首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clinical reports indicate that malaria-infected asplenic patients have a reduced capacity for parasite clearance despite intensive antimalarial therapy. The aim of this study was to evaluate the efficacy of dihydroartemisinin in an asplenic murine malaria model. Mice were inoculated with Plasmodium berghei parasitised erythrocytes and received a single dose of dihydroartemisinin 56 h later, at 2-5% parasitaemia. Haematology, liver biochemistry and histopathology of key organs were performed to evaluate organ response to malaria infection. The nadir parasitaemia occurred 20 h after dihydroartemisinin administration, falling 2.8- to 6.0-fold and 2.7- to 6.9-fold in asplenic and intact mice, respectively, (10-100 mg/kg). Histopathology indicated increased stimulation of liver function/activity during malaria infection of asplenic mice (as compared to intact mice). Overall efficacy of single-dose dihydroartemisinin treatment in asplenic mice was similar to intact mice although the rate of recrudescence in asplenic mice was significantly greater than intact mice at 30 and 100 mg/kg. The asplenic murine malaria model could be used in pre-clinical studies of splenic function and clearance of malaria parasites, pathophysiological studies or antimalarial drug efficacy in asplenia.  相似文献   

2.
The goal of this work was to investigate intranasal dihydroartemisinin (DHA) delivery as a non-invasive method for treatment of malaria. ICR female mice were infected with Plasmodium berghei ANKA, a model for severe malaria with similarities to the human disease. DHA, at a dose of 2 × 5 mg/kg/day, was administered to mice either intranasally or i.p. Two dosage regimens were tested: prophylaxis and treatment. Parasitemia was monitored every other day, from the time of infection, by thin smears prepared from tail blood. The survival rates in prophylaxis and treatment regimens were 93% and 75%, respectively, for intranasal DHA and this route was at least as effective as the i.p. route used for comparison. All mice in the untreated control and placebo groups succumbed due to the parasitemia. The results show that DHA nasal administration to mice was highly efficient in the treatment of Plasmodium infection in infected rodents. This novel mode of drug administration may be considered as an alternative to conventional treatment.  相似文献   

3.
Some novel derivatives of Bis-chalcone were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro globin hydrolysis, β-hematin formation, and murine Plasmodium berghei, using chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities toward the parasite in comparison with the standard. The most active antimalarial compound was 1,1-Bis-[(3′,4′-N-(urenylphenyl)-3-(3″,4″,5″-trimethoxyphenyl)]-2-propen-1-one 5, with a percentage of inhibition of heme polymerization of 87.05?±?0.77, and this compound increased the survival time after infection, reduce the parasitemia and delay the progression of malaria.  相似文献   

4.
5.
The antifolate anticancer drug methotrexate (MTX) has potent activity against Plasmodium falciparum in vitro. Experience of its use in the treatment of rheumatoid arthritis indicates that it could be safe and efficacious for treating malaria. We sought to establish a murine malaria model to study the mechanism of action and resistance of MTX and its analogue aminopterin (AMP). We used Plasmodium berghei, Plasmodium yoelii yoelii, Plasmodium chabaudi and Plasmodium vinckei. None of these species were susceptible to either drug. We have also tested the efficacy of pyrimethamine in combination with folic acid in P. berghei, and data indicate that folic acid does not influence pyrimethamine efficacy, which suggests that P. berghei may not transport folate. Since MTX and AMP utilise folate receptor/transport to gain access to cells, their lack of efficacy against the four tested murine malaria species may be the result of inefficiency of drug transport.  相似文献   

6.
Plasmodium falciparum is responsible for the majority of life-threatening cases of human malaria. The global emergence of drug-resistant malarial parasites necessitates identification and characterization of novel drug targets. Carbonic anhydrase (CA) is present at high levels in human red cells and in P. falciparum. Existence of at least three isozymes of the α class was demonstrated in P. falciparum and a rodent malarial parasite Plasmodium berghei. The major isozyme CA1 was purified and partially characterized from P. falciparum (PfCA1). A search of the malarial genome database yielded an open reading frame similar to the α-CAs from various organisms, including human. The primary amino acid sequence of the PfCA1 has 60% identity with a rodent parasite Plasmodium yoelii enzyme (PyCA). The single open reading frames encoded 235 and 252 amino acid proteins for PfCA1 and PyCA, respectively. The highly conserved active site residues were also found among organisms having α-CAs. The PfCA1 gene was cloned, sequenced and expressed in Escherichia coli. The purified recombinant PfCA1 enzyme was catalytically active. It was sensitive to acetazolamide and sulfanilamide inhibition. Kinetic properties of the recombinant PfCA1 revealed the authenticity to the wild type enzyme purified from P. falciparum in vitro culture. Furthermore, the PfCA1 inhibitors acetazolamide and sulfanilamide showed good antimalarial effect on the in vitro growth of P. falciparum. Our molecular tools developed for the recombinant enzyme expression will be useful for developing potential antimalarials directed at P. falciparum carbonic anhydrase.  相似文献   

7.
ABSTRACT. Protein phosphorylation events may play important roles in the replication and differentiation of the malarial parasite. Investigations into the lability of a Plasmodium protein kinase revealed that a 34 kDa parasite phosphoprotein is rapidly converted into a 19 kDa fragment. Coincident with this conversion is a nearly total loss of a protein kinase activity, as determined from the phosphorylation of endogenous protein substrates. Both the conversion of the 34 kDa protein to the 19 kDa protein and the loss of protein kinase activity are inhibited by thio-protease inhibitors. The presence of low levels of the intact 34 kDa protein restores the protein kinase activity to almost maximum levels. However, it was not possible to demonstrate protein kinase activity associated with the 34 kDa protein, thus suggesting that the 34 kDa protein is probably an activator or regulator of the protein kinase activity and not a protein kinase. The conversion to the 19 kDa fragment also occurs in vivo and only during the schizont stage prior to the appearance of ring forms. During this same period the protein kinase activity decreases suggesting that the proteolytic processing of the 34 kDa protein may be a physiological regulator of the protein kinase.  相似文献   

8.
The pathophysiological impact of infections with chloroquine-susceptible (CQS) and chloroquine-resistant (CQR) strains of Plasmodium berghei in Mastomys natalensis was studied with respect to changes in polyamine profiles in various tissues. Both CQS and CQR infections produced similar changes in polyamine profiles of various tissues. Maximum increase was recorded in spleen followed by liver and lungs. Renal, cardiac and cerebral tissues did not register significant changes. An increase in spermidine level was more prominent as compared to putrescine and spermine, leading to an overall increase in spermidine/spermine ratio. This ratio is an important index of cellular proliferation. Liver did not show considerable change in the activities of ornithine decarboxylase and S-adenosyl methionine decarboxylase, the regulatory enzymes of the polyamine biosynthetic pathway. Spleen however, registered marked induction of both the enzymes which was more prominent in the CQS infection than CQR. Normal erythrocytes contained traces of polyamine while the erythrocytes loaded with P. berghei parasites exhibited appreciably higher polyamine levels. Spermidine was detected in about five-fold higher concentrations than putrescine and spermine which were detected in equimolar levels. Again, CQS as well as CQR P. berghei, exhibited qualitatively and quantitatively similar polyamine profiles thus ruling out a role of polyamines in CQ-resistance in malaria. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25?/?, IL-33?/? and TSLP receptor (TSLPR)?/? mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.  相似文献   

10.
Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.  相似文献   

11.
Antimalarial 4-pyridones are a novel class of inhibitors of the plasmodial mitochondrial electron transport chain targeting Cytochrome bc1 (complex III). In general, the most potent 4-pyridones are lipophilic molecules with poor solubility in aqueous media and low oral bioavailability in pre-clinical species from the solid dosage form. The strategy of introducing polar hydroxymethyl groups has enabled us to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species.  相似文献   

12.
ObjectiveMalaria is an infectious parasitic disease affecting most of countries worldwide. Due to antimalarial drug resistance, researchers are seeking to find another safe efficient source for treatment of malaria. Since many years ago, medicinal plants were widely used for the treatment of several diseases. In general, most application is done first on experimental animals then human. In this article, medicinal plants as antimalarial agents in experimental animals were reviewed from January 2000 until November 2020.Materials and methodsIn this systematic review published articles were reviewed using the electronic databases NCBI, ISI Web of knowledge, ScienceDirect and Saudi digital library to check articles and theses for M.Sc/Ph.D. The name of the medicinal plant with its taxon ID and family, the used Plasmodium species, plant part used and its extract type and the country of harvest were described.Results and conclusionThe reviewed plants belonged to 83 families. Medicinal plants of families Asteraceae, Meliaceae Fabaceae and Lamiaceae are the most abundant for use in laboratory animal antimalarial studies. According to region, published articles from 33 different countries were reviewed. Most of malaria published articles are from Africa especially Nigeria and Ethiopia. Leaves were the most common plant part used for the experimental malaria research. In many regions, research using medicinal plants to eliminate parasites and as a defensive tool is popular.  相似文献   

13.
Abstract

The application of statistical periodic analysis confirms the existence of significant periodic fluctuations in the mortality of mice infected with a rodent malaria (Plasmodium berghei). The mice were obtained from a single commercial breeder and were kept under strict controlled environmental conditions. The duration of the study was five years. The infection was induced by weekly mouse‐to‐mouse passages of infected blood. The cumulative mortality at day 7 after the infection of each weekly passage was used for the study variable.

Analysis of the data shows that there are two periodic fluctuations in the mortality; a major one with a period of 48 weeks and a second, half of that — 24 weeks. The peaks of the 24‐week period appear to coincide with the peaks of the 48 week cycle. These periodic fluctuations are unlikely to be caused by random coincidence.  相似文献   

14.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

15.
A rapid, selective, sensitive and reproducible HPLC with recutive electrochemical detection for quantitatvie determination of artemether (ART) and its plasma metabolite, dihydroartemisinin (DHA: and β isomers) in plasma is described. The procedure involved the extraction of ART, DHA and the internal standard, artemisinin (ARN) with dichloromethane-tert.-methylbutyl ether (1:1, v/v) or n-butyl chloride-ethyl acetate (9:1, v/v). Chromatographic separation was performed with a mobile phase of acetonitrile-water (20:80, v/v) containing 0.1 M acetic acid pH 5.0, running through a μBondapak CN column. The method was capable of separating the two isomeric forms of DHA (, β). The retention times of -DHA, β-DHA, ARN and ART were 4.6, 5.9, 7.9 and 9.6 min, respectively. Validation of the assay method was performed using both extraction systems. The two extraction systems produced comparable recoveries of the various analytes. The average recoveries of ART, DHA and ARN over the concentration range 80–640 ng/ml were 86–93%. The coefficients of variation were below 10% for all three drugs (ART, -DHA, ARN). The minimum detectable concentrations for ART and -DHA in spiked plasma samples were 5 and 3 ng/ml, respectively. The method was found to be suitable for use in clinical pharmacokinetic study.  相似文献   

16.
Human cerebral malaria causes neurological and behavioral deficits which persist long after resolution of infection and clearance of parasites with antimalarial drugs. Previously, we demonstrated that during active infection, mice with cerebral malaria demonstrated negative behavioral outcomes. Here we used a chloroquine treatment model of cerebral malaria to determine whether these abnormal outcomes would be persistent in the mouse model. C57BL/6 mice were infected with Plasmodium berghei ANKA, and treated for ten days. After cessation of chloroquine, a comprehensive assessment of cognitive and motor function demonstrated persistence of abnormal behavioral outcomes, 10 days after successful eradication of parasites. Furthermore, these deficits were still evident forty days after cessation of chloroquine, indicating persistence long after successful treatment, a hallmark feature of human cerebral malaria. Thus, cognitive tests similar to those used in these mouse studies could facilitate the development of adjunctive therapies that can ameliorate adverse neurological outcomes in human cerebral malaria.  相似文献   

17.
A protocol to infect five-week-old Wistar rats by Plasmodium berghei which resulted in 100% mortality was developed in this work. In order to accomplish this goal, the effect of the administration of 10(7) and 10(8) parasitized erythrocytes by i.v. and i.p. route was investigated. The animals inoculated with 10(7) parasitized red blood cells by i.p. and i.v. routes showed 25 and 50% mortality, respectively. Inoculation with 10(8) parasitized erythrocytes by both routes resulted in a 100% lethal infection. The i.v. inoculation showed less scattered results and it was preferred over the i.p. route. The suitability of the protocol developed was evaluated by treating infected Wistar rats with chloroquine (30 mg/kg/day). A decreased parasitemia after the treatment was observed until the complete eradication of the parasite, around 10 days post-inoculation. Parasitemia depression after chloroquine treatment demonstrates the utility of the model developed to test new antimalarial drugs.  相似文献   

18.
The infection by the malaria parasite of its mammalian host is initiated by the asexual reproduction of the parasite within the host hepatocyte. Before the reproduction, the elongated sporozoites undergo a depolarizing morphogenesis to the spherical exo-erythrocytic form (EEF). This change can be induced in vitro by shifting the environmental conditions, in the absence of host hepatocytes. Using rodent malaria parasites expressing a FRET-based calcium sensor, YC3.60, we observed that the intracellular calcium increased at the center of the bulbous structure during sporozoite transformation. Modulators of intracellular calcium signaling (A23187 and W-7) accelerated the sporozoite-rounding process. These data suggest that calcium signaling regulates the morphological development of the malaria parasite sporozoite to the EEF, and support a fundamental role for calcium as a universal transducer of external stimuli in the parasitic life cycle.  相似文献   

19.
A rodent model of malaria, Plasmodium berghei was used to assess the antimalarial potential of dinitroaniline herbicides. Trifluralin, pendimethalin, oryzalin, and benfluralin were all active against P. berghei in vitro at, or close to, submicromolar concentrations, with a rank order of potency similar to that against other protozoa. The dinitroanilines did not elicit a cytotoxic effect against a mammalian cell line at concentrations 100-fold higher than those for activity against P. berghei. Neither trifluralin nor oryzalin exhibited any antimalarial activity in vivo after oral administration at the maximum dose tolerated by the host. In a pharmacokinetic study, it was found that the lack of in vivo antimalarial activity was due to poor absorption. Other DNs which have better absorption characteristics than either trifluralin or oryzalin may offer more scope for antimalarial activity in vivo.  相似文献   

20.
Abstract In Manarintsoa, near Antananarivo, Madagascar, two groups of patients were defined in terms of malaria clinical immune status: Group MA+ consisted of 36 patients who suffered from between one to four malaria attacks (MA) during the 20-week study, and Group MA who comprised of 48 persons who did not have any malaria attacks during this time. In group MA+, IgM and IgG antibody levels to Plasmodium falciparum exoantigens (E-Ag) were inversely related to the number of malaria attacks. The level of IgM antibodies were significantly higher in group MA+. In contrast, IgG, IgG1, IgG2, IgG3 and IgG4 antibodies to E-Ag were significantly higher in group MA. The level of IgG1 antibodies was inversely correlated, and IgG2 antibodies were positively correlated to the number of malaria attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号