首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminopeptidase N (APN/CD13) is a 150 kDa membrane-bound ubiquitously expressed protease with a broad functional repertoire. It hydrolyzes small peptide mediators, modulates cell motility and adhesion to extracellular matrix and also acts as a viral receptor. In order to dissect the function of enzymatically active and inactive APN/CD13, substitutions of different enzymatic active amino acid residues were generated by site-directed mutagenesis and stably transfected into human embryonic kidney cells. All APN variants analyzed exhibited a complete loss of enzymatic activity, whereas wild type APN transfectants exerted a strong aminopeptidase-specific activity. Furthermore, wild type APN expression was associated with a significant decrease in proliferation, migration and also reduced anchorage-independent growth when compared to enzymatically inactive APN variants and controls. This appeared to be due to a downregulated mRNA and protein expression of the chemokine receptor CXCR4 and an inhibition of the stromal cell-derived factor (SDF)-1α/CXCL12-mediated migration. Thus, high APN enzyme activity may antagonize the cellular properties regulated by the CXCR4/SDF-1α system in embryonic kidney cells.  相似文献   

2.
3.
CCR5 and CXC chemokine receptor 4 (CXCR4) are coreceptors for CD4 as defined by HIV-1 glycoprotein (gp) 120 binding. Pretreatment of T cells with gp120 results in modulation of both CCR5 and CXCR4 responsiveness, which is dependent upon p56(lck) enzymatic activity. The recent findings that pretreatment of T cells with a natural CD4 ligand, IL-16, could alter cellular responsiveness to macrophage-inflammatory protein-1ss (MIP-1ss) stimulation, prompted us to investigate whether IL-16 could also alter CXCR4 signaling. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes also results in loss of stromal derived factor-1alpha (SDF-1alpha)/CXCR4-induced chemotaxis; however, unlike MIP-1ss/CCR5, the effects were not reciprocal. There was no effect on eotaxin/CCR3-induced chemotaxis. Desensitization of CXCR4 by IL-16 required at least 10-15 min pretreatment; no modulation of CXCR4 expression was observed, nor was SDF-1alpha binding altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56(lck)-dependent inhibitory signal for CXCR4, which is independent of its tyrosine catalytic activity. By contrast, IL-16/CD4 desensitization of MIP-1ss/CCR5 responses requires p56(lck) enzymatic activity. IL-16/CD4 inhibition of SDF-1alpha/CXCR4 signals requires the presence of the Src homology 3 domain of p56(lck) and most likely involves activation of phosphatidylinositol-3 kinase. These studies indicate the mechanism of CXCR4 receptor desensitization induced by a natural ligand for CD4, IL-16, is distinct from the inhibitory effects induced by either gp120 or IL-16 on CCR5.  相似文献   

4.
Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo and the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Delta 110-114NSTFA and Delta 105-114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants DeltaC5 huMIF 1-109 and DeltaC10 huMIF 1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105-114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that intersubunit interactions involving the C-terminal region 105-114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighboring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity.  相似文献   

5.
Human aminopeptidase N (APN) is used as a routine marker for myelomonocytic cells in hematopoietic malignant disorders. Its gene and surface expressions are increased in cases of malignant transformation, inflammation, or T cell activation, whereas normal B and resting T cells lack detectable APN protein expression. In this study we elucidated the intracellular distribution, expression pattern, and enzymatic activity of a naturally occurring mutation in the coding region of the APN gene. At physiological temperatures the mutant protein is enzymatically inactive, persists as a mannose-rich polypeptide in the endoplasmic reticulum, and is ultimately degraded by an endoplasmic reticulum-associated degradation pathway. It shows in part the distinct behavior of a temperature-sensitive mutant with a permissive temperature of 32 degrees C, leading to correct sorting of the Golgi compartment accompanied by the acquisition of proper glycosylation but without reaching the cell-surface membrane and without regaining its enzymatic activity. Because the patient bearing this mutation suffered from leukemia, possible links to the pathogenesis of leukemia are discussed.  相似文献   

6.
Follicular dendritic cells (FDCs) up-regulate the chemokine receptor CXCR4 on CD4 T cells, and a major subpopulation of germinal center (GC) T cells (CD4(+)CD57(+)), which are adjacent to FDCs in vivo, expresses high levels of CXCR4. We therefore reasoned that GC T cells would actively migrate to stromal cell-derived factor-1 (CXCL12), the CXCR4 ligand, and tested this using Transwell migration assays with GC T cells and other CD4 T cells (CD57(-)) that expressed much lower levels of CXCR4. Unexpectedly, GC T cells were virtually nonresponsive to CXCL12, whereas CD57(-)CD4 T cells migrated efficiently despite reduced CXCR4 expression. In contrast, GC T cells efficiently migrated to B cell chemoattractant-1/CXCL13 and FDC supernatant, which contained CXCL13 produced by FDCs. Importantly, GC T cell nonresponsiveness to CXCL12 correlated with high ex vivo expression of regulator of G protein signaling (RGS), RGS13 and RGS16, mRNA and expression of protein in vivo. Furthermore, FDCs up-regulated both RGS13 and RGS16 mRNA expression in non-GC T cells, resulting in their impaired migration to CXCL12. Finally, GC T cells down-regulated RGS13 and RGS16 expression in the absence of FDCs and regained migratory competence to CXCL12. Although GC T cells express high levels of CXCR4, signaling through this receptor appears to be specifically inhibited by FDC-mediated expression of RGS13 and RGS16. Thus, FDCs appear to directly affect GC T cell migration within lymphoid follicles.  相似文献   

7.
Recent studies have revealed the dipeptidyl peptidase IV (DPP IV) enzymatic activity of CD26 antigen. In this paper, the possible identity of DPP IV and CD26 expression in phenotypically defined T-ALL has been examined. The combination of enzyme cytochemistry and immunocytochemistry was used. The correlation between the CD26 antigen expression and DPP IV positivity in the vast majority of T lymphoblasts in T-ALL patients was observed. No CD26 was expressed on DPP IV negative T cells. The variable CD4 and/or CD8 antigen expression, frequent CD7 positivity and absence of membrane CD3 antigen expression were the characteristic immunophenotypic features of CD26/DPP IV positive T cells. CD26/DPP IV activity strongly paralleled the CD71 antigen (transferrin receptor, T cell activation/proliferation antigen) expression. The phenotypic features of CD26/DPP IV positive T cells are characteristic for the relative immature cell population. Noteworthy was the slight disassociation between the very high CD26 antigen J expression and moderate DPP IV activity in cells of some T-ALL patients. The possible existence of enzymatically inactive structures of CD26 antigen or inactive precursors of DPP IV detectable only by immunocytochemistry was discussed. Our study indicates that CD26 antigen expression is tended to identify cells with DPP IV enzymatic activity in T-ALL patients. The results provide information of CD26 antigen possible involvement in the pathology of leukemic cells via its DPP IV enzyme activity.  相似文献   

8.
9.
10.
Aminopeptidase N (APN)/CD13 is a transmembrane ectoenzyme expressed on a wide variety of cells. With respect to haematopoietic cells, APN/CD13 has been considered specific for the myeloid lineage, because granulocytes and monocytes/macrophages, but not lymphocytes of peripheral blood, show a surface expression of CD13 antigen. However, we could recently show that cell-cell contact of lymphocytes with endothelial cells, monocytes, and fibroblast-like synoviocytes (SFCs) results in an increase of steady-state APN/CD13 mRNA and a rapid expression of cell-surface protein on the lymphocytes. In this study using the Dual-Luciferase reporter assay, we demonstrate that interaction of the T-cell line Jurkat with SFCs results in a higher activity of the APN/CD13 myeloid promoter in T cells. An enhancer located between the myeloid and epithelial APN/CD13 promoter increases the response of the promoter to the cell-cell contact-induced expression of APN/CD13 in lymphocytes. Adhesion of lymphocytes to extracellular matrix did not result in increased promoter activity. The lymphocytic promoter response induced by direct cell-cell contact with SFCs is not affected by mutations of a proximal promoter element (nucleotides -48 to -35), which has a possible functional role in the basal APN/CD13 gene expression in lymphocytes. Upregulated peptidase-promoter activity via cell-cell contact shown in this study for the first time is discussed as a general mechanism in peptidase induction.  相似文献   

11.
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.  相似文献   

12.
Tumor cell surface aminopeptidase N (APN or CD13) has two puzzling functions unrelated to its enzymatic activity: mediating tumor cell motility and serving as a receptor for tumor-homing peptides (peptides that bring anti-cancer drugs to tumor cells). To investigate APN-based tumor-homing therapy, we determined the crystal structure of APN complexed with a tumor-homing peptide containing a representative Asn-Gly-Arg (NGR) motif. The tumor-homing peptide binds to the APN enzymatic active site, but it resists APN degradation due to a distorted scissile peptide bond. To explore APN-based tumor cell motility, we examined the interactions between APN and extracellular matrix (ECM) proteins. APN binds to, but does not degrade, NGR motifs in ECM proteins that share similar conformations with the NGR motif in the APN-bound tumor-homing peptide. Therefore, APN-based tumor cell motility and tumor-homing therapy rely on a unified mechanism in which both functions are driven by the specific and stable interactions between APN and the NGR motifs in ECM proteins and tumor-homing peptides. This study further implicates APN as an integrin-like molecule that functions broadly in cell motility and adhesion by interacting with its signature NGR motifs in the extracellular environment.  相似文献   

13.
Chemotaxis mediated by chemokine receptors such as CXCR4 plays a key role in lymphocyte homing and hematopoiesis as well as in breast cancer metastasis. We have demonstrated previously that beta-arrestin2 functions to attenuate CXCR4-mediated G protein activation and to enhance CXCR4 internalization. Here we show further that the expression of beta-arrestin2 in both HeLa and human embryonic kidney 293 cells significantly enhances the chemotactic efficacy of stromal cell-derived factor 1alpha, the specific agonist of CXCR4, whereas the suppression of beta-arrestin2 endogenous expression by antisense or RNA-mediated interference technology considerably attenuates stromal cell-derived factor 1alpha-induced cell migration. Expression of beta-arrestin2 also augmented chemokine receptor CCR5-mediated but not epidermal growth factor receptor-mediated chemotaxis, indicating the specific effect of beta-arrestin2. Further analysis reveals that expression of beta-arrestin2 strengthened CXCR4-mediated activation of both p38 MAPK and ERK, and the suppression of beta-arrestin2 expression blocked the activation of two kinases. Interestingly, inhibition of p38 MAPK activation (but not ERK activation) by its inhibitors or by expression of a dominant-negative mutant of p38 MAPK effectively blocked the chemotactic effect of beta-arrestin2. Expression of a dominant-negative mutant of ASK1 also exerted the similar blocking effect. The results of our study suggest that beta-arrestin2 can function not only as a regulator of CXCR4 signaling but also as a mediator of stromal cell-derived factor 1alpha-induced chemotaxis and that this activity probably occurs via the ASK1/p38 MAPK pathway.  相似文献   

14.
Alanyl aminopeptidase (APN) is a surface-bound metallopeptidase that processes the N-terminals of biologically active peptides such as enkephalins, angiotensins, neurokinins, and cytokines. It exerts profound activity on vital processes such as immune response, cellular growth, and blood pressure control. Inhibition of either APN gene expression or its enzymatic activity severely affects leukocyte growth and function. We show here that oxidoreductase-mediated modulations of the cell surface thiol status affect the enzymatic activity of APN. Additional evidence for the pivotal role of extracellular cysteines in the APN molecule was obtained when substitution of any of these six cysteines caused complete loss of surface expression and enzymatic activity. In contrast, the transmembrane Cys24 appears to have no similar function. Enzymatically inactive cysteine mutants were retained in the endoplasmic reticulum as shown by high-resolution imaging and Endoglycosidase H digestion. In the absence of any crystal-structure data, the demonstration that individual extracellular cysteines contribute to APN expression and function appears to be of particular importance. The data are the first to show thiol-dependent modulation of the activity of a typical surface-bound peptidase at the cell surface, probably reflecting a general regulating mechanism. This may relate to various disease processes such as inflammation or malignant transformation.  相似文献   

15.
Aminopeptidase N (APN)/CD13 is a transmembrane ectoenzyme expressed on a wide variety of cells. With respect to haematopoietic cells, APN/CD13 has been considered specific for the myeloid lineage, because granulocytes and monocytes/macrophages, but not lymphocytes of peripheral blood, show a surface expression of CD13 antigen. However, we could recently show that cell‐cell contact of lymphocytes with endothelial cells, monocytes, and fibroblast‐like synoviocytes (SFCs) results in an increase of steady‐state APN/CD13 mRNA and a rapid expression of cell‐surface protein on the lymphocytes. In this study using the Dual‐Luciferase reporter assay, we demonstrate that interaction of the T‐cell line Jurkat with SFCs results in a higher activity of the APN/CD13 myeloid promoter in T cells. An enhancer located between the myeloid and epithelial APN/CD13 promoter increases the response of the promoter to the cell‐cell contact‐induced expression of APN/CD13 in lymphocytes. Adhesion of lymphocytes to extracellular matrix did not result in increased promoter activity. The lymphocytic promoter response induced by direct cell‐cell contact with SFCs is not affected by mutations of a proximal promoter element (nucleotides −48 to −35), which has a possible functional role in the basal APN/CD13 gene expression in lymphocytes. Upregulated peptidase‐promoter activity via cell‐cell contact shown in this study for the first time is discussed as a general mechanism in peptidase induction. J. Cell. Biochem. 80:115–123, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
Human extracellular superoxide dismutase (EC-SOD) is a tetrameric glycoprotein responsible for the removal of superoxide generated in the extracellular space. Two different folding variants of EC-SOD exist based on the disulfide bridge connectivity, resulting in enzymatically active (aEC-SOD) and inactive (iEC-SOD) subunits. As a consequence of this, the assembly of the EC-SOD tetramers produces molecules with variable activity and may represent a way to regulate the antioxidant level in the extracellular space. To determine whether the formation of these two folding variants is an intra- or extracellular event, we analyzed the biosynthesis in human embryonic kidney 293 cells expressing wild-type EC-SOD. These analyses revealed that both folding variants were present in the intra- and extracellular spaces, suggesting that the formation is an intracellular event. To further analyze the biosynthesis, we constructed mutants with the capacity to generate only aEC-SOD (C195S) or iEC-SOD (C45S). The expression of these suggested that the cellular biosynthetic machinery supported the secretion of aEC-SOD but not iEC-SOD. The coexpression of these two mutants did not affect the expression pattern. This study shows that generation of the EC-SOD folding variants is an intracellular event that depends on a free cysteine residue not involved in disulfide bonding.  相似文献   

17.
During evolution of fungi, the separate tryptophan synthetase alpha and beta polypeptides of bacteria appear to have been fused in the order alpha-beta rather than the beta-alpha order that would be predicted from the order of the corresponding structural genes in all bacteria. We have fused the tryptophan synthetase polypeptides of Escherichia coli in both orders, alpha-beta and beta-alpha, with and without a short connecting (con) sequence, to explore possible explanations for the domain arrangement in fungi. We find that proteins composed of any of the four fused polypeptides, beta-alpha, beta-con-alpha, alpha-beta, and alpha-con-beta, are highly active enzymatically. However, only the alpha-beta and alpha-con-beta proteins are as active as the wild type enzyme. All four fusion proteins appear to be less soluble in vivo than the wild type enzyme; this abnormal characteristic is minimal for the alpha-con-beta enzyme. The alpha and beta domains of the four fusion polypeptides were not appreciably more heat labile than the wild type polypeptides. Competition experiments with mutant tryptophan synthetase alpha protein, and the fusion proteins suggest that in each fusion protein the joined alpha and beta domains have a functional tunnel connecting their alpha and beta active sites. Three tryptophan synthetase beta'-alpha fusion proteins were examined in which the carboxyl-terminal segment of the wild type beta polypeptide was deleted and replaced by a shorter, unnatural sequence. The resulting deletion fusion proteins were enzymatically inactive and were found predominantly in the cell debris. Evaluation of our findings in relation to the three-dimensional structure of the tryptophan synthetase enzyme complex of Salmonella typhimurium (5) and the results of mutational analyses with E. coli suggest that tryptophan synthetase may have evolved via an alpha-beta rather than a beta-alpha fusion because in beta-alpha fusions the amino-terminal helix of the alpha chain cannot assume the conformation required for optimal enzymatic activity.  相似文献   

18.
Previous work has shown that IL-16/CD4 induces desensitization of both CCR5- and CXCR4-induced migration, with no apparent effect on CCR2b or CCR3. To investigate the functional relationship between CD4 and other chemokine receptors, we determined the effects of IL-16 interaction with CD4 on CXCR3-induced migration. In this study we demonstrate that IL-16/CD4 induced receptor desensitization of CXCR3 on primary human T cells. IL-16/CD4 stimulation does not result in surface modulation of CXCR3 or changes in CXCL10 binding affinity. This effect does require p56(lck) enzymatic activity and the presence of CCR5, because desensitization is not transmitted in the absence of CCR5. Treatment of human T cells with methyl-beta-cyclodextrin, a cholesterol chelator, prevented the desensitization of CXCR3 via IL-16/CD4, which was restored after reloading of cholesterol, indicating a requirement for intact cholesterol. These studies demonstrate an intimate functional relationship among CD4, CCR5, and CXCR3, in which CCR5 can act as an adaptor molecule for CD4 signaling. This process of regulating Th1 cell chemoattraction may represent a mechanism for orchestrating cell recruitment in Th1-mediated diseases.  相似文献   

19.
Factor VII activating protease (FSAP) is associated with cardiovascular diseases and liver fibrosis. To understand the regulation of its proteolytic activity we have characterized recombinant FSAP-mutants over-expressed in HEK-293 cells. The secreted FSAP-protein concentration correlated inversely with the enzymatic activity of the FSAP-mutants. Over-expression of enzymatically active FSAP decreased cell viability, whereas inactive variants were expressed and secreted in adequate amounts. The naturally occurring G534E-variant exhibited reduced proteolytic activity. The ΔEGF-3 mutant showed diminished binding to and activation by heparin. Hence, regulation of FSAP activity is dependent on its EGF-3 domain and over-expression of active variants induces cell death.  相似文献   

20.
Aminopeptidase N during the ontogeny of the chick   总被引:1,自引:0,他引:1  
Little is known about the production and function of metallopeptidases in embryonic development. One such enzyme, aminopeptidase N (APN), is present in several epithelia, the brain and angiogenic vessels in adults. APN promotes vascular growth and endothelial cell proliferation in physiological and pathological models of angiogenesis. However, its possible role in embryonic angiogenesis or other developmental processes is unknown. Its expression profile in the early phase of embryonic development has not been reported. We report here the expression of this enzyme during the early development of the chick embryo, using complementary techniques for monitoring APN mRNA, protein, and enzymatic activity. We detected APN in the embryo as early as gastrulation. In addition to the known sites of APN production identified in both adults and rat fetuses toward the end of gestation, APN was found in unexpected sites, such as the primitive streak, the dorsal folds of the neural tube, the somites, and the primordia of several organs. APN was present mostly in the cardiovascular compartment during the first 13 days of incubation, and in the hematopoietic compartment (yolk sac and aorta-gonad-mesonephros region) early in development. This study provides clues as to the possible role of APN in embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号