首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel family of mammalian taste receptors   总被引:48,自引:0,他引:48  
In mammals, taste perception is a major mode of sensory input. We have identified a novel family of 40-80 human and rodent G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia. These candidate taste receptors (T2Rs) are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. Notably, a single taste receptor cell expresses a large repertoire of T2Rs, suggesting that each cell may be capable of recognizing multiple tastants. T2Rs are exclusively expressed in taste receptor cells that contain the G protein alpha subunit gustducin, implying that they function as gustducin-linked receptors. In the accompanying paper, we demonstrate that T2Rs couple to gustducin in vitro, and respond to bitter tastants in a functional expression assay.  相似文献   

2.
Mammalian sweet taste receptors   总被引:57,自引:0,他引:57  
Nelson G  Hoon MA  Chandrashekar J  Zhang Y  Ryba NJ  Zuker CS 《Cell》2001,106(3):381-390
The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery.  相似文献   

3.
Vertebrates receive tastants, such as sugars, amino acids, and nucleotides, via taste bud cells in epithelial tissues. In mammals, two families of G protein-coupled receptors for tastants are expressed in taste bud cells-T1Rs for sweet tastants and umami tastants (l-amino acids) and T2Rs for bitter tastants. Here, we report two families of candidate taste receptors in fish species, fish T1Rs and T2Rs, which show significant identity to mammalian T1Rs and T2Rs, respectively. Fish T1Rs consist of three types: fish T1R1 and T1R3 that show the highest degrees of identity to mammalian T1R1 and T1R3, respectively, and fish T1R2 that shows almost equivalent identity to both mammalian T1R1 and T1R2. Unlike mammalian T1R2, fish T1R2 consists of two or three members in each species. We also identified two fish T2Rs that show low degrees of identity to mammalian T2Rs. In situ hybridization experiments revealed that fish T1R and T2R genes were expressed specifically in taste bud cells, but not in olfactory receptor cells. Fish T1R1 and T1R2 genes were expressed in different subsets of taste bud cells, and fish T1R3 gene was co-expressed with either fish T1R1 or T1R2 gene as in the case of mammals. There were also a significant number of cells expressing fish T1R2 genes only. Fish T2R genes were expressed in different cells from those expressing fish T1R genes. These results suggest that vertebrates commonly have two kinds of taste signaling pathways that are defined by the types of taste receptors expressed in taste receptor cells.  相似文献   

4.
The bitter taste receptors (T2Rs) belong to the G protein-coupled receptor (GPCR) superfamily. In humans, bitter taste sensation is mediated by 25 T2Rs. Structure–function studies on T2Rs are impeded by the low-level expression of these receptors. Different lengths of rhodopsin N-terminal sequence inserted at the N-terminal region of T2Rs are commonly used to express these receptors in heterologous systems. While the additional sequences were reported, to enhance the expression of the T2Rs, the local structural perturbations caused by these sequences and its effect on receptor function or allosteric ligand binding were not characterized. In this study, we elucidated how different lengths of rhodopsin N-terminal sequence effect the structure and function of the bitter taste receptor, T2R4. Guided by molecular models of T2R4 built using a rhodopsin crystal structure as template, we constructed chimeric T2R4 receptors containing the rhodopsin N-terminal 33 and 38 amino acids. The chimeras were functionally characterized using calcium imaging, and receptor expression was determined by flow cytometry. Our results show that rhodopsin N-terminal 33 amino acids enhance expression of T2R4 by 2.5-fold and do not cause perturbations in the receptor structure.  相似文献   

5.
T2Rs function as bitter taste receptors   总被引:49,自引:0,他引:49  
Chandrashekar J  Mueller KL  Hoon MA  Adler E  Feng L  Guo W  Zuker CS  Ryba NJ 《Cell》2000,100(6):703-711
Bitter taste perception provides animals with critical protection against ingestion of poisonous compounds. In the accompanying paper, we report the characterization of a large family of putative mammalian taste receptors (T2Rs). Here we use a heterologous expression system to show that specific T2Rs function as bitter taste receptors. A mouse T2R (mT2R-5) responds to the bitter tastant cycloheximide, and a human and a mouse receptor (hT2R-4 and mT2R-8) responded to denatonium and 6-n-propyl-2-thiouracil. Mice strains deficient in their ability to detect cycloheximide have amino acid substitutions in the mT2R-5 gene; these changes render the receptor significantly less responsive to cycloheximide. We also expressed mT2R-5 in insect cells and demonstrate specific tastant-dependent activation of gustducin, a G protein implicated in bitter signaling. Since a single taste receptor cell expresses a large repertoire of T2Rs, these findings provide a plausible explanation for the uniform bitter taste that is evoked by many structurally unrelated toxic compounds.  相似文献   

6.
Bitter taste receptors (T2Rs) belong to the super family of G protein-coupled receptors (GPCRs). There are 25 T2Rs expressed in humans, and these interact with a large and diverse group of bitter ligands. T2Rs are expressed in many extra-oral tissues and can perform diverse physiological roles. Structure-function studies led to the identification of similarities and dissimilarities between T2Rs and Class A GPCRs including amino acid conservation and novel motifs. However, the efficacy of most of the T2R ligands is not yet elucidated and the biochemical pharmacology of T2Rs is poorly understood. Recent studies on T2Rs characterized novel ligands including blockers for these receptors that include inverse agonist and antagonists. In this review we discuss the techniques used for elucidating bitter blockers, concept of ligand bias, generic amino acid numbering, the role of cholesterol, and conserved water molecules in the biochemistry and pharmacology of T2Rs.  相似文献   

7.
Zhang Y  Hoon MA  Chandrashekar J  Mueller KL  Cook B  Wu D  Zuker CS  Ryba NJ 《Cell》2003,112(3):293-301
Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.  相似文献   

8.
9.
Molecular and Cellular Biochemistry - The emerging significance of the bitter taste receptors (T2Rs) role in the extraoral tissues alludes to their potential role in many pathophysiological...  相似文献   

10.
Bitter taste has evolved as a central warning signal against the ingestion of potentially toxic substances appearing in the environment. The molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCR) called T2Rs and expressed at the surface of taste receptor cells. The functional characterisation of T2R receptors is far from been completed due to the difficulty to functionally express them in heterologous systems. Taking advantage of the parallelisms between the Caenorhabditis elegans (C. elegans) and mammalian GPCR signalling pathways, we developed a C. elegans-based expression system to express functional human and rodent GPCRs of the T2R family. We generated transgenic worms expressing T2Rs in ASI chemosensory neurons and performed behavioural assays using a variety of bitter tastants. As a proof of the concept, we generated transgenic worms expressing human T2R4 or its mouse ortholog T2R8 receptors, which respond to two bitter tastants previously characterised as their functional ligands, 6-n-propyl-2-thiouracil and denatoniun. As expected, expression of human T2R4 or its mouse ortholog T2R8 in ASI neurons counteracted the water-soluble avoidance to 6-n-propyl-2-thiouracil and denatoniun observed in control wild-type worms. The expression in ASI neurons of human T2R16, the ligand of which, phenyl-beta-d-glucopyranoside, belong to a chemically different group of bitter tastants, also counteracted the water-soluble avoidance to this compound observed in wild-type worms. These results indicate that C. elegans is a suitable heterologous expression system to express functional T2Rs providing a tool to efficiently search for specific taste receptor ligands and to extend our understanding of the molecular basis of gustation.  相似文献   

11.
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.  相似文献   

12.
In mammals, bitter taste is mediated by T2R genes, which belong to the large family of seven transmembrane G protein-coupled receptors. Because T2Rs are directly involved in the interaction between mammals and their dietary sources, it is likely that these genes evolved to reflect species' specific diets during mammalian evolution. Here, we investigated the sequences of all 28 putative functional chimpanzee T2R genes (cT2Rs) in 46 western chimpanzees to compare the intraspecies variations in chimpanzees to those already known for all 25 human functional T2R genes (hT2Rs). The numbers of functional genes varied among individuals in western chimpanzees, and most chimpanzees had two or three more functional genes than humans. Similarly to hT2Rs, cT2Rs showed high nucleotide diversity along with a large number of amino acid substitutions. Comparison of the nucleotide substitution patterns in cT2Rs with those in five cT2R pseudogenes and 14 autosomal intergenic noncoding regions among the same individuals revealed that the evolution of cT2R genes was almost identical to that of putative neutral regions with slight but significantly positive Tajima's D values, suggesting that selective constraint on these genes was relaxed with weak balancing selection. These trends have resulted in the occurrence of various divergent alleles of T2Rs within the western chimpanzee populations and in heterozygous individuals who might have the ability to taste a broader range of substances.  相似文献   

13.
Three sweet receptor genes are clustered in human Chromosome 1   总被引:3,自引:0,他引:3  
Liao  Jiayu  Schultz  Peter G. 《Mammalian genome》2003,14(5):291-301
A search of the human genome database led us to identify three human candidate taste receptors, hT1R1, hT1R2, and hT1R3, which contain seven transmembrane domains. All three genes map to a small region of Chromosome (Chr) 1. This region is syntenous to the distal end of Chr 4 in mouse, which contains the Sac (saccharin preference) locus that is involved in detecting sweet tastants. A genetic marker, DVL1, which is linked to the Sac locus, is within 1700 bp of human T1R3. Recently, the murine T1Rs and its human ortholog have been independently identified in combination as sweet and umami receptors near the Sac locus. All three hT1Rs genes are expressed selectively in human taste receptor cells in the fungiform papillae, consistent with their role in taste perception.  相似文献   

14.
The receptors for mammalian sweet and umami taste   总被引:44,自引:0,他引:44  
Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.  相似文献   

15.
16.
Earlier, a family of G protein-coupled receptors, termed T2Rs, was identified in the rodent and human genomes through data mining. It was suggested that these receptors mediate bitter taste perception. Analysis of the human genome revealed that the hT2R family is composed of 25 members. However, bitter ligands have been identified for only three human receptors so far. Here we report identification of two novel ligand-receptor pairs. hT2R61 is activated by 6-nitrosaccharin, a bitter derivative of saccharin. hT2R44 is activated by denatonium and 6-nitrosaccharin. Activation profiles for these receptors correlate with psychophysical data determined for the bitter compounds in human studies. Functional analysis of hT2R chimeras allowed us to identify residues in extracellular loops critical for receptor activation by ligands. The discovery of two novel bitter ligand-receptor pairs provides additional support for the hypothesis that hT2Rs mediate a bitter taste response in humans.  相似文献   

17.
The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40–70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.  相似文献   

18.
Bitter taste receptors (T2Rs) are a specialized class of cell membrane receptors of the G protein-coupled receptor family and perform a crucial role in chemosensation. The 25 T2Rs in humans are activated by structurally diverse ligands of plant, animal and microbial origin. The mechanisms of activation of these receptors are poorly understood. Therefore, identification of structural determinants of T2Rs that regulate its efficacy could be beneficial in understanding the molecular mechanisms of T2R activation. In this work, we characterized a highly conserved histidine (H208), present at TM5-ICL3 region of T2R14 and its role in agonist-induced T2R14 signaling. Surprisingly, mutation of the conserved H208 (H208A) did not result in increased basal activity of T2R14, in contrast to similar H206A mutation in T2R4 that showed constitutive or basal activity. However, H208A mutation in T2R14 resulted in an increase in agonist-induced efficacy for Flufenamic acid (FFA). Interestingly, H208A did not affect the potency of another T2R14 agonist Diphenhydramine (DPH). The H208R compensatory mutation showed FFA response similar to wild-type T2R14. Molecular modeling suggests a FFA-induced shift in TM3 and TM5 helices of H208A, which changes the network of interactions connecting TM5-ICL3-TM6. This report identifies a crucial residue on the intracellular surface of T2Rs that is involved in bitter ligand selectivity. It also highlights the varied roles carried out by some conserved residues in different T2Rs.  相似文献   

19.
Bitter taste, in humans, is sensed by 25 G protein-coupled receptors, referred to as bitter taste receptors (T2Rs). The diverse roles of T2Rs in various extraoral tissues have implicated them as a potential target for therapeutic intervention. Structure–function studies have provided insights into the role of transmembrane and loop regions in the activation mechanism of T2Rs. However, studies aimed at deciphering the role of their carboxyl-terminus (C-terminus) are limited. In this study, we identified a KLK/R motif in the C-terminus that is conserved in 19 of the 25 T2Rs. Using site-directed mutagenesis we studied the role of 16 residues in the C-terminus of T2R4. The C-terminus of T2R4 is polybasic with 6 of the 16 residues consisting of lysines, constituting two separate KK motifs. We analyzed the effect of the C-terminus mutations on plasma membrane trafficking, and characterized their function in response to the T2R4 agonist quinine. The majority of the mutants showed defective receptor trafficking with ≤ 50% expression on the cell surface. Interestingly, mutation of the distal Lys296 of the KLK motif in T2R4 resulted in constitutive activity. The K296A mutant displayed five-fold basal activity over wild type T2R4, while the conservative substitution K296R showed wild type characteristics. The Lys294, Leu295 and Lys296 of the KLK motif in T2R4 were found to perform crucial roles, both, in receptor trafficking and function. Results from this study provide unique mechanistic insights into the structure–function role of the C-terminus in T2R signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号