receptors, such as human histo-blood group antigens (HBGA) (8, 13, 14, 60). The P2 domain also contains epitopes for neutralizing antibodies (27, 33) and is consistently highly variable even within the same genetic lineage of NoVs (38). ORF3 encodes a VP2 protein that is suggested to be a minor structural component of virus particles (18) and to be responsible for the expression and stabilization of VP1 (5).Thus far, the NoVs found in nature are classified into five genogroups (GI to GV) and multiple genotypes on the basis of the phylogeny of capsid sequences (71). Among them, genogroup II genotype 4 (GII/4), which was present in humans in the mid-1970s (7), is now the leading cause of NoV-associated acute gastroenteritis in humans (54). The GII/4 is further subclassifiable into phylogenetically distinct subtypes (32, 38, 53). Notably, the emergence and spread of a new GII/4 subtype with multiple amino acid substitutions on the capsid surface are often associated with greater magnitudes of NoV epidemics (53, 54). In 2006 and 2007, a GII/4 subtype, termed 2006b, prevailed globally over preexisting GII/4 subtypes in association with increased numbers of nonbacterial acute gastroenteritis cases in many countries, including Japan (32, 38, 53). The 2006b subtype has multiple unique amino acid substitutions that occur most preferentially in the protruding subdomain of the capsid, the P2 subdomain (32, 38, 53). Together with information on human population immunity against NoV GII/4 subtypes (12, 32), it has been postulated that the accumulation of P2 mutations gives rise to antigenic drift and plays a key role in new epidemics of NoV GII/4 in humans (32, 38, 53).Genetic recombination is common in RNA viruses (67). In NoV, recombination was first suggested by the phylogenetic analysis of an NoV genome segment clone: a discordant branching order was noted with the trees of the 3Dpol and capsid coding regions (21). Subsequently, many studies have reported the phylogenetic discordance using sequences from various epidemic sites in different study periods (1, 10, 11, 16, 17, 22, 25, 40, 41, 44-46, 49, 51, 57, 63, 64, 66). These results suggest that genome recombination frequently occurs among distinct lineages of NoV variants in vivo. However, the studies were done primarily with direct sequencing data of the short genome portion, and information on the cloned genome segment or full-length genome sequences is very limited (21, 25). Therefore, we lack an overview of the structural and temporal dynamics of viral genomes during NoV epidemics, and it remains unclear whether NoV mosaicism plays a role in these events.To clarify these issues, we collected 199 near-full-length genome sequences of GII/4 from NoV outbreaks over three recent years in Japan, divided them into monophyletic subtypes, analyzed the temporal and geographical distribution of the subtypes, collected phylogenetic evidence for the viral genome mosaicism of the subtypes, identified putative recombination breakpoints in the genomes, and isolated mosaic genome segments from the stool specimens. We also performed computer-assisted sequence and structural analyses with the identified subtypes to address the relationship between the numbers of P2 domain mutations at the times of the outbreaks and the magnitudes of the epidemics. The obtained data suggest that intersubtype genome recombination at the ORF1/2 boundary region is common in the new GII/4 outbreaks and promotes the effective acquisition of mutation sets of heterogeneous capsid surface and viral replication proteins.  相似文献   

16.
17.
18.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号