首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the role of lysine residues in the interaction of bilirubin with bovine serum albumin, five succinylated preparations of albumin, namely: 23%, 39%, 49%, 55% and 87%, were prepared, and their conformational and bilirubin-binding properties were studied by the techniques of gel filtration, ultraviolet and visible spectroscopy, and fluorescence quenching. Gel filtration experiments performed at pH 7.0 and ionic strengths 0.15 and 1.0 suggested that the albumin molecule undergoes gradual disorganization with increase in succinylation. The Stokes radius and frictional ratio at ionic strength 0.15 increased from 3.7 nm and 1.36, respectively, for the native protein to 6.3 nm and 2.26 for maximally (87%) succinylated albumin. Interestingly, increase in ionic strength to 1.0 caused significant refolding in succinylated preparations as evidenced by a decrease in Stokes radius and frictional ratio (5.3 nm and 1.90 for 87% succinylated albumin). Progressive succinylation produced a steady decline in the intensity of bilirubin-induced fluorescence quenching, and in the visible spectral changes of the bilirubin-albumin complex at 480 nm. Both of these changes had a good correlation with increase in Stokes radius. Increase in ionic strength to 1.0 produced a significant reversal in these properties. From these results we conclude that probably none of the surface lysine residues is involved in bilirubin-albumin interaction, and that if lysine residues are involved in this interaction they must be buried in the protein interior.  相似文献   

2.
3.
4.
Irradiation with visible light of human serum albumin in aqueous solution at pH 8, in the presence of catalytic amounts of rose bengal or methylene blue, resulted in random oxidation of the histidine residues in the protein under consumption of one mole O2, and release of somewhat less than one proton, per histidine residue degraded. An increase of light absorption at 250 nm was proportional to the amount of oxygen consumed. Bilirubin bound to the oxidized protein showed an increased light absorption at its maximum, 460 nm, and a decreased binding affinity, indicating a conformational change of the protein on oxidation of histidine residues. This change also resulted in a slight perturbation of tyrosine light absorption, corresponding to a shift of the chromophore to more polar surroundings. Further, a sensitized oligomerization of albumin was observed, independent of oxidation of the histidine residues, and not consuming oxygen. Irradiation of a complex of human serum albumin with one molecule of bound bilirubin, in the absence of a sensitizing dye, resulted in a fast, non-oxygen consuming process whereby the light absorption maximum of the pigment was shifted 4 nm towards longer wavelength and part of the bilirubin was converted to a more polar pigment, bound less firmly to the protein. This was followed by a relatively slow oxidation of the pigment under uptake of one mole O2. Parallel photooxidation of the protein carrier could not be detected. It is considered possible that the fast, anaerobic process is operative in phototherapy of hyperbilirubinemia in the newborn. Serum albumin is probably not oxidized during this treatment.  相似文献   

5.
Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, and in the bilirubin-albumin complex between pH 11.2 and 11.7 with a Hill coefficient 1.6. With a stopped-flow technique it is shown that about seven of the tyrosines ionize fast, with rate constants well above 10(2) s-1, when pH is suddenly changed from near neutral to pH 11.76. Further residues ionize slowly, with rate constants around 10(2) s-1 or less. The N-form of albumin (pH 6) contains one more fast ionizing tyrosine than the B-form of albumin (pH 10). Binding of bilirubin or laurate to the albumin molecule (molar ratio 1:1) transforms one to three of the fast ionizing tyrosines to slowly ionizing.  相似文献   

6.
Human serum albumin has been modified with 2,4,6-trinitrobenzenesulphonic acid and picryl chloride in low ratios of reagents/albumin. The derivatives have been investigated by spectrophotometry and by thin layer chromatography of the hydrolysates in order to assess the specificity of the reagents. The same reaction conditions were used to modify albumin previously complexed with bilirubin in the ratio of 1:1. The affinity of bilirubin to the modified albumins was estimated by an improved perozidase method. It is concluded that TNBS and picryl chloride react almost quantity with epsilon-amino groups of lysine on the albumin molecule. The results also suggest that at least on TNBS reactive amino group and at least one picryl chloride reactive amino group are located in or near the high-affinity bilirubin binding site.  相似文献   

7.
Kinetics and mechanism of bilirubin binding to human serum albumin   总被引:3,自引:0,他引:3  
The kinetics of bilirubin binding to human serum albumin at pH 7.40, 4 degrees C, was studied by monitoring changes in bilirubin absorbance. The time course of the absorbance change at 380 nm was complex: at least three kinetic events were detected including the bimolecular association (k1 = 3.8 +/- 2.0 X 10(7) M-1 S-1) and two relaxation steps (52 = 40.2 +/- 9.4 s-1 and k3 = 3.8 +/- 0.5 s-1). The presence of the two slow relaxations was confirmed under pseudo-first order conditions with excess albumin. Curve-fitting procedures allowed the assignment of absorption coefficients to the intermediate species. When the bilirubin-albumin binding kinetics was observed at 420 nm, only the two relaxations were seen; apparently the second order association step was isosbestic at this wavelength. The rate of albumin-bound bilirubin dissociation was measured by mixing the pre-equilibrated human albumin-bilirubin complex with bovine albumin. The rate constant for bilirubin dissociation measured at 485 nm was k-3 = 0.01 s-1 at 4 degrees C. A minimum value of the equilibrium constant for bilirubin binding to human albumin determined from the ratio k1/k-3 is therefore approximately 4 X 10(9) M-1.  相似文献   

8.
Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic method, based upon a difference of light absorption spectrum for free and bound bilirubin. The observations were supplemented with previous data from an independent technique, measurement of oxidation rates of free bilirubin with hydrogen peroxide and peroxidase. A continuous isotherm was obtained, showing binding of at least 4 mol bilirubin per mole albumin with the following stoichiometric binding constants, 1.11 X 10(8), 1.7 X 10(7), 8 X 10(5), and 4 X 10(4) M-1 at pH 8.2, ionic strength 0.15 M, 25 degrees C. The binding is anticooperative at all steps. A saturation level was not reached. Cobinding of bilirubin and laurate was studied, with up to 2 mol of each ligand per mole albumin, using the peroxidase method for determination of free equilibrium concentrations of bilirubin, and a dialysis rate technique for free laurate. The findings could be described in terms of a stoichiometric model. Heterotropic cooperativity was present among the first bilirubin and the first and second laurate molecules. More than two molecules of either ligand can be bound at the same time.  相似文献   

9.
The solution conformation of alpha 1-antitrypsin from human blood plasma was studied by the circular dichroism (CD) probe. The CD spectra revealed in this glycoprotein approximately 16-20% of alpha-helix, the rest of the main polypeptide chain possessing the pleated sheet (beta) and the aperiodic structures. The conformation was stable between pH 4.7 and 8.8. Reversible change in conformation was observed at pH 10.3, and more dratic denaturation occurred at pH 11.6. The environment of the side chain chromophores was strongly affected by acid at pH 2.5, whereas the main chain conformation was changed slightly. A drastic change in the CD spectra, indicating denaturation, was observed in 3.5 M guanidine hydrochloride. Sodium dodecyl sulfate was effective in disorganizing the tertiary structure and in enhancing the helix content. The phenylalanine band fine structure was observed in the native protein and also after denaturation with acid, guanidine hydrochloride and sodium dodecyl sulfate.  相似文献   

10.
Using a double modification technique about 20% of the lysine residues of bovine serum albumin (BSA) which are not easily accessible in the native protein have been modified. The technique involved approximately 80% modification of lysine residues of BSA with citraconic anhydride followed by chemical modification of the remaining lysine residues with acetic anhydride, succinic anhydride, potassium cyanate, or O-methylisourea. Finally, these preparations were decitraconylated under mild acidic conditions to yield acetylated, succinylated, carbomylated or guanidinated BSA. All of these preparations were found to be homogeneous with respect to charge and size. The spectral, hydrodynamic and bilirubin binding properties of these preparations are described. In contrast to most of the highly modified proteins these preparations with the exception of succinylated BSA are very similar to native BSA in their spectral and hydrodynamic properties. However, the equilibrium association constant (Ka) with bilirubin measured by fluorescence quenching was decreased by about 100-fold in acetylated, carbamylated and succinylated BSA, but only 3-fold in guanidinated BSA. Since conformationally acetylated and carbamylated BSAs are identical to guanidinated BSA we conclude that the decrease in Ka in these preparations is solely due to loss of positive charge on 'critical' lysine residues. The results support a binding model for BSA in which bilirubin binding site is buried and the protein undergoes a series of relaxational changes in conformation upon interaction with bilirubin.  相似文献   

11.
A dynamic model for bilirubin binding to human serum albumin   总被引:1,自引:0,他引:1  
Site-directed mutagenesis of human serum albumin was used to study the role of various amino acid residues in bilirubin binding. A comparison of thermodynamic, proteolytic, and x-ray crystallographic data from previous studies allowed a small number of amino acid residues in subdomain 2A to be selected as targets for substitution. The following recombinant human serum albumin species were synthesized in the yeast species Pichia pastoris: K195M, K199M, F211V, W214L, R218M, R222M, H242V, R257M, and wild type human serum albumin. The affinity of bilirubin was measured by two independent methods and found to be similar for all human serum albumin species. Examination of the absorption and circular dichroism spectra of bilirubin bound to its high affinity site revealed dramatic differences between the conformations of bilirubin bound to the above human serum albumin species. The absorption and circular dichroism spectra of bilirubin bound to the above human serum albumin species in aqueous solutions saturated with chloroform were also examined. The effect of certain amino acid substitutions on the conformation of bound bilirubin was altered by the addition of chloroform. In total, the present study suggests a dynamic, unusually flexible high affinity binding site for bilirubin on human serum albumin.  相似文献   

12.
A label for the bilirubin binding sites of human serum albumin was synthesized by reacting 2 mol of Woodward's reagent K (N-ethyl-5-phenylisoxazolium-3'-sulfonate) with 1 mol of bilirubin. This yielded a water-soluble derivative in which both carboxyl groups of bilirubin were converted to reactive enol esters. Covalent labeling was achieved by reacting the label with human serum albumin under nitrogen at pH 9.4 and 20 degrees. Under the same conditions, no covalent binding to the monomers of several proteins could be demonstrated. The number of binding sites for bilirubin and the label were found to be the same, and competition experiments with bilirubin showed inhibition of covalent labeling. The absorption, fluorescence and CD spectra of the label in a complex with human serum albumin were similar to those of the bilirubin human serum albumin complex. However, following covalent attachment to the spectral properties were changed, indicating loss of conformational freedom of the chromophore. Labeling ratios were selected to result in the incorporation of less than 1 mol of label/mol of human serum albumin. Under these conditions, labeling is thought to occur primarily at the high affinity binding site.  相似文献   

13.
14.
Binding of bilirubin (BR) to pigeon serum albumin (PgSA) was studied by absorption, fluorescence and CD spectroscopy and results were compared with those obtained with human serum albumin (HSA). PgSA was found to be structurally similar to HSA as judged by near- and far-UV CD spectra. However, PgSA lacks tryptophan. Binding of BR to PgSA showed relatively weaker interaction compared to HSA in terms of binding affinity, induced red shift in the absorption spectrum of BR and CD spectral characteristics of BR-albumin complexes. Photoirradiation results of BR-albumin complexes also showed PgSA-bound BR more labile compared to HSA-bound BR.  相似文献   

15.
Circular dichroism (CD) methods were employed to study the conformation of Z protein and characterize its complexes with bilirubin and other organic anions. Z protein-bilirubin complexes exhibited a spectrum with overlapping ellipticity bands of opposite sign in the bilirubin absorption region. These results were compared with those obtained with ligandin, the other major organic anion binding protein of liver. Secondary structural differences between the two proteins were easily demonstrated since ligandin is predominantly an alpha-helical protein and Z features mainly beta-structure. Furthermore, the optical activity pattern generated by bilirubin binding to Z was virtually a mirror image of that of the ligandin bilirubin system. CD experiments were designed to study the direct transfer of bilirubin between Z protein and ligandin, and it was shown that both proteins have almost equal affinities for bilirubin. The bilirubin on Z was readily displaced by oleic acid and displaced to a lesser extent by sulfobromophthalein,  相似文献   

16.
17.
Binding ability of testosterone (TEST) on conformationally altered human serum albumin (HSA) in the presence of several concentrations of NaSCN, urea and KCl at various pH was examined qualitatively on the basis of the rotational strength at 303, 273 and 208 nm by means of circular dichroism (CD). The values of the binding index expressed as a ratio of [theta]303/[theta]273 at each rotational strength in the presence of various concentrations of salt at pH 7.4 were inversely proportional, parallel, and independent of the alpha-helix content based on the peptide backbone alteration of HSA by urea, KCl and NaSCN, respectively. The values in the presence of a constant concentration of 1.0 M urea or KCl at various pH were dependent on the salt, showing a significant effect of these salts on the binding sites of the amino acid chain rather than the peptide backbone of the protein. It was generally observed that the decrease in alpha-helix content caused by pH changes tends to decrease the binding ability of TEST to HSA. The decreased binding index value observed in 40 mM NaSCN causing a low alpha-helix content, suggests that the secondary conformational changes caused by the salt might not be related to the binding ability, in contrast to the results of urea or KCl at different pH. It was clearly demonstrated that the binding ability of TEST to HSA is closely associated with skeletal conformational alterations as well as changes in the binding sites of the amino acid side chains of the protein.  相似文献   

18.
As a model study to investigate the binding mechanism between thyroid hormones and carrier protein, the interaction of diiodo-L-tyrosine (DIT) and triiodophenol (I3phi) with bovine serum albumin (BSA) was investigated by circular dichroism (CD) and fluorescence methods. In both the DIT-BSA system and the I3phi-BSA system, induced Cotton effect was observed in the wavelength region near 320 nm. This induced Cotton effect was measured at various molar ratios of ligands to BSA (L/P). The value of the ellipticity at 319 nm, [theta]319, in the I3phi-BSA system was remarkably large compared with that of the DIT-BSA system, and [theta]319 at an L/P ratio of one was -1.96 X 10(4) (degree cm2 decimole-1) for the I3phi-BSA system and -0.1 X 10(4) for the DIT-BSA system. The binding constants for the combination of BSA with a single molecule of ligand, calculated by measuring the quenching of the fluorescence of the protein, were 1.33 X 10(5) M(-1) at 15 degrees for the DIT-BSA system and 1.6 X 10(9) M(-1) at 28 degrees for the I3theta-BSA system. These results suggest that the binding of I3theta to BSA is stronger than that of DIT and a cleft may exist more congruent with the molecular dimensions of I3theta than with those of DIT.  相似文献   

19.
A one-step procedure has been developed for the preparation of [3H]bilirubin IX-alpha in good yield from unlabelled bilirubin. Irradiation of an aqueous solution of [3H]bilirubin IX-alpha in the presence of human serum albumin results in the covalent attachment of the bilirubin to the protein. Preliminary degradation studies have been carried out to locate the site of attachment of the bilirubin to the albumin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号