首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of dietary fat on autoimmunity in lupus-prone (NZB x NZW)F1 mice has been demonstrated. In defining further the effects of dietary lipid on the immune system of this strain, female weanling mice were placed on four diets differing in quantity and type of fat. Their immunologic response was then studied by a variety of tests at 4 and 7 mo of age. Few differences were seen among the four groups at 4 mo of age. At 7 mo of age, however, the mice receiving diets high in saturated and unsaturated fats had a reduced mitogenic response to T cell mitogens and an enhanced response to the B cell mitogen LPS. Immunoglobulin levels and delayed hypersensitivity responses did not show any consistent differences among the diet groups. At 7 mo, however, mice receiving diets high in unsaturated fat demonstrated hyperresponsiveness to injected sheep red blood cells as measured by the hemolytic plaque technique. In addition, peritoneal leukocytes from the same diet group exhibited an increased response to bromelain-treated autologous erythrocytes which was decreased after treatment with anti-Thy-1 antiserum and complement. Phagocytosis by peritoneal macrophages was significantly decreased in the animals fed high-fat diets, particular high saturated fat. Similarly, natural killer cell activity was markedly reduced in the mice with a high intake of saturated lipid, a finding which correlated with the in vitro production of interferon. These results indicate that diets high in fat influence immune responses and thus can affect the onset and severity of autoimmune disease. A low-fat diet can reduce the development of disease by maintaining normal immune responses. The data also suggest that unsaturated fat may influence T helper cell activity and therefore antibody production, whereas saturated fats may affect cellular immune responses which are dependent on membrane contact.  相似文献   

2.
Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents) are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat) volume and body fat volume ratio (body fat volume/body weight) of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.  相似文献   

3.
4.
The purpose of this study was to characterize the impact of a low-fat (LF; 1% fat) diet, a high-fat (HF; 25% fat) diet, and a standard (SD; 5% fat) diet on immune and oxidative parameters in a 20% body surface area burn animal model fed ad libitum for 10 days postinjury. Although the mechanisms are poorly understood, the amount of dietary lipid in nutritional support has been shown to have immunomodulatory effects after burn injury. Burned mice fed the LF diet showed a normal response in activated splenocyte proliferation compared to burned animals that received the SD or HF diet. Animals fed the SD and HF diets presented increased production of nitric oxide and prostaglandin E2 response after burn injury, which is associated with inhibited splenocyte proliferation. The total thiol concentration in spleen cells from burned animals kept on the HF diet was significantly higher than that in unburned animals, while no increase in these oxidative parameters was observed in LF-fed burned animals. Moreover, the LF diet significantly reduced hepatic lipid peroxidation, as measured by malonaldehyde concentration, compared to the other two diets. These results suggest that the administration of a LF diet in mice after a burn injury prevents inhibition of in vitro splenocyte proliferation and reduces the intensity of oxidative stress.  相似文献   

5.
Some, but not all, fats are obesogenic. The aim of the present studies was to investigate the effects of changing type and amount of dietary fats on energy balance, fat deposition, leptin, and leptin-related neural peptides: leptin receptor, neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC), in C57Bl/6J mice. One week of feeding with a highly saturated fat diet resulted in ~50 and 20% reduction in hypothalamic arcuate NPY and AgRP mRNA levels, respectively, compared with a low-fat or an n-3 or n-6 polyunsaturated high-fat (PUFA) diet without change in energy intake, fat mass, plasma leptin levels, and leptin receptor or POMC mRNA. Similar neuropeptide results were seen at 7 wk, but by then epididymal fat mass and plasma leptin levels were significantly elevated in the saturated fat group compared with low-fat controls. In contrast, fat and leptin levels were reduced in the n-3 PUFA group compared with all other groups. At 7 wk, changing the saturated fat group to n-3 PUFA for 4 wk completely reversed the hyperleptinemia and increased adiposity and neuropeptide changes induced by saturated fat. Changing to a low-fat diet was much less effective. In summary, a highly saturated fat diet induces obesity without hyperphagia. A regulatory reduction in NPY and AgRP mRNA levels is unable to effectively counteract this obesogenic drive. Equally high fat diets emphasizing PUFAs may even protect against obesity.  相似文献   

6.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.  相似文献   

7.
The effect of varying the amount and type of dietary fat on the promotion of gamma-glutamyltranspeptidase (GGT)-positive foci and hepatocarcinomas in female rats was studied. In the first study, two-thirds of the rats were first intubated with diethylnitrosamine (DEN, 10 mg/kg) 20 hr after partial hepatectomy; 1 week later, rats were fed one of three purified diets (a low-fat diet similar to the AIN-76 diet, a high saturated fat diet, or a high polyunsaturated fat diet) with or without 0.05% phenobarbital in the diet for 10 months. Increasing the fat level of the diet did not increase the number of GGT-positive foci arising spontaneously or induced by DEN alone. When phenobarbital was present in the diet, feeding the high polyunsaturated fat diet slightly increased the number of GGT-positive foci and the incidence of tumors. The low-fat diet, however, increased the incidence of fatty liver. We therefore reexamined the effect of diet on promotion by phenobarbital, using an additional low-fat diet with cornstarch rather than sucrose as the carbohydrate source. In this experiment, both high-fat diets slightly enhanced the induction of GGT-positive foci; the carbohydrate source had no effect. The incidence of tumors was not affected by diet in this experiment, but the incidence of fatty liver was again enhanced by feeding a diet high in sucrose. We conclude that increasing the fat level of the diet does not promote the development of DEN-initiated GGT-positive foci or carcinomas in female rats. Increasing the dietary fat level, however, may enhance promotion of liver foci by phenobarbital. Finally, increasing the sucrose content of the diet increases the incidence of fatty liver.  相似文献   

8.
In order to study the effects of diet on fat distribution, circulating leptin levels and ob mRNA expression, diets of different macronutrient composition were fed to lean mice and gold thioglucose-obese mice. A high-fat diet and 2 high-carbohydrate diets, one containing mostly high-glycaemic-index starch and the other containing low-glycaemic-index starch were fed ad libitum for 10 weeks and were compared to standard laboratory chow. Weight gain was attenuated by feeding low-glycaemic-index starch in all mice and by feeding a high-fat diet in lean mice. Reduced adiposity was seen in lean mice fed low-glycaemic-index starch, whereas increased adiposity was seen in both lean and obese mice fed on the high-fat diet. Circulating leptin levels, when corrected for adiposity, were decreased in all mice fed either the high-fat diet or the low-GI diet. In epididymal fat pads, decreased ob mRNA expression was seen after both high-fat and high-glycaemic-index starch feeding. These results show that diet macronutrient composition contributes to the variability of circulating leptin levels by the combined effects of diet on fat distribution and on site-specific changes in ob mRNA expression.  相似文献   

9.
10.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

11.
Dietary fats affect macrophage-mediated cytotoxicity towards tumour cells   总被引:2,自引:0,他引:2  
In the present study, the effects of feeding mice diets of different fatty acid compositions on the production of TNF-alpha and nitric oxide by lipopolysaccharide-stimulated peritoneal macrophages and on macrophage-mediated cytotoxicity towards L929 and P815 cells were investigated. C57Bl6 mice were fed on a low-fat (LF) diet or on high-fat diets (21% fat by weight), which included coconut oil (CO), olive oil (OO), safflower oil (SO) or fish oil (FO) as the principal fat source. The fatty acid composition of the macrophages was markedly influenced by that of the diet fed. Lipopolysaccharide (LPS)-stimulated macrophages from FO-fed mice showed significantly lower production (up to 80%) of PGE2 than those from mice fed on each of the other diets. There was a significant positive linear correlation between the proportion of arachidonic acid in macrophage lipids and the ability of macrophages, to produce PGE2. Lipopolysaccharide-stimulated TNF-alpha production by macrophages decreased with increasing unsaturated fatty acid content of the diet (i.e. FO < SO < OO < CO < LF). Macrophages from FO-fed mice showed significantly lower production of TNF-alpha than those from mice fed on each of the other diets. Nitrite production was highest for LPS-stimulated macrophages from mice fed on the LF diet. Macrophages from FO-fed mice showed significantly higher production of nitrite than those from mice fed on the OO and SO diets. Compared with feeding the LF diet, feeding the CO, OO or SO diets significantly decreased macrophage- mediated killing of P815 cells (killed by nitric oxide). Fish oil feeding did not alter killing of P815 cells by macrophages, compared with feeding the LF diet; killing of P815 cells was greater after FO feeding than after feeding the other high fat diets. Compared with feeding the LF diet, feeding the OO or SO diets significantly decreased macrophage-mediated killing of L929 cells (killed by TNF). Coconut oil or FO feeding did not alter killing of L929 cells by macrophages, compared with feeding the LF diet. It is concluded that the type of fat in the diet affects macrophage composition and alters the ability of macrophages to produce cytotoxic and immunoregulatory mediators and to kill target tumour cells.  相似文献   

12.
The binding and internalization of (125)I-labelled chylomicron remnants derived from palm, olive, corn, or fish oil (rich in saturated, monounsaturated, n-6, or n-3 polyunsaturated fatty acids, respectively) by hepatocytes from rats fed a low-fat diet or a diet supplemented with the corresponding fat for 21 days was investigated. In hepatocytes from rats fed the low-fat diet, the association of radioactivity with the cells at 4 degrees C (a measure of initial binding only) was similar with all types of remnants tested, but was more rapid at 37 degrees C (a measure of binding plus internalization) when fish oil, as compared to olive, corn or palm oil remnants, was used, and similar differences in the internalization of the particles were observed. In contrast, when hepatocytes from rats fed the fat-supplemented diets were used, the rate of association at 37 degrees C of remnants with cells from rats fed palm, corn or fish oil was similar, and higher than that found with cells from animals fed olive oil, and in this case these differences were mainly due to changes in the binding of the particles to the cells at 4 degrees C. Both excess low-density lipoprotein (LDL), which inhibits remnant uptake by the LDL receptor, and lactoferrin, which blocks the LDL receptor-related protein (LRP), were found to decrease the association of the remnants with cells from rats fed the low-fat and high-fat diets. However, in hepatocytes from animals given the low-fat diet, most of the differences between the various types of particle were retained in the presence of lactoferrin, but abolished in the presence of LDL. In contrast, in cells from rats fed the high-fat diets, the differences were reduced by both lactoferrin and LDL. These findings demonstrate that the hepatic uptake of chylomicron remnants is influenced both by the fatty acid composition of the particles, and by longer-term adaptive changes in liver tissue, and suggest that the former effects are mediated mainly by the LDL receptor, while the latter may involve both the LDL receptor and the LRP.  相似文献   

13.
14.
Huang XF  Yu Y  Li Y  Tim S  Deng C  Wang Q 《Neurochemical research》2008,33(9):1881-1888
This study examined changes in neuropeptide Y (NPY) Y2 receptor binding in the brains of C57BL/6 mice in response to different levels of high-fat diets via three dietary intervention methods: high-fat diet, switching from high- to low-fat diet and finally, energy restricted high-fat diet. Forty-five C57Bl/6 male mice were fed a high-fat diet for 8 weeks and then classified as diet-induced obese (DIO) or diet-resistant (DR) mice according to the highest and lowest body weight gainers, respectively. The DIO and DR mice were then randomly divided into three groups each and either continued on their high-fat diet ad libitum (DIO-H and DR-H), changed to a low-fat diet (DIO-L and DR-L) or pair-fed via energy restricted high-fat diet (DIO-P and DR-P) for a further 6 weeks. During the course of this study, body weight, energy intake and plasma peptide YY (PYY) were measured. The study revealed that the replacement of a high-fat diet with a low-fat diet was associated with a significant lowering of ventromedial hypothalamic (VMH) Y2 receptor binding in both the DIO-L and DR-L mice (−37%, −36%), and also a lowered plasma PYY level in the DIO-L mice (−25%). Despite a continued consumption of the high-fat diet, energy restricted pair feeding caused a lower VMH Y2 receptor binding in the obese mice (DIO-P) following weight loss compared to the DR-P mice (−14%). In conclusion, this study showed that changing diets from high- to low-fat can significantly lower the VMH Y2 receptor binding irrespective to the obesity phenotype. Energy restriction, even while on high-fat feeding, can cause a lower VMH Y2 receptor binding compared to DR mice even after body weight loss to similar levels. This suggests either a possible intrinsic nature of the DIO mice or a body weight set-point re-establishment to drive body weight regain.  相似文献   

15.
This experiment examined dopamine D2 receptor and its transporter (DAT) density in mice fed a high-fat or low-fat diet for twenty days as well as fed twenty days of high-fat diet then changed to low-fat diet for one and seven days. Quantitative autoradiography revealed that twenty days of high-fat diet consumption significantly increased D2 receptor and decreased DAT density in the dorsal and ventral parts of the caudal caudate putamen (D2: 32% and 35% respectively, DAT: 33.3% and 28.8% respectively) compared with low-fat diet. High-fat feeding also increased D2 binding in the nucleus accumbens shell (36%). D2 receptor and DAT density remained unchanged following reversal of the diets from high-fat to low-fat diet. The high-fat diet induced increase of D2 receptor and decrease of DAT binding may have occurred due to defensive control over dopaminergic activity in response to a positive energy balance.  相似文献   

16.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity. (Author correspondence: )  相似文献   

17.
Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice.  相似文献   

18.
We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.  相似文献   

19.
The objective of this research was to determine body composition, total fat content, fat distribution, and serum leptin concentration in hyperlipidemic (high responder, HR) and normolipidemic (low responder, LR) California mice (Peromyscus californicus). In our initial experiments, we sought to determine whether differences in regional fat storage were associated with hyperlipidemia in this species. To further characterize the hepatic steatosis in the mice, we performed 2 additional experiments by using a diet containing 45% of energy as fat. The body fat content of mice fed a low fat-diet (12.3% energy as fat) was higher than that of mice fed a moderate-fat diet (25.8% energy as fat). Total body fat did not differ between HR and LR mice. There was no significant difference between intraabdominal, gonadal, or inguinal fat pad weights. Liver weights of HR mice fed the moderate-fat diet were higher than those of LR mice fed the same diet, and the moderate-fat diet was associated with nonalcoholic fatty liver (NAFL). Mice fed the 45% diet had higher histologic score for steatosis but very little inflammatory response. Chemical analysis indicated increased lipid in the livers of mice fed the high-fat diet compared with those fed the low-fat diet. HR and LR mice had similar serum leptin concentrations. California mice develop NAFL without excess fat accumulation elsewhere. NAFL was influenced by genetic and dietary factors. These mice may be a naturally occuring model of partial lipodystrophy.  相似文献   

20.
The present study assessed differences in fecundity and egg quality from Atlantic cod Gadus morhua fed isoproteic diets containing 13% fat (low fat, LF) or 20% fat (high fat, HF) and either stressed or left unstressed as a control over the spawning season. Each diet was fed to triplicate groups of G. morhua from June 2009, through to first maturation and spawning. In January 2010 sub-groups of G. morhua were moved to land-based spawning tanks where the experimental trial was carried out. At the start of the experiment, G. morhua fed the high-fat diet were significantly larger than G. morhua fed low-fat diet. These differences were maintained through the spawning season, although with a loss of mass in both dietary groups. Relative fecundity through the season was significantly lower in stressed G. morhua fed LF compared to unstressed G. morhua fed the same diet. Stressed G. morhua had a higher variability in weekly amount of eggs spawned, spawning occurred more irregularly, and the spawning period lasted longer than in unstressed G. morhua. Several egg quality variables were also affected: eggs from G. morhua fed LF and exposed to stress had lower fertilization and hatching rates compared to the unstressed G. morhua fed the same diet as well as all G. morhua fed HF. Gadus morhua fed a low-fat diet appeared less tolerant to stress than fish fed a high-fat diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号