首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The nucleotide sequence of a cDNA encoding the proenzyme of hamster S-adenosylmethionine decarboxylase including 169 nucleotides of the 5' untranslated region has been determined. The deduced amino acid sequence shows a remarkable similarity to the human proenzyme with only seven differences out of 334 amino acids. The nucleotide sequence of the 5' untranslated region showed 93% homology with the corresponding rat and human sequences suggesting that this region may play an important role in the regulation of S-adenosylmethionine decarboxylase expression.  相似文献   

2.
We previously reported the isolation of a cDNA encoding the liver-specific isozyme of rat S-adenosylmethionine synthetase from a lambda gt11 rat liver cDNA library. Using this cDNA as a probe, we have isolated and sequenced cDNA clones for the rat kidney S-adenosylmethionine synthetase (extrahepatic isoenzyme) from a lambda gt11 rat kidney cDNA library. The complete coding sequence of this enzyme mRNA was obtained from two overlapping cDNA clones. The amino acid sequence deduced from the cDNAs indicates that this enzyme contains 395 amino acids and has a molecular mass of 43,715 Da. The predicted amino acid sequence of this protein shares 85% similarity with that of rat liver S-adenosylmethionine synthetase. This result suggests that kidney and liver isoenzymes may have originated from a common ancestral gene. In addition, comparison of known S-adenosylmethionine synthetase sequences among different species also shows that these proteins have a high degree of similarity. The distribution of kidney- and liver-type S-adenosylmethionine synthetase mRNAs in kidney, liver, brain, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.4-kilobase (kb) mRNA species hybridizable with a probe for kidney S-adenosylmethionine synthetase was found in all tissues examined except for liver, while a 3.4-kb mRNA species hybridizable with a probe for liver S-adenosylmethionine synthetase was only present in the liver. The 3.4-kb kidney-type isozyme mRNA showed the same molecular size as the liver-type isozyme mRNA. Thus, kidney- and liver-type S-adenosylmethionine synthetase isozyme mRNAs were expressed in various tissues with different tissue specificities.  相似文献   

3.
Cloned cDNAs for human liver serine-pyruvate aminotransferase (Ser-PyrAT) were obtained by screening of a human liver cDNA library with a fragment of cDNA for rat mitochondrial Ser-PyrAT as a probe. Two clones were isolated from 50,000 transformants. Both clones contained approximately 1.5 kb cDNA inserts and were shown to almost completely overlap each other on restriction enzyme mapping and DNA sequencing. The nucleotide sequence of the mRNA coding for human liver Ser-PyrAT was determined from those of the cDNA clones. The mRNA comprises at least 1487 nucleotides, and encodes a polypeptide consisting of 392 amino acid residues with a molecular mass of 43,039 Da. The amino acid composition determined on acid hydrolysis of the purified enzyme showed good agreement with that deduced from the nucleotide sequence of the cDNA. In vitro translation of the mRNA derived from one of the isolated clones, pHspt12, as well as that of mRNA extracted from human liver, yielded a product of 43 kDa which reacted with rabbit anti-(rat mitochondrial Ser-PyrAT) serum. Comparison of the deduced amino acid sequences of human Ser-PyrAT and the mature form of rat mitochondrial Ser-PyrAT revealed 79.3% identity. Although human Ser-PyrAT appears to be synthesized as the mature size, the 5'-noncoding region of human Ser-PyrAT mRNA contains a nucleotide sequence which would encode, if translated, an amino acid sequence similar to that of the N-terminal extension peptide of the precursor for rat mitochondrial Ser-PyrAT.  相似文献   

4.
We have cloned and sequenced the Saccharomyces cerevisiae gene for S-adenosylmethionine decarboxylase. This enzyme contains covalently bound pyruvate which is essential for enzymatic activity. We have shown that this enzyme is synthesized as a Mr 46,000 proenzyme which is then cleaved post-translationally to form two polypeptide chains: a beta subunit (Mr 10,000) from the amino-terminal portion and an alpha subunit (Mr 36,000) from the carboxyl-terminal portion. The protein was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme contains both the alpha and beta subunits. About half of the alpha subunits have pyruvate blocking the amino-terminal end; the remaining alpha subunits have alanine in this position. From a comparison of the amino acid sequence deduced from the nucleotide sequence with the amino acid sequence of the amino-terminal portion of each subunit (determined by Edman degradation), we have identified the cleavage site of the proenzyme as the peptide bond between glutamic acid 87 and serine 88. The pyruvate moiety, which is essential for activity, is generated from serine 88 during the cleavage. The amino acid sequence of the yeast enzyme has essentially no homology with S-adenosylmethionine decarboxylase of E. coli (Tabor, C. W., and Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040) and only a moderate degree of homology with the human and rat enzymes (Pajunen, A., Crozat, A., J?nne, O. A., Ihalainen, R., Laitinen, P. H., Stanley, B., Madhubala, R., and Pegg, A. E. (1988) J. Biol. Chem. 263, 17040-17049); all of these enzymes are pyruvoyl-containing proteins. Despite this limited overall homology the cleavage site of the yeast proenzyme is identical to the cleavage sites in the human and rat proenzymes, and seven of the eight amino acids adjacent to the cleavage site are identical in the three eukaryote enzymes.  相似文献   

5.
Isolation of a cDNA encoding the rat liver S-adenosylmethionine synthetase   总被引:4,自引:0,他引:4  
We have isolated cDNA clones encoding the rat liver S-adenosylmethionine synthetase by means of immunological screening from a phage lambda gt 11 expression library containing cDNA synthesized from adult rat liver poly(A)-RNA. The amino acid sequence deduced from the cDNA indicates that the rat liver enzyme for this protein contains 397 amino acid residues and has a molecular mass of 43697 Da. The deduced amino acid sequence of rat liver S-adenosylmethionine synthetase was 68% similar to those of yeast S-adenosylmethionine synthetases encoded by two unlinked genes SAM1 and SAM2. The rat liver S-adenosylmethionine synthetase also shows 52% similarity with the deduced amino acid sequence of the MetK gene encoding the S-adenosylmethionine synthetase in Escherichia coli.  相似文献   

6.
Malonyl-CoA decarboxylase was purified from goose uropygial gland, reduced, carboxymethylated, and digested with trypsin. Several peptides were purified by high performance liquid chromatography and their amino acid sequences determined. Oligonucleotide probes were prepared based on their amino acid sequences. Size-selected RNA from the goose uropygial gland was used to construct cDNA libraries in lambda gt11 and pUC9 vectors. Immunological screening of the lambda gt11 cDNA library yielded one clone, lambda DC1, which contained a 2.2-kilobase pair insert; hybridization with the synthetic oligonucleotide probes confirmed its identity as malonyl decarboxylase. Screening of the pUC9 cDNA library with the insert of lambda DC1 as a probe detected one clone, pDC2, with an insert of 2.9 kilobase pairs. The nucleotide sequences of the two cDNAs revealed an open reading frame encoding a polypeptide of 462 amino acids. The deduced amino acid sequence was confirmed as malonyl-CoA decarboxylase by matching it to the amino acid sequences of three tryptic peptides derived from mature enzyme. Northern blot analysis of mRNA from goose brain, kidney, liver, lung, and gland revealed malonyl-decarboxylase mRNA of 3000 nucleotides. Since clone pDC2 contains a 2928-nucleotide insert, it represents nearly the full length of mRNA. Brain, kidney, lung, and liver contained less than 1% of the malonyl-CoA decarboxylase mRNA in the gland. Southern blot analysis of genomic DNA showed a single band in both liver and gland, suggesting that malonyl-CoA decarboxylase is a single copy gene.  相似文献   

7.
8.
Mammalian S-adenosylmethionine decarboxylase was expressed at a high level in an Escherichia coli mutant deficient in this enzyme. The proenzyme form of this enzyme was cleaved and processed to the mature decarboxylase which contains two pairs of nonidentical subunits, the larger of which contains a pyruvate prosthetic group. In order to determine the site of formation of the pyruvate, two approaches were used. First, the mammalian S-adenosylmethionine decarboxylase produced in E. coli was purified to homogeneity and the pyruvate converted to alanine by a reductive amination. The large subunit was then isolated by reversed phase high pressure liquid chromatography and the amino-terminal sequence determined and compared with the sequence of the proenzyme derived from its cDNA. These results indicated that the bond between glutamic acid 67 and serine 68 was the site of cleavage. Second, each of the serine residues in portion of the proenzyme likely to contain the cleavage site were altered by site-directed mutagenesis and the RNA produced from plasmids containing these mutations was translated in a reticulocyte lysate. The translation products were tested for processing and for S-adenosylmethionine decarboxylase activity. Altering the serine residues at positions 50, 66, and 69 to alanines had little effect but changing serine at position 68 to alanine completely prevented both processing and activity. These results indicate that the serine residue at position 68 of the proenzyme which is in the underlined position in the sequence -Leu-Ser-Glu-Ser-Ser-Met- is the residue which is converted to the pyruvate prosthetic group in human S-adenosylmethionine decarboxylase.  相似文献   

9.
We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).  相似文献   

10.
We have isolated cDNA clones from rat brain and human liver encoding a putative isoform of the Na,K-ATPase beta subunit. The rat brain cDNA contains an open reading frame of 870 nucleotides coding for a protein of 290 amino acids with a calculated molecular weight of 33,412. The corresponding amino acid sequence shows 98% identity with its human liver counterpart. The proteins encoded by the rat and human cDNAs exhibit a high degree of primary sequence and secondary structure similarity with the rat Na,K-ATPase beta subunit. We have therefore termed the polypeptides these cDNAs encode a beta 2 subunit with the previously characterized rat cDNA encoding a beta 1 subunit. Analysis of rat tissue RNA reveals that the beta 2 subunit gene encodes a 3.4-kilobase mRNA which is expressed in a tissue specific fashion distinct from that of rat beta 1 subunit mRNA. Cell lines derived from the rat central nervous system shown to lack beta 1 subunit mRNA sequences were found to express beta 2 subunit mRNA. These results suggest that different members of the Na,K-ATPase beta subunit family may have specialized functions.  相似文献   

11.
12.
We have cloned and sequenced a full-length cDNA for human liver gamma-glutamylcysteine synthetase (GCS), the rate-limiting enzyme in glutathione biosynthesis. The cDNA consists of 2634 bp containing an open reading frame encoding a protein of 367 amino acids and having a calculated M(r) = 72,773. The nucleotide sequence of the cDNA for human liver GCS shares an 84% overall similarity with the composite rat GCS sequence deduced from three overlapping partial cDNAs (Yan and Meister, JBC 265: 1588-1593, 1990). The deduced amino acid sequences are 94% similar. Comparison of Northern blots of total RNA isolated from rat kidney or liver with that from human kidney revealed the GCS mRNA to be larger in the human tissue (approximately 4.0 kb vs. approximately 3.7 kb). (The sequence for the human liver GCS cDNA has been assigned accession number M90656 in GenBank/EMBL databases.  相似文献   

13.
A cDNA clone coding for a membrane proteoglycan core protein was isolated from a neonatal rat Schwann cell cDNA library by screening with an oligonucleotide based on a conserved sequence in cDNAs coding for previously described proteoglycan core proteins. Primer extension and polymerase chain reaction amplification were used to obtain additional 5' protein coding sequences. The deduced amino acid sequence predicted a 353 amino acid polypeptide with a single membrane spanning segment and a 34 amino acid hydrophilic COOH-terminal cytoplasmic domain. The putative extracellular domain contains three potential glycosaminoglycan attachment sites, as well as a domain rich in Thr and Pro residues. Analysis of the cDNA and deduced amino acid sequences revealed a high degree of identity with the transmembrane and cytoplasmic domains of previously described proteoglycans but a unique extracellular domain sequence. On Northern blots the cDNA hybridized to a single 5.6-kb mRNA that was present in Schwann cells, neonatal rat brain, rat heart, and rat smooth muscle cells. A 16-kD protein fragment encoded by the cDNA was expressed in bacteria and used to immunize rabbits. The resulting antibodies reacted on immunoblots with the core protein of a detergent extracted heparan sulfate proteoglycan. The core protein had an apparent mass of 120 kD. When the anti-core protein antibodies were used to stain tissue sections immunoreactivity was present in peripheral nerve, newborn rat brain, heart, aorta, and other neonatal tissues. A ribonuclease protection assay was used to quantitate levels of the core protein mRNA. High levels were found in neonatal rat brain, heart, and Schwann cells. The mRNA was barely detectable in neonatal or adult liver, or adult brain.  相似文献   

14.
15.
16.
Complementary DNA encoding rat protein phosphatase 2C alpha was obtained from a liver library and used to isolate the homologous cDNAs from rabbit liver and human teratocarcinoma libraries. The amino acid sequences of the three enzymes deduced from the cDNA (382 amino acids) were extremely similar (greater than 99% identity), the maximum number of differences (between rat and human) being four. Amino acid sequences of peptides corresponding to 238 residues (61%) of the protein phosphatase 2C beta isoform from rabbit skeletal muscle were determined and showed 12 differences from the recently published sequence of the rat liver enzyme deduced from the cDNA (95% identity).  相似文献   

17.
The amino acid sequences of rat ribosomal proteins L27a and L28 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed from the NH2-terminal amino acid sequences of the proteins. L27a contains 147 amino acids (the NH2-terminal methionine is removed after translation of the mRNA) and has a molecular weight of 16 476. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 18-22 copies of the L27a gene. The mRNA for the protein is about 600 nucleotides in length. L27a is homologous to mouse L27a (there are 3 amino acid changes) and to yeast L29. Rat ribosomal protein L28 has 136 amino acids (its NH2-terminal methionine is also processed after translation) and has a molecular weight of 15 707. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 9 or 10 copies of the L28 gene. The mRNA for the protein is about 640 nucleotides in length. L28 contains a possible internal duplication of 9 residues. Corrections are recorded in the sequences reported before for rat ribosomal proteins S4 and S12.  相似文献   

18.
19.
We have cloned a DNA that is complementary to the messenger RNA that encodes human pancreatic elastase 2 from a human pancreatic cDNA library using a cloned cDNA for rat pancreatic elastase 2 messenger RNA. This complementary DNA contains the entire protein coding region of 807 nucleotides which encodes preproelastase of 269 amino acids, and 4 and 82 nucleotides of the 5'- and 3'-untranslated sequences, respectively. When this deduced amino acid sequence was compared with known amino acid sequences it showed 82% homology with rat pancreatic elastase 2. This deduced sequence also contains a 16-amino-acid peptide identical with the N-terminal sequence determined for native human pancreatic proelastase 2. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 241 amino acids including 16 and 12 amino acids for a signal peptide and an activation peptide, respectively. Moreover, the predicted key amino acid residues involved in determining the substrate specificity of mammalian pancreatic elastase 2 are retained in the human enzyme. Cloned human pancreatic elastase 2 cDNA was expressed in E. coli as a mature and pro-form protein. Both resulting proteins showed immunoreactivity toward anti-elastase serum and enzymatic activity. We have also cloned and sequenced a porcine pancreatic elastase 2 cDNA.  相似文献   

20.
cDNA clones for human phosphoribosyl pyrophosphate synthetase subunit I (PRS I) were isolated from a glioblastoma cell line MGC 1 cDNA library. The longest clone contained 2,075 base pairs (bp) almost covering the 2.3-kb mRNA and the base sequence of the coding region (954 bp) had a 92.0% sequence homology with that of rat PRS I cDNA. The deduced amino acid sequences were identical between human and rat PRS I. This perfect conservation has heretofore not been reported for other enzymes involved in nucleotide metabolism and glycolysis. A comparison with other isoforms of this enzyme, PRS II and PRS III, showed that the human PRS I was 79.9 and 92.2% homologous in the coding sequence and 95.3 and 94.0% in the deduced amino acid sequence to human PRS II and PRS III, respectively. The high value of the synonymous difference between PRS I and PRS II cDNAs places their time of divergence long before that of the radiation of mammals. Based on the evolutionary rate of amino acid substitution, the PRS I and II genes probably diverged about 760 million years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号