首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G I Rhyu  W J Ray  J L Markley 《Biochemistry》1985,24(10):2536-2541
Metal binding at the activating site of rabbit muscle phosphoglucomutase has been studied by 31P, 7Li, and 113Cd NMR spectroscopy. A 7Li NMR signal of the binary Li+ complex of the phosphoenzyme was not observed probably because of rapid transverse relaxation of the bound ion due to chemical exchange with free Li+. The phosphoenzyme-Li+-glucose 6-phosphate ternary complex is more stable, kinetically, and yields a well-resolved peak from bound Li+ at -0.24 ppm from LiCl with a line width of 5 Hz and a T1 relaxation time of 0.51 +/- 0.07 s at 78 MHz. When glucose 1-phosphate was bound, instead, the chemical shift of bound 7Li+ was -0.13 ppm; and in the Li+ complex of the dephosphoenzyme and glucose bisphosphate a partially broadened 7Li+ peak appeared at -0.08 ppm. Thus, the bound metal ion has a somewhat different environment in each of these three ternary complexes. The 113Cd NMR signal of the binary Cd2+ complex of the phosphoenzyme appears at 22 ppm relative to Cd(ClO4)2 with a line width of 20 Hz at 44.4 MHz. Binding of substrate and formation of the Cd2+ complex of the dephosphoenzyme and glucose bisphosphate broaden the 113Cd NMR signal to 70 Hz and shift it to 75 ppm. The 53 ppm downfield shift upon the addition of substrate along with 1H NMR data suggests that one oxygen ligand to Cd2+ in the binary complex is replaced by a nitrogen ligand at some intermediate point in the enzymic reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The complexation of glutathione and related ligands by the nitrilotriacetic acid complex of Cd2+ (Cd(NTA)-) has been investigated by 1H NMR as a model for the coordination chemistry of Cd2+ and GSH in biological systems. Related ligands included glycine, glutamic acid, cysteine, N-acetylcysteine, penicillamine, N-acetylpenicillamine, mercaptosuccinic acid, and the S-methyl derivative of glutathione. The nature of the complexes formed was deduced from 1H NMR spectra of Cd(NTA)- and the ligands. Mixed ligand complexes (Cd(NTA)L) and single ligand complexes (CdLx) are formed with the thiol ligands, whereas only mixed ligand complexes form with glycine, glutamic acid and S-methylglutathione. Formation constants of the mixed and the single ligand complexes were determined from NMR data. The results indicate that formation constants for binding of a thiolate donor group by Cd2+, either as the free ion or in a coordinately unsaturated complex, are in the range 10(5)-10(6).  相似文献   

3.
B G Jenkins 《Life sciences》1991,48(13):1227-1240
Study of ligand-macromolecular interactions by 19F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed.  相似文献   

4.
The interaction of a fluorinated phosphonate with Zn-2+-and Mn-2+-alkaline phosphatase as studied by 19-F NMR revealed a stoichiometry of 1:1 for the binding of the phosphonate anion to the enzyme. In the presence of two metal ions, one fluorinated phosphonate ion was found to interact strongly with the enzyme, while a different interaction was observed when the number of metal ions per enzyme exceeded two. Phosphate replaced enzyme bound phosphonate, as is shown by the 19-F NMR spectra. No direct interaction between the fluorinated phosphonate and the metal ion responsible for enzyme activity was indicated by the 19-F NMR data. This observation supports the idea of a considerable distance between metal ion and substrate binding site in Escherichia coli alkaline phosphatase.  相似文献   

5.
13C NMR spectra are presented for the calcium binding protein parvalbumin (pI 4.25) from carp muscle in several different metal bound forms: with Ca2+ in both the CD and EF calcium binding sites, with Cd2+ in both sites, with 113Cd2+ in both sites, and with 113Cd2+ in the CD site and Lu3+ in the EF site. The different metals differentially shift the 13C NMR resonances of the protein ligands involved in chelation of the metal ion. In addition, direct 13C-113Cd spin-spin coupling is observed which allows the assignment of protein carbonyl and carboxyl 13C NMR resonances to ligands directly interacting with the metal ions in the CD and EF binding sites. The displacement of 113Cd2+ from the EF site by Lu3+ further allows these resonances to be assigned to the CD or EF site. The occupancy of the two sites in the two cadmium species and in the mixed Cd2+/Lu3+ species is verified by 113Cd NMR. The resolution in these 113Cd NMR spectra is sufficient to demonstrate direct interaction between the two metal binding sites.  相似文献   

6.
P R?sch  W Klaus  M Auer  R S Goody 《Biochemistry》1989,28(10):4318-4325
Proton and fluorine nuclear magnetic resonance spectroscopies (NMR) were used as methods to investigate binary complexes between porcine adenylate kinase (AK1) and its substrates. We also studied the interaction of fluorinated substrate analogues and the supposed bisubstrate analogue P1,P5-bis(5'-adenosyl) pentaphosphate (AP5A) with AK1 in the presence of Mg2+. The chemical shifts of the C8-H, C2-H, and ribose C1'-H resonances of both adenosine units in stoichiometric complexes of AK1 with AP5A in the presence of Mg2+ could be determined. The C2-H resonance of one of the adenine bases experiences a downfield shift of about 0.8 ppm on binding to the enzyme. The chemical shift of the His36 imidazole C2-H was changed in the downfield direction on ATP-Mg2+ and, to a lesser extent, AMP binding. 19F NMR chemical shifts of 9-(3-fluoro-3-deoxy-beta-D-xylofuranosyl)adenine triphosphate (3'-F-X-ATP)-Mg2+ and 9-(3-fluoro-3-deoxy-beta-D-xylofuranosyl)adenine monophosphate (3'-F-X-AMP) bound to porcine adenylate kinase could be determined. The different chemical shifts of the bound nucleotides suggest that their mode of binding is different. Free and bound 3'-F-X-AMP are in fast exchange with respect to their 19F chemical shifts, whereas free and bound 3'-F-X-ATP are in slow exchange on the NMR time scale in the absence as well as in the presence of Mg2+. This information could be used to determine the apparent dissociation constants of the nucleotides and the 3'-F-X analogues in the binary complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A S Xu  M B Morris  P W Kuchel 《Biochemistry》1992,31(38):9263-9268
Beryllium forms several multivalent fluoride complexes in aqueous solution; the relative concentration of each is governed by the relative concentrations of the constituent ions and pH. In 9Be NMR spectra the 9Be (spin = 3/2) and 19F (spin = 1/2) spin coupling gave rise to an overlapping resonance triplet, quartet, and quintet of BeF2, BeF3-, and BeF4(2-), respectively. The low frequency shift of the quartet (0.31 ppm) and the quintet (0.62 ppm) from the triplet correlated with an increase in the number of 19F-ions in each complex. 19F NMR spectra of the complexes showed that the spin-coupled quartet of each complex was progressively shifted to higher frequency with an increase in the number of F- ions in the complex. Using 9Be and 19F NMR, the multiple equilibrium mixture of complexes was found to shift substantially to favor the BeF3- and BeF4(2-) with a relative increase of NaF concentration. The association constants for BeF2, BeF3-, and BeF4(2-) at 25 degrees C were determined directly from the peak intensities of the spectra, and by a numerical fitting procedure for multiple spectra, and were 0.51 +/- 0.17 mM-2, 0.26 +/- 0.03 mM-1, and 1.0 x 10(-2) +/- 0.1 x 10(-2) mM-1, respectively. 19F NMR spectra of human erythrocytes to which Be2+ and F- were added showed separate resonances from the intracellular populations of the complexes and these were shifted to higher frequency from their extracellular counterparts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1H and 19F NMR signals from bound ligands have been assigned in one- and two-dimensional NMR spectra of complexes of Lactobacillus casei dihydrofolate reductase with various pyrimethamine analogues (including pyrimethamine [1, 2,4-diamino-5-(4'-chlorophenyl)-6-ethylpyrimidine], fluoropyrimethamine [2, 2,4-diamino-5-(4'-fluorophenyl)-6-ethylpyrimidine], fluoronitropyrimethamine [3, 2,4-diamino-5-(4'-fluoro-3'-nitrophenyl) -6-ethylpyrimidine], and methylbenzoprim [4, 2,4-diamino-5-[4'- (methylbenzylamino)-3'-nitrophenyl]-6-ethylpyrimidine]). The signals were identified mainly by correlating signals from bound and free ligands by using 2D exchange experiments. Analogues (such as 1 and 2) with symmetrically substituted phenyl rings give rise to 1H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues containing asymmetrically substituted aromatic rings (such as 3 and 4) exist as mixtures of two rotational isomers (an enantiomeric pair) because of this hindered rotation and the NMR spectra revealed that both isomers (forms A and B) bind to the enzyme with comparable, though unequal, binding energies. In this case two complete sets of bound proton signals were observed. The phenyl ring protons in each of the two forms experience essentially the same protein environment (same shielding) as that experienced by the corresponding protons in bound pyrimethamine: this confirms that forms A and B correspond to two rotational isomers resulting from approximately 180 degrees rotation about the pyrimidine-phenyl bond, with the 2,4-diaminopyrimidine ring being bound similarly in both forms. The relative orientations of the two forms have been determined from NOE through-space connections between protons on the ligand and protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fluorine atoms are often incorporated into drug molecules as part of the lead optimization process in order to improve affinity or modify undesirable metabolic and pharmacokinetic profiles. From an NMR perspective, the abundance of fluorinated drug leads provides an exploitable niche for structural studies using 19F NMR in the drug discovery process. As 19F has no interfering background signal from biological sources, 19F NMR studies of fluorinated drugs bound to their protein receptors can yield easily interpretable and unambiguous structural constraints. 19F can also be selectively incorporated into proteins to obtain additional constraints for structural studies. Despite these advantages, 19F NMR has rarely been exploited for structural studies due to its broad lines in macromolecules and their ligand complexes, leading to weak signals in 1H/19F heteronuclear NOE experiments. Here we demonstrate several different experimental strategies that use 19F NMR to obtain ligand–protein structural constraints for ligands bound to the anti-apoptotic protein Bcl-xL, a drug target for anti-cancer therapy. These examples indicate the applicability of these methods to typical structural problems encountered in the drug development process.  相似文献   

10.
Rat cellular retinol-binding protein II (CRBP II) is a 15.6-kDa intestinal protein which binds all-trans-retinol and all-trans-retinal but not all-trans-retinoic acid. We have previously analyzed the interaction of Escherichia coli-derived rat apoCRBP II with several retinoids using fluorescence spectroscopic techniques. Interpretation of these experiments is complicated, because the protein has 4 tryptophan residues. To further investigate ligand-protein interactions, we have utilized 19F nuclear magnetic resonance (NMR) spectroscopy of CRBP II labeled at its 4 tryptophan residues with 6-fluorotryptophan. Efficient incorporation of 6-fluorotryptophan (93%) was achieved by growing a tryptophan auxotroph of E. coli harboring a prokaryotic expression vector with a full-length rat CRBP II cDNA on defined medium supplemented with the analog. Comparison of the 19F NMR spectra of 6-fluorotryptophan-substituted CRBP II with and without bound all-trans-retinol revealed that resonances corresponding to 2 tryptophan residues (designated WA and WB) undergo large downfield changes in chemical shifts (2.0 and 0.5 ppm, respectively) associated with ligand binding. In contrast, 19F resonances corresponding to two other tryptophan residues (WC and WD) undergo only minor perturbations in chemical shifts. The 19F NMR spectra of 6-fluorotryptophan-substituted CRBP II complexed with all-trans-retinal and all-trans-retinol were very similar, suggesting that the interactions of these two ligands with the protein are similar. Molecular model building, based on the crystalline structures of two homologous proteins was used to predict the positions of the 4 tryptophan residues of CRBP II and to make tentative resonance assignments. The fact that ligand binding produced residue-specific changes in the chemical shifts of resonances in CRBP II suggests that NMR analysis of isotopically labeled retinoid-binding proteins expressed in E. coli will provide an alternate, albeit it complementary, approach to fluorescence spectroscopy for examining the structural consequences of their association with ligand.  相似文献   

11.
Cadmium-113 and calcium-43 NMR spectra of Cd2+ and Ca2+ bound to the porcine intestinal calcium binding protein (ICaBP; Mr 9000) contain two resonances. The first resonance is characterized by NMR parameters resembling those found for these cations bound to proteins containing the typical helix-loop-helix calcium binding domains of parvalbumin, calmodulin, and troponin C, which are defined as EF-hands by Kretsinger [Kretsinger, R. H. (1976) Annu. Rev. Biochem. 45, 239]. The second resonance in both spectra has a unique chemical shift and is consequently assigned to the metal ion bound in the N-terminal site of ICaBP. This site is characterized by an insertion of a proline in the loop of the helix-loop-helix domain and will be called the pseudo-EF-hand site. The binding of Cd2+ to the apo form of ICaBP is sequential. The EF-hand site is filled first. Both binding sites have similar, but not identical, affinities for Ca2+: at a Ca2+ to protein ratio of 1:1, 65% of the ion is bound in the EF-hand site and 35% in the pseudo-EF-hand site. The two sites do not appear to act independently; thus, replacement of Ca2+ or Cd2+ by La3+ in the EF-hand site causes changes in the environment of the ions in the pseudo-EF-hand site. In addition, the chemical shift of Cd2+ bound to the EF-hand site is dependent on the presence or absence of Ca2+ or Cd2+ in the pseudo-EF-hand site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The cobalt(II)-substituted human insulin hexamer has been shown to undergo the phenol-induced T6 to R6 structural transition in solution. The accompanying octahedral to tetrahedral change in ligand field geometry of the cobalt ions results in dramatic changes in the visible region of the electronic spectrum and thus represents a useful spectroscopic method for studying the T to R transition. Changes in the Co2+ spectral envelope show that the aqua ligand associated with each tetrahedral Co2+ center can be replaced by SCN-, CN-, OCN-, N3-, Cl-, and NO2-. 19F NMR experiments show that the binding of m-trifluorocresol stabilizes the R6 state of zinc insulin. The chemical shift and line broadening of the CF3 singlet, which occur due to binding, provide a useful probe of the T6 to R6 transition. Due to the appearance of new resonances in the aromatic region, the 500 MHz 1H NMR spectrum of the phenol-induced R6 hexamer is readily distinguishable from that of the T6 form. 1H NMR studies show that phenol induces the T6 to R6 transition, both in the (GlnB13)6(Zn2+)2 hexamer and in the metal-free GlnB13 species; we conclude that metal binding is not a prerequisite for formation of the R state in this mutant.  相似文献   

14.
The lentil (LcH) and pea (PSA) lectins, which are members of the class of D-glucose/D-mannose binding lectins, are Ca2+ X Mn2+ metalloproteins that require the metal ions for their saccharide binding and biological activities. We have prepared a variety of Cd2+ derivatives of PSA and LcH, with Cd2+ in either the transition metal (S1) or calcium (S2) sites, or in both. Thus, Cd2+ X Zn2+, Cd2+ X Mn2+, and Ca2+ X Cd2+ derivatives were prepared, in addition to the Cd2+ X Cd2+ derivatives which we have recently reported. This is the first report of stable mixed metal Cd2+ complexes of lectins. The physical and saccharide binding properties of the Cd2+ derivatives of both lectins were characterized by a variety of physiochemical techniques and found to be the same as those of the corresponding native proteins. 113Cd NMR spectra of mono- and disubstituted 113Cd2+ complexes of LcH and PSA were recorded and compared with 113Cd NMR data for concanavalin A (ConA) (Palmer, A.R., Bailey, D.B., Behnke, W.D., Cardin, A.D., Yang, P.P., and Ellis, P.D. (1980) Biochemistry 19, 5063-5070). The data for the PSA and LcH derivatives were found to be very similar, indicating close homology of their metal ion binding sites. 113Cd resonances at 44.6 ppm and -129.4 ppm for 113Cd2+ X 113Cd2+ X LcH, and at 46.6 and -130.4 for the corresponding PSA derivative, are chemical shifts very similar to those observed for 113Cd2+ X 113Cd2+ X ConA. Assignment of the resonances to the transition metal (S1) and calcium (S2) sites were unambiguous since the Ca2+ X 113Cd2+ and 113Cd2+ X Zn2+ derivatives of both lectins showed single resonances characteristic of the S1 and S2 sites, respectively. The results indicate that, unlike ConA, 113Cd2+ binds tightly to PSA and LcH. Binding of monosaccharide to both lectins induce small (2 ppm) upfield shifts in their S2 113Cd resonances, in contrast to the larger shift (8 ppm) observed in ConA. The 113Cd2+ X Mn2+ complexes of PSA and LcH fail to show a 113Cd resonance characteristic of these derivatives, which provides evidence for the close proximity of the metal ions in the two proteins. The present findings indicate that the coordinating ligand atoms to the metal ions at the S1 and S2 sites in LcH, PSA, and ConA are the same.  相似文献   

15.
The molecular basis of the binding of the lipophilic antifolate compound fluoronitropyrimethamine [2,4-diamino-5-(4-fluoro-3-nitrophenyl)-6-ethylpyrimidine] to its target enzyme dihydrofolate reductase has been investigated using a combination of 19F NMR spectroscopy and molecular mechanical calculations. 19F NMR reveals the presence of two different conformational states for the fluoronitropyrimethamine-Lactobacillus casei enzyme complex. MM2 molecular mechanical calculations predict restricted rotation about the C5-C1′ bond of the ligand and this gives rise to two slowly interconverting rotamers which are an enantiomeric pair. The results of 19F NMR spectroscopy reveal that both these isomers bind to the enzyme, with different affinities. There is no detectable interconversion of the bound rotamers themselves on the NMR timescale. The effect of the addition of co-enzyme to the sample is to reverse the preference the enzyme has for each rotamer.  相似文献   

16.
We used 7Li NMR spin-lattice relaxation times and 31P NMR chemical shifts to study the binding of Li+ and Mg2+ to the phosphate moieties of ATP and ADP. To examine the binding of Li+ and Mg2+ to the base and ribose moieties, we used 1H and 13C NMR chemical shifts. The 7Li NMR relaxation times of Li+/Mg2+ mixtures of ATP or ADP increased with increasing concentrations of Mg2+, suggesting competition between the two ions for adenine nucleotides. No significant binding of Li+ and Mg2+ to the base and ribose moieties occurred. At the pH and ionic strength used, 2:1 and 1:1 species of the Li(+)-ATP and Li+-ADP complexes were present, with the 2:1 species predominating. In contrast, 1:1 species predominated for the Mg(2+)-ADP and Mg(2+)-ATP complexes. We calculated the Li(+)-nucleotide binding constants in the presence and absence of Mg2+ and found them to be somewhat greater in the presence of Mg2+. Although competition between Li+ and Mg2+ for ATP and ADP phosphate binding sites in solution is consistent with the 31P chemical shift data, the possibility that the Li+ and Mg2+ form mixed complexes with the phosphate groups of ATP or ADP cannot be ruled out.  相似文献   

17.
M R Thomas  S G Boxer 《Biochemistry》2001,40(29):8588-8596
Nitric oxide (NO) binds to the myoglobin (Mb) cavity mutant, H93G, forming either a 5- or 6-coordinate Fe--NO heme complex. The H93G mutation replaces the proximal histidine of Mb with glycine, allowing exogenous ligands to occupy the proximal binding site. In the absence of the covalently attached proximal ligand, NO could bind to H93G from the proximal side of the heme rather than the typical diatomic binding pocket on the distal side when the 5-coordinate complex forms. The question of whether NO binds on the distal or proximal side was addressed by (19)F NMR. Site-directed mutagenesis was used to introduce unique cysteine residues at the protein surface on either the distal (S58C) or proximal (L149C) side, approximately equidistant from and perpendicular to the heme plane of both wild-type and H93G Mb. The cysteine thiols were alkylated with 3-bromo-1,1,1-trifluoroacetone to attach a trifluoroacetyl group at the mutation site. (19)F NMR spectra of 5-coordinate, NO bound S58C/H93G and L149C/H93G double mutants depict peaks with line widths of 100 and 23 Hz, respectively. As fluorine peaks broaden with increasing proximity to paramagnetic centers, such as 5-coordinate Fe--NO, the (19)F NMR data are consistent with NO binding in the distal heme pocket of H93G, even in the absence of a sixth axial ligand. Additionally, (19)F NMR spectra are reported for deoxy, oxy, CO, met CN, and met H(2)O forms of the labeled cysteine mutants. These results demonstrate that the fluorine probes are sensitive to subtle conformational changes in the protein structure due to ligation and oxidation state changes of the heme iron in Mb.  相似文献   

18.
(19)F NMR was used to study topological features of the SH3 domain of Fyn tyrosine kinase for both the free protein and a complex formed with a binding peptide. Metafluorinated tyrosine was biosynthetically incorporated into each of 5 residues of the G48M mutant of the SH3 domain (i.e. residues 8, 10, 49 and 54 in addition to a single residue in the linker region to the C-terminal polyhistidine tag). Distinct (19)F NMR resonances were observed and subsequently assigned after separately introducing single phenylalanine mutations. (19)F NMR chemical shifts were dependent on protein concentration above 0.6 mM, suggestive of dimerization via the binding site in the vicinity of the tyrosine side chains. (19)F NMR spectra of Fyn SH3 were also obtained as a function of concentration of a small peptide (2-hydroxynicotinic-NH)-Arg-Ala-Leu-Pro-Pro-Leu-Pro-diaminopropionic acid -NH(2), known to interact with the canonical polyproline II (PPII) helix binding site of the SH3 domain. Based on the (19)F chemical shifts of Tyr8, Tyr49, and Tyr54, as a function of peptide concentration, an equilibrium dissociation constant of 18 +/- 4 microM was obtained. Analysis of the line widths suggested an average exchange rate, k(ex), associated with the peptide-protein two-site exchange, of 5200 +/- 600 s(-1) at a peptide concentration where 96% of the FynSH3 protein was assumed to be bound. The extent of solvent exposure of the fluorine labels was studied by a combination of solvent isotope shifts and paramagnetic effects from dissolved oxygen. Tyr54, Tyr49, Tyr10, and Tyr8, in addition to the Tyr on the C-terminal tag, appear to be fully exposed to the solvent at the metafluoro position in the absence of binding peptide. Tyr54 and, to some extent, Tyr10 become protected from the solvent in the peptide bound state, consistent with known structural data on SH3-domain peptide complexes. These results show the potential utility of (19)F-metafluorotyrosine to probe protein-protein interactions in conjunction with paramagnetic contrast agents.  相似文献   

19.
Elevated levels of zinc2+ and copper2+ are found chelated to the amyloid-beta-peptide (Abeta) in isolated senile plaque cores of Alzheimer's disease (AD) patients. However, the precise residues involved in Zn2+ ligation are yet to be established. We have used 1H NMR and CD to probe the binding of Zn2+ to Abeta(1-28). Zinc binding to Abeta causes a number of 1H NMR resonances to exhibit intermediate exchange broadening upon Zn2+ addition, signals in slow and fast exchange are also observed. In addition, there is a general loss of signal for all resonances with Zn2+ addition, suggestive of the formation of high molecular weight polymeric species. Perturbations in specific 1H NMR resonances between residues 6 and 14, and analysis of various Abeta analogues in which each of the three His residues have been replaced by alanine, indicates that His6, His13 and His14 residues are implicated in Zn-Abeta binding. Complementary studies with Cd2+ ions cause perturbations to 1H NMR spectra that are strikingly similar to that observed for Zn2+. Binding monitored at Val12 indicates a 1:1 stoichiometry with Abeta for both Zn2+ and Cd2+ ions. Circular Dichroism (CD) studies in the far-UV indicate quite minimal ordering of the main-chain with Zn2+ or Cd2+ addition. Changes in the far-UV are quite different from that obtained with Cu2+ additions indicating that Zn2+ coordination is distinct from that of Cu2+ ions. Taken together, these observations seem to suggest that Zn2+ coordination is dominated by inter-molecular coordination and the formation of polymeric species.  相似文献   

20.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号