首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulating evidence shows that glutathione peroxidase (GPX, EC.1.11.1.9), one of the most important antioxidant selenoenzymes, plays an essential role in protecting cells and tissues against oxidative damage by catalyzing the reduction of hydrogen peroxide by glutathione. Unfortunately, because of the limited availability and poor stability of GPX, it has not been used clinically to protect against oxidative stress. To overcome these problems, it is necessary to generate mimics of GPX. In this study, we have used directed mutagenesis and the inclusion of a selenocysteine (Sec) insertion sequence to engineer the expression in eukaryotic cells of human glutathione transferase zeta1–1 (hGSTZ1–1) with Sec in the active site (seleno‐hGSTZ1–1). This modification converted hGSTZ1–1 into an active GPX and is the first time this has been achieved in eukaryotic cells. The GPX activity of seleno‐hGSTZ1–1 is higher than that of GPX from bovine liver, indicating Sec at the active site plays an important role in the determination of catalytic specificity and performance. Kinetic studies revealed that the ping–pong catalytic mechanism of Se‐hGSTZ1–1 is similar to that of the natural GPX. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Samples of venous blood from 239 male and 476 female adults including 41 pairs of parents and 123 of their children belonging to a Surinam population called the Djuka or Bush Negroes of West African origin were screened for electrophoretic variants of red cell glutathione peroxidase (GPX1) in Cellogel. The results confirmed an earlier hypothesis that at least a part of the GPX1 variation mainly, if not exclusively, observed in the Africans and people of African origin living elsewhere, is determined by two codominant alleles (called GPX1*1 and GPX1*2), at an autosomal locus. The frequency of GPX1*2 allele in the Djuka was estimated to be .054. A rare variant provisionally designed as GPX1 Djuka (thought to be a heterozygote due to a third allele called GPX1*3 and the GPX1*1) was found in two apparently unrelated individuals. Catalytically, the product of GPX1*2 appears to be about twice more active than that of GPX1*1. For heuristic purposes, it was proposed and discussed that GPX1*2 is a South-Saharan African allele and is amenable for natural selection.  相似文献   

3.
Glutathione peroxidase (GPX) is a critical antioxidant selenoenzyme in organisms that protects cells against oxidative damage by catalyzing the reduction of hydroperoxides by glutathione (GSH). Thus, some GPX mimics have been generated because of their potential therapeutic value. The generation of a semisynthetic selenoenzyme with peroxidase activity, which matches the catalytic efficiencies of naturally evolved GPX, has been a great challenge. Previously, we semisynthesized a GPX mimetic with high catalytic efficiency using a rat theta class glutathione transferase (rGST T2-2) as a scaffold, in which the highly specific GSH-binding site is adjacent to an active site serine residue that can be chemically modified to selenocysteine (Sec). In this study, we have taken advantage of a new scaffold, hGSTZ1-1, in which there are two serine residues in the active site, to achieve both high thiol selectivity and highly catalytic efficiency. The GPX activity of Se-hGSTZ1-1 is about 1.5 times that of rabbit liver GPX, indicating that the selenium content at the active site plays an important role in enhancement of catalytic performance. Kinetic studies revealed that the catalytic mechanism of Se-hGSTZ1-1 belong in a ping-pong mechanism similar to that of the natural GPX.  相似文献   

4.
Two classes of inhibitors of trypsin (ED 3.4.21.4) have been studied, viz. active site-directed agents such as ovomucoid and active site titrants such as 4-methylumbelliferyl-4-guanidinobenzoate. The kinetics of beta-naphthyl-amidase inhibition by an active site-directed agent were markedly different from simultaneous assays of the availability of the active site towards active site titrants in the presence of the active site-directed agents. Analysis of these data indicated an exchange of active site-directed agent by subsequent addition of active site titrant. One class of trypsin inhibitor could be displaced by another from the trypsin active centre. Competitive chase experiments were designed to measure this exchange in which the active site-directed agent was first equilibrated with trypsin, then partially displaced by incremental additions of an active site titrant; the degree of active sites occupied by these two agents was then determined by active site titration with a second reagent.  相似文献   

5.
The trypsin inhibitor fraction from cowpea (Vigna unguiculata) has been purified and characterized. Although the total trypsin inhibitor as purified by affinity chromatography on immobilised trypsin was shown to be heterogeneous by gel electrophoresis and isoelectric focusing as well as by function, it was relatively homogeneous in MW (ca 17 000) on gel filtration. The total trypsin inhibitor was divided into inhibitors active against trypsin only and active against trypsin and chymotrypsin by affinity chromatography on immobilised chymotrypsin. The ‘trypsin-only’ inhibitor was the major component of the total trypsin inhibitor. It was shown by isoelectric focusing and gel electrophoresis to contain several isoinhibitors. Determination of the combining weight of this inhibitor and investigation of the complexes formed with trypsin by gel filtration indicated the presence of two protease binding sites per inhibitor molecule. The chymotrypsin/trypsin inhibitor was also shown to be composed of several isoinhibitors. On the basis of gel electrophoresis and gel filtration in dissociating and non-dissociating media both inhibitors were considered to be dimeric molecules with the subunits linked by disulphide bonds; this implies that the ‘trypsin-only’ inhibitor has one binding site per subunit.  相似文献   

6.
We have previously characterized and cloned a secreted sperm-bound selenium-independent glutathione peroxidase protein (GPX5), the expression of which was found to be restricted to the mouse caput epididymidis. Because of the lack of selenium (Se) in the active site of this enzyme, unlike the other animal GPXs characterized to date, it was suspected that GPX5 does not function in the epididymis as a true glutathione peroxidase in vivo. In the present report, following dietary selenium deprivation which is known to reduce antioxidant defenses and favor oxidative stress in relation with depressed Se-dependent GPX activities, we show that the epididymis is still efficiently protected against increasing peroxidative conditions. In this model, the caput epididymides of selenium-deficient animals showed a limited production of lipid peroxides, a total GPX activity which was not dramatically affected by the shortage in selenium availability and an increase in GPX5 mRNA and protein levels. Altogether, these data strongly suggest that the selenium-independent GPX5 could function as a back-up system for Se-dependent GPXs.  相似文献   

7.
Radiolabelled anhydrotrypsin was bound by alpha 2M (alpha 2-macroglobulin) sufficiently tightly to resist separation during gel electrophoresis; 2 mol of anhydrotrypsin were bound/mol of alpha 2M, but the interaction differed in important respects from that between active proteinases and alpha 2M. Anhydrotrypsin was bound by the electrophoretically 'fast' form of alpha 2M, although much less effectively than by the 'slow' form. The inactive enzyme was displaced from alpha 2M by trypsin inhibitor, the order of effectiveness being aprotinin > soya-bean trypsin inhibitor > benzamidine. Saturation of alpha 2M with anhydrotrypsin did not prevent subsequent binding and inhibition of active trypsin by the alpha 2M, and the anhydrotrypsin was not displaced during this reaction. Anhydrotrypsin bound by alpha 2M retained its ability to react with antibodies against trypsin, whereas bound trypsin did not.  相似文献   

8.
Glutathione peroxidases (GPX) are anti-oxidative enzymes that reduce organic and inorganic hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. The human genome involves eight GPX genes and five of them encode for selenocysteine-containing enzymes. Among the human GPX-isoforms, GPX4 is unique since it is capable of reducing complex hydroperoxy ester lipids such as hydroperoxy phospholipids and hydroperoxy cholesterolesters. Using a number of genetically modified mouse strains the biological role of GPX4 has comprehensively characterized but the molecular enzymology is less well explored. This lack of knowledge is partly related to the fact that mammalian selenoproteins are not high-level expressed in conventional overexpression systems. To explore the structural and functional properties of human GPX4 we expressed this selenoprotein in a cysteine-auxotrophic E. coli strain using a semi-chemical expression strategy. The recombinant enzyme was purified in mg amounts from the bacterial lysate to electrophoretic homogeneity and characterized with respect to its protein-chemical and enzymatic properties. Its crystal structure was solved at 1.3?Å resolution and the X-ray data indicated a monomeric protein, which contains the catalytic selenium at the redox level of the seleninic acid. These data suggest an alternative reaction mechanism involving three different redox states (selenol, selenenic acid, seleninic acid) of the catalytically active selenocysteine.  相似文献   

9.
Se-dependent glutathione peroxidase-1 (GPX1) and Cu,Zn-superoxide dismutase (SOD1) are two major intracellular antioxidant enzymes. The purpose of this study was to elucidate the biochemical mechanisms for the 40% loss of hepatic GPX1 activity in SOD1−/− mice. Compared with the wild type (WT), the SOD1−/− mice showed no change in the total amount of GPX1 protein. However, their total enzyme protein exhibited 31 and 38% decreases (P < 0.05) in the apparent kcat for hydrogen peroxide and tert-butylperoxide (at 2 mM GSH), respectively. Most striking, mass spectrometry revealed two chemical forms of the 47th residue of GPX1: the projected native selenocysteine (Sec) and the Se-lacking dehydroalanine (DHA). The hepatic GPX1 protein of the SOD1−/− mice contained 38% less Sec and 77% more DHA than that of WT and showed aggravated dissociation of the tetramer structure. In conclusion, knockout of SOD1 elevated the conversion of Sec to DHA in the active site of hepatic GPX1, leading to proportional decreases in the apparent kcat and activity of the enzyme protein as a whole. Our data reveal a structural and kinetic mechanism for the in vivo functional dependence of GPX1 on SOD1 in mammals and provide a novel mass spectrometric method for the assay of oxidative modification of the GPX1 protein.  相似文献   

10.
Climacteric fruit ripening has been characterized by oxidative burst and involve active oxidative metabolism with generation of reactive oxygen species (ROS). In the present paper, the papaya fruit ripening was found to be associated with increase in polygalacturonase (PG), pectate lyase (PEL), catalase (CAT), ascorbate peroxidase (APX), H2O2 and lipid peroxidation concomitant with decrease in the activities of superoxide dismutase (SOD) and guaiacol peroxidase (GPX). Furthermore, a cDNA (903 bp) of GPX from unripe papaya fruit pulp was isolated and cloned. On BLAST analysis, the deduced protein exhibited homology with various peroxidases and specific hits for plant heme peroxidase family namely heme and calcium binding domains. GPX of papaya was modeled and docked with various substrates and inhibitors among which guaiacol and cysteine were found to be the best substrate and inhibitor, respectively.  相似文献   

11.
Glutathione peroxidase 4 (GPX4) has been confirmed to inhibit ferroptosis in cancer cells, however, whether GPX4 serves as an oncogene is not clear. In this study, the expression of GPX4 and its influence to survival of patients with cancer were analyzed via public databases. Furthermore, the epigenetic regulation of GPX4 and the relation between GPX4 and chemoresistance of different anticancer drugs was also detected. Most importantly, cytological assays were performed to investigate the function of GPX4 in cancer cells. The results showed that GPX4 was higher expressed in cancer tissues than normal and was negatively associated with prognosis of patients. Furthermore, at upstream of GPX4 there was low DNA methylation sites and enhanced level of H3K4me3 and H3K27ac, indicating that high level of GPX4 in cancer may resulted from epigenetic regulation. Moreover, GPX4 was positively related to chemoresistance of anticancer drugs L-685458, lapatinib, palbociclib, and topotecan. In addition, GPX4 may potentially be involved in translation of protein, mitochondrial respiratory chain complex I assembly, electron transport oxidative phosphorylation, nonalcoholic fatty liver disease, and metabolic pathways. Finally, we detected that GPX4 inhibited ferroptosis in cancer cells, the inhibition of GPX4 via RSL3 could enhance the anticancer effect of cisplatin in vitro and in vivo. In conclusion, GPX4 acts as an oncogene and inhibits ferroptosis in cancer cells, the anticancer effect of cisplatin can be enhanced by GPX4 inhibition.  相似文献   

12.
A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of biospecific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary α-amylase. The bifunctional α-amylase/trypsin inhibitor was characterized by a narrow specificity for other α-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against α-amylase. The inhibitor—α-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of α-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.  相似文献   

13.
Several enzymic and physical properties of Sepharose-bound trypsin and activated Sepharose-bound trypsinogen have been compared to those of the soluble enzyme. Sepharose-bound trypsinogen could be activated to the same extent as soluble trypsinogen; the release of the activation peptide and formation of the active site occurred as expected in the presence of catalytic amounts of trypsin. With synthetic substrates, the relative activity and pH dependence of both immobilized trypsin preparations were essentially identical and nearly the same as the soluble enzyme. Sepharose-trypsin also formed an inactive complex with soybean trypsin inhibitor, with 85% of the active sites participating. In contrast, the activity of Sepharose-trypsin with chymotrypsinogen and with trypsinogen as substrates was only 40% that of soluble trypsin. There is evidence for some catalytic heterogeneity of active sites of bound trypsin; probably those sites buried within the gel have a limited catalytic efficiency with macromolecular substrates. The immobilized enzyme is more stable than the soluble enzyme at elevated temperatures and to concentrated urea, and denaturation by urea at pH 8 is fully reversible since the loss of molecules by autolysis is eliminated.  相似文献   

14.
Immunological evidence that inactive renin is prorenin   总被引:4,自引:0,他引:4  
Antibody raised to a synthetic dodecapeptide, corresponding to the C-terminal portion of the human renin pro-segment, was tested for its ability to recognize highly purified human inactive or active (mature) renins; immune complexes were detected by precipitation with protein A-Sepharose. Serial antibody dilutions caused identical binding of renal or plasma inactive renins but failed to bind active renin. In contrast, antibody to active renin recognized both active and inactive forms. Reversible acid activation of inactive renin enhanced its binding to the anti-prorenin antibody, whereas irreversible trypsin activation significantly reduced binding. Binding was abolished following prolonged exposure to trypsin or if inactive renin was acidified prior to trypsin treatment. These results indicate that inactive renin shares immunochemical determinants with prorenin; they suggest that acidification alters the conformation of the pro-segment and that trypsin can convert the molecule both to fully mature renin and to intermediate form(s).  相似文献   

15.
K Iwaki  M Ogawa  T Kitahara  S Tanaka  G Kosaki 《Enzyme》1983,29(3):153-159
The influences of various active site-specific reagents of trypsin and protease inhibitors on the immunoreactivity of trypsin and serum trypsin concentration have been studied by radioimmunoassay (RIA). The RIA using inactivated 125I-trypsin as tracer showed lower Bo/T than the RIA using active 125I-trypsin, but the coefficient of variance of the former was smaller than that of the latter. Normal serum trypsin concentrations were 26.12-36.38 ng/ml with the RIA using inactivated 125I-trypsin as antigen tracer, and 201.15 ng/ml with the RIA using active 125I-trypsin as tracer. The recovery experiment showed that the difference was due to the interaction of serum protease inhibitors and labeled active trypsin.  相似文献   

16.
李西雷  汪桂玲  李家乐  袁一鸣 《遗传》2010,32(4):360-368
根据本实验室构建的三角帆蚌cDNA文库中已标注的EST序列, 利用cDNA末端快速扩增法(RACE)克隆了三角帆蚌(Hyriopsis cumingii)谷胱甘肽过氧化物酶(Glutathione peroxidase, GPX)基因cDNA全序列。序列分析表明, 该基因cDNA序列全长1286 bp, 包括5′端非翻译区(Untranslated Region) 39 bp、3′端非翻译区659 bp和开放阅读框(Open reading frame, ORF)588bp, 共编码195个氨基酸, 分子量约为22.2 kDa, 理论等电点为8.44, 属于含硒类GPX。该氨基酸序列具有GPX所有亚型中均高度保守的3个环状结构, 对酶的三级结构起稳定作用。在线分析结果表明: GPX的氨基酸序列不存在明显的疏水区, 也不存在信号肽序列。氨基酸相似性对比结果显示, 三角帆蚌GPX氨基酸序列与脊椎动物GPX-2及GPX-1的序列相似度较高, 为73.1%-80.8%, 与其他型GPX相似度较小, 相似度低于60%。构建的系统进化树显示三角帆蚌GPX与其他几种鱼类GPX聚为一类, 与其他已发表的几种软体动物GPX相距较远, 推测本实验克隆的三角帆蚌GPX基因和已发表的软体动物不属于同一种GPX类型。  相似文献   

17.
The title tetrapeptide, Leu-Arg-Pro-Gly-NH2, forms a complex with trypsin in a novel orthorhombic crystal form with low molecular packing density. The complex formation was directly evidenced by X-ray crystallography. The crystal structure at 1.8 Å resolution was refined to anR-factor of 20.5% for 13,923 reflection data, which were measured with synchrotron radiation. The tetrapeptide is bound to trypsin at the active site, and the binding mode is very similar to that of a bovine pancreatic trypsin inhibitor (BPTI):trypsin complex. The tetrapeptide:trypsin complex is the first observation that a peptide forms a stable complex with trypsin.  相似文献   

18.
In the present work we investigated the activity of glutathione S-transferase (GST) and glutathione peroxidase (GPX) in barley root tip and their relation to root growth inhibition induced by different abiotic stresses. Cadmium-induced root growth inhibition is strongly correlated with increased GST and GPX activity. Similarly, strong induction of GPX and GST activity was observed in Hg-treated root tips, where also the highest root growth inhibition was detected. Relationship between increased GST activity and root growth inhibition was also observed during other heavy metal treatments. On the other hand, only a slight increase of GPX activity was observed after application of Pb, Ni, and Zn, while Co did not affect GPX activity. Similarly to Hg and Cd, Cu treatment caused a strong increase in GPX activity. GPX activity in barley root tips was not affected by cold, heat or drought treatment and only a slight increase was observed after salt or H2O2 treatment. Apart from salt treatment, only a weak increase in GST activity was observed during heat, drought and H2O2 stresses, while during cold treatment its activity slightly decreased. Some detected differences in the spatial distribution of GST and GPX activity along the root tip suggests that at least two proteins are responsible for these activities. These proteins play a crucial role not only during stresses, but also in unstressed seedlings in the differentiation processes of root tip. The application of different inhibitors suggests that the main proportion of these activities detected in barley root tip are probably catalysed by GSTs possessing also GPX activity.  相似文献   

19.
To determine effect of nitric oxide (NO) on cellular glutathione peroxidase (GPX) level in living cells, we measured the activity, protein and mRNA of GPX in rat kidney (KNRK) cells under a high NO condition. Combined treatment of lipopolysaccharide (LPS, 1 μg/ml) and tumor necrosis factor-α (TNF-α, 50 ng/ml) synergistically enhanced (23-folds) nitrite production from KNRK cells. This was suppressed by an inducible NO synthase (iNOS) inhibitor (aminoguanidine, N-nitro-L-arginine methylester hydrochloride) and arginase. iNOS expression was detected by RT-PCR in the treated cells. GPX was inactivated irreversibly when the cells had been homogenized before exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP). In living KNRK cells, SNAP and LPS + TNF-α exerted a transient effect on the GPX activity. The treatment with SNAP (200 μM) or sodium nitroprusside (200 μM) enhanced GPX gene expression, which was blocked by a NO scavenger, 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide. GPX mRNA was markedly increased by the treatment with LPS + TNF-α, and aminoguanidine blocked the effect. In cells metabolically labeled with 75Se, LPS + TNF-α accelerated the incorporation of radioactivity into GPX molecule by 2.1-fold. These results suggest that inactivation of GPX by NO triggers a signal for inducing GPX gene expression in KNRK cells, thereby restoring the intracellular level of this indispensable enzyme.  相似文献   

20.
Vegetables are generally recognized as rich sources of dietary antioxidants for inhibiting lipid peroxidation. Here we investigated lipid hydroperoxide (LOOH)-reducing activity of several vegetables to estimate their role on the prevention of lipid peroxidation in food and the digestive tract. By using HPLC analysis, we screened vegetables possessing the ability to convert 13-hydroperoxyoctadecadienoic acid (13-HPODE) to its reduced derivative, 13-hydroxyoctadecadienoic acid (13-HODE). Welsh onion (Allium fistulosum L.) was found to be highly active in the reduction of 13-HPODE among tested vegetables. There was no relationship between 13-HPODE reducing activity and GSH peroxidase (GPX) activity in the tested vegetables. 13-HPODE-reducing activity of welsh onion was enhanced by the addition of sulfhydryl compounds including glutathione (GSH). Neither GPX inhibitor nor heat treatment suppressed 13-HPODE-reducing activity effectively. These results suggest that welsh onion and other vegetables contain GPX mimics responsible for the reduction of LOOH. GPX mimics may be helpful in the attenuation of harmful effect of LOOH from food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号