首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The behavior in Saccharomyces cerevisiae of plasmid pYTE1, which contains yeast tyrosine-inserting ochre suppressor SUP4.o, a 4-kilobase EcoRI fragment of yeast 2muDNA, and the bacterial plasmid pBR322, has been studied. Selection of yeast transformants was by suppression of multiple ochre mutations. About 10(3) to 10(4) transformants per microgram of pYTE1 dfeoxyribonucleic acid were obtained. The majority of transformants contained both an integrated copy of the SUP4.o gene plus pBR322 deoxyribonucleic acid sequences and autonomously replicating forms of the plasmid. The integrated copy was extremely stable mitotically and meiotically, but the associated nonintegrated copies were lost at meiosis. The chromosomally integrated pBR322 sequences were linked to the SUP4.o gene. The integration site was at the SUP4+ locus. In transformants with only nonintegrated copies of pYTE1, the expression of suppression was reduced, and the plasmid was unstable in mitosis. Plasmid deoxyribonucleic acid preparations from both types of transformant could be used to retransform yeast cells. Plasmid pYTE1 has restriction enzyme sites useful for the high frequency and stable transformation of other genes into yeasts. The potential uses of this plasmid for transformation of other organisms is discussed.  相似文献   

2.
For the first time the possibility of the genetic transformation of L. pneumophila and L. bozemanii strains with the use of purified DNA of plasmids pUC19, pUC4K, pSC101 and RSF1010-pBR322 was shown. The frequency of transformation varied from 5.2 x 10(-6) to 5.8 x 10(-7), depending on the strain used in the experiment and plasmid DNA. In some of the transformants obtained in this investigation plasmid DNA whose molecular weight was similar to that of the plasmid DNA used for transformation was detected. The relatively stable preservation of plasmids pSC101 and RSF1010 in Legionella strains and the loss of plasmids pUC19, pUC4K and pBR322 in 80% of transformants during storage were shown.  相似文献   

3.
Summary Hybrid plasmids containing the bacterial resistance-transfer factor pBR322 and the yeast leu2 +gene have been used to isolate DNA fragments of Physarum that are capable of initiating DNA replication in a yeast host. Five of forty hybrid plasmids containing Physarum sequences transform leu2 -yeast to Leu+ at high frequency. The resulting Leu+ transformants are characterized by phenotypic instability. Supercoiled plasmid molecules containing pBR322 sequences can be detected in the transformed yeast, indicating that the transforming DNA replicates autonomously. Plasmid DNA isolated from Leu+ yeast can transform leuB bacteria. The hybrid plasmid recovered from the Leu+ bacterial transformants is identical to the original plasmid, indicating structural integrity is maintained during passage through the yeast host. These hybrid plasmids containing Physarum sequences have the same characteristics as those containing autonomously replicating yeast chromosomal sequences. As the temporal sequence of DNA replication is particularly accessible to study in Physarum plasmodia, the functional significance of these segments should be amenable to study.  相似文献   

4.
The chimeric plasmid pBN183 was first constructed in Escherichia coli by ligating the BamHI-digested E. coli plasmid pBR322 and a Bg/II-linearized streptococcal plasmid, pNZ18. The pBN183 transformed E. coli to ApR at a frequency of (8.2 +/- 1.2) x 10(5) colony forming units (CFU)/microgram DNA. Electrotransformation of Streptococcus thermophilus with pBN183 yielded CmR, ApS clones at a frequency of (2.6 +/- 0.3) x 10(1) CFU/microgram DNA. Plasmid screening with pBN183-transformed S. thermophilus clones revealed that ca. 70% of these transformants contained deleted plasmids. Plasmid pBN183A, a pBN183 deletion mutant lacking one copy of a tandemly arranged, highly homologous DNA sequence, was isolated for further study. It transformed E. coli to ApR and S. thermophilus to CmR with frequencies of (4.8 +/- 0.1) x 10(5) and (8.1 +/- 0.2) x 10(2) CFU/microgram DNA, respectively. Screening of S. thermophilus transformants did not show the presence of deleted plasmids. Based on the structure of pBN183A, a new shuttle plasmid, pDBN183, was constructed from pBN183 by removal of the small (1.2 kb) Sa/I fragment. Transformation frequencies of pDBN183 were (5.0 +/- 1.3) x 10(5) and (4.6 +/- 0.2) x 10(2) CFU/microgram DNA with E. coli and S. thermophilus, respectively. In contrast to the parent pBN183, only 17% of the pDBN183-transformed S. thermophilus contained deleted plasmids. Plasmid copy numbers of the three vectors in E. coli were estimated at 17-18 per chromosome. The three plasmids conferred ApR and CmR to E. coli, but only CmR to S. thermophilus. The insertion of a Streptomyces cholesterol oxidase gene (choA) into pDBN183 did not affect the plasmid's stability in Lactobacillus casei, but resulted in deletion of the recombinant DNA in S. thermophilus.  相似文献   

5.
L Boe  K Gerdes    S Molin 《Journal of bacteriology》1987,169(10):4646-4650
Plasmid stabilization mediated by the parA+ and parB+ genes of the R1 plasmid and the ccd+ and sop+ genes of the F plasmid was tested on a mini-R1 plasmid and a pBR322 plasmid derivative. The mini-R1 plasmid is thought to be unstably inherited owing to a low copy number and to random segregation of the plasmid at cell division, whereas cells harboring the pBR322 derivative used in this work are lost through competition with plasmid-free cells, mainly as a result of the shorter generation time of cells without plasmids. The pBR322 derivative carries a fusion between part of the atp operon of Escherichia coli and the bacteriophage lambda pR promoter, and the cI857 repressor gene. The insertion of sop+ from the F plasmid or parB+ from the R1 plasmid reduced the loss frequency by a factor of 10(3) for the pBR322 derivative and by at least a factor of 10(2) for the mini-R1 plasmid. Insertion of parA+ from the R1 plasmid decreased the loss frequency of the pBR322 derivative by a factor of 10 and that of the mini-R1 plasmid by a factor of 50. When ccd+ from the F plasmid was inserted, the loss frequency of the pBR322 derivative was decreased by a factor of 10, but it had only a marginal effect on the stability of the mini-R1 plasmid. In no case was any significant structural instability of the plasmids observed.  相似文献   

6.
Bacillus licheniformis was transformed with plasmids pUB110 and pJJ10 (pUB110 - pBR322) isolated from Bac. subtilis and Escherichia coli, respectively. It was revealed that the structure and genetic properties of the plasmids did not change during the transformation process. pJJ101 (pJJ10-rib) DNA isolated from E. coli and containing helper pJJ10 plasmid was used, as a recipient. It was shown that pJJ101 rib markers were "rescued" by the resident plasmid during transformation of Bac. licheniformis (pJJ10). Plasmid pLP1 containing ribB, ribD, Kmr genes and the pUB110 replicator, was isolated from the transformants. pLP1 plasmid might be considered as a detected derivative of the parental pJJ101 plasmid. The deletion is presented by 3,9 MD segment that contains the pBR322 replicator. pLP1 DNA is capable of transforming plasmidless strains of Bac. licheniformis and Bac. subtilis.  相似文献   

7.
We used a modified version of the method of Hanahan (D. Hanahan, J. Mol. Biol. 166:557-580, 1983) to transform Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica with the plasmids pBR322, pBR325, and pAT153. The transformation frequency ranged from 1 X 10(2) to 4 X 10(4) colonies per micrograms of plasmid DNA. The nature of these transformants was confirmed by plasmid analysis. ColE1-based plasmids make potentially useful cloning vectors for the study of genes involved in the pathogenesis of this species.  相似文献   

8.
Stability of pBR322 and pBR327 plasmids was studied. Plasmid-containing Escherichia coli strains were grown in liquid growth medium without selection pressure. Plasmid pBR327 was shown to be more stable in E. coli CSH54 cells than pBR322. Essential heterogenity of individual plasmid-containing clones was recognized by the maintenance stability of plasmid DNA. The indicated clones with high stability failed to be cured from pBR327 plasmid by means of acridine orange. High stability of plasmid maintenance and the failure to cure cells containing this plasmid are suggested to correlate with and to be essentially determined by the cell functions.  相似文献   

9.
Insertion of a genetic marker into the ribosomal DNA of yeast   总被引:38,自引:0,他引:38  
Jack W. Szostak  Ray Wu 《Plasmid》1979,2(4):536-554
Plasmid pBR322 carrying the yeast LEU2+ gene transforms leu yeast into LEU+ at a low frequency by integration at homologous chromosomal DNA. When one-half of the yeast rDNA repeat unit (BglII-A) is inserted into the plasmid, the frequency of yeast transformation increases 100- to 200-fold, in proportion to the increased amount of homologous repetitive rDNA available for integration. When the other half of the repeat unit (BglII-B) is inserted into the plasmid, the transformation frequency increases by a factor of 104, and the transformants are very unstable. It is likely that this fragment of rDNA contains a yeast origin of replication. This plasmid is a useful vector for cloning fragments of yeast DNA in yeast. We have used the LEU2+ gene, inserted into the rDNA locus, as a genetic marker for mapping the rDNA, in a procedure analogous to the use of antibiotic resistance transposons in the mapping of bacterial genes. Yeast ribosomal DNA is on chromosome XII between asp5 and ura4 as determined by mitotic linkage. Genetic analysis of markers inserted at the rDNA locus should be a useful tool for studying the conservation of sequence homology and the conservation of copy number of repeated genes.  相似文献   

10.
Plasmid YEp(ADE1)1a, containing a 2.7-kb Sau3A fragment of Saccharomyces cerevisiae DNA inserted at the BamHI site of the yeast shuttle vector pBTI-1 (Morris et al., 1981), results in high frequency, unstable transformation of ade1 yeast strains. A second plasmid, YRp(ADE1)2, containing adjacent 0.5-kb and 3.0-kb BamHI fragments in pBR322 gave three types of yeast transformants: (1) transformants carrying extrachromosomal copies of the plasmid which indicate the presence of a functional ars sequence, (2) transformants indistinguishable from ade1 strains by hybridization analyis, and (3) a transformant carrying a multimeric form of YRp(ADE1)2. Cells transformed with either of the plasmids are free of the red pigment characteristic of ade1 mutants and indicate potential for direct colour-based selection of yeast transformants using ADE1 plasmids.  相似文献   

11.
Transposon Tn9 carrying camr gene which controls resistance to chloramphenicol has been introduced in vivo (in cells of Escherichia coli) into two chimeric shuttle plasmids pYF91 and YEp13. These plasmids consist of the different parts of the E. coli plasmid pBR322, the yeast 2mkm DNA plasmid and the yeast LEU2 structural gene. The plasmidis able to autonomously replicate in both yeast and bacterial cells. A recipient yeast strain carrying cams and leu2 markers was constructed to study the functional expression of the prokaryotic camr gene in eukaryotic yeast cells. The chimeric plasmids pYF91::Tn9 and YEp13::Tn9 were introduced into the yeast and bacterial recipient strains by transformation. The camr LEU2 yeast transformants were isolated. They were genetically unstable when grown on non-selective medium and they simultaneously lost camr and LEU2 markers with a frequency of 10 to 30%. The E. coli transformants were genetically stable under nonselective conditions and they maintain all plasmid markers. The chimeric plasmid pYF91::Tn9 was isolated from the yeast transformants and reintroduced into the cams leuB bacterial strain by transformation. The camr LEUB transformants were obtained. All these data confirm the possibility of the expression of the prokaryotic camr gene in yeast cells and present evidence for introduction of transposon Tn9 into chimeric plasmids.  相似文献   

12.
A 4.84-kilobase-pair plasmid was isolated from Proteus vulgaris (ATCC 13315) and cloned into the plasmid vector pBR322. Plasmid pBR322 contains substrate sites for the restriction endonucleases PvuI and PvuII. The recombinant plasmids were resistant to in vitro cleavage by PvuII but not PvuI endonuclease and were found to cause production of PvuII endonuclease or methylase activity or both in Escherichia coli HB101. The approximate endonuclease and methylase gene boundaries were determined through subcloning, Bal 31 resection, insertional inactivation, DNA-dependent translation, and partial DNA sequencing. The two genes are adjacent and appear to be divergently transcribed. Most E. coli strains tested were poorly transformed by the recombinant plasmids, and this was shown by subcloning and insertional inactivation to be due to the PvuII methylase gene. At a low frequency, stable methylase-producing transformants of a methylase-sensitive strain were obtained, and efficiently transformed cell mutants were isolated from them.  相似文献   

13.
Plasmid pBR313 carrying a 1.4 kb EcoRI fragment from the yeast TRP1 region (designated pLC544) is capable of transforming yeast trp1 mutants to Trp+ at high frequency (10(3)--10(4) transformants/micrograms DNA). Transformation can be achieved either by using purified plasmid DNA or by fusion of yeast spheroplasts with partially lysed Escherichia coli [pLC544] protoplast preparations. The Trp+ yeast transformants are highly unstable, segregating Trp- cells at frequencies of 0.18 per cell per generation (haploids) and 0.056 per cell per generation (diploids) in media containing tryptophan. Plasmid pLC544 replicates autonomously in the nucleus of yeast cells and segregation of Trp-cells is associated with the complete loss of plasmid sequences. In genetic crosses, pLC544 is randomly assorted during meiosis and is carried unchanged through the mating process into haploid recombinants.  相似文献   

14.
G Skogman  J Nilsson  P Gustafsson 《Gene》1983,23(2):105-115
The stability of different derivatives of plasmid vectors pBR322 and pACYC184 carrying the tryptophan operon of Escherichia coli was monitored in various media. It was found that in the absence of any special selective pressure, all plasmids were lost from the culture. The stability varied depending both on the orientation of the inserted tryptophan fragment and the growth media used. The pBR322::trp+ plasmids were lost at an average frequency of 0.3 to 0.8% per cell generation, while the pACYC184::trp+ plasmid was lost at a rate higher than 5%. In all cases the whole plasmid was lost at a rate higher than 5%. In all cases the whole plasmid was lost, indicating a high stability of the plasmid::cloned DNA as such. To increase the stability of the cloning vectors, the partition locus of plasmid pSC101 was added to both the pBR322::trp+ and pACYC184::trp+ plasmids. The addition of this gene increased the replicon stability at least 3- to 10-fold, with the pBR322::trp+-par+ plasmids being the most stable. Also in this case, the stability was dependent on the plasmid type and on the growth medium. In no case was there a discoordinate loss of the antibiotic-resistance and tryptophan genes from the vectors.  相似文献   

15.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

16.
Stability of pBR322-derived plasmids   总被引:3,自引:0,他引:3  
C S Chiang  H Bremer 《Plasmid》1988,20(3):207-220
The stability of pBR322-derived plasmids was studied during growth of their Escherichia coli host in the absence of antibiotics. Plasmid pBR322, as well as its delta rom and delta bla derivatives, were lost from their host within 60 generations, but a number of delta tet derivatives were quite stable under the same conditions. An evaluation of the data indicated that primary plasmid loss due to random partitioning corresponds to the generation of a plasmid-free cell about every 10(4) divisions (probability P0; = "intrinsic" instability). Secondary loss of plasmid-carrying cells resulted from a growth advantage of the plasmid-free cells when bacteria die, perhaps due to unrepaired lethal damage in the DNA, under conditions of stationary incubation (= "apparent" instability). This cell death also occurred in the absence of plasmids but was accelerated by the presence of extra plasmid DNA in the cell and further accelerated by a functional tet gene. This was the reason for the differential apparent stabilities of delta bla and delta tet plasmids. There was no indication that an accumulation of plasmid multimers contributed to the plasmid instability, as has been suggested in the literature. The value of P0 = 10(-4) is 14 orders of magnitude greater than expected under the assumption of a random (Poisson) distribution of plasmid copy numbers in a population of cells.  相似文献   

17.
Transmission of ColE1/pMB1-derived plasmids, such as pBR322, from Escherichia coli donor strains was shown to be an efficient way to introduce these plasmids into Agrobacterium. This was accomplished by using E. coli carrying the helper plasmids pGJ28 and R64drd11 which provide the ColE1 mob functions and tra functions, respectively. For example, the broad host-range replication plasmid, pGV1150, a co-integrate plasmid between pBR322 and the W-type mini-Sa plasmid, pGV1106, was transmitted from E. coli to A. tumefaciens with a transfer frequency of 4.5 x 10(-3). As pBR322 clones containing pTiC58 fragments were unable to replicate in Agrobacterium, these clones were found in Agrobacterium only if the acceptor carried a Ti plasmid, thus allowing a co-integration of the pBR322 clones with the Ti plasmid by homology recombination. These observations were used to develop an efficient method for site-specific mutagenesis of the Ti plasmids. pTiC58 fragnents, cloned in pBR322, were mutagenized in vitro and transformed into E. coli. The mutant clones were transmitted from an E. coli donor strain containing pGJ28 and R64drd11 to an Agrobacterium containing a target Ti plasmid. Selecting for stable transfer of the mutant clone utilizing its antibiotic resistance marker(s) gave exconjugants that already contained a co-integrate plasmid between the mutant clone and the Ti plasmid. A second recombination can dissociate the co-integrate plasmid into the desired mutant Ti plasmid and a non-replicating plasmid formed by the vector plasmid pBR322 and the target Ti fragment. These second recombinants lose the second plasmid and they are identified by screening for the appropriate marker combination.  相似文献   

18.
Accurate estimates of plasmid copy number in a cell are a prerequisite for predicting plasmid stability and protein production. A refined version of a structured model for the pBR322 plasmid replication mechanism is described. The model is capable of accurately predicting pBR322 plasmid copy number in Escherichia coli B/r for a wide range of growth rates. The refinements include better estimates of promoter strength, the degradation rate of RNA species, binding constant of RNAI-RNAII reaction, and dependency of promoter strength on growth rate. The predictions of the model are verified by recent experimental observations but differ from some previous reports. This model can also be used to predict the binding constant of the RNAI-RNAII reaction of ColE1 type plasmids. At 37 degrees C, the binding constant is estimated to be 77 +/- 11 x 10(-13) mL/molecule-h for pBR322.  相似文献   

19.
F Bolivar 《Gene》1978,4(2):121-136
In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235. These vectors, derived from plasmid pBR322, are relaxed replicating elements. Plasmid pBR324 carries the genes from pBR322 coding for resistance to the antibiotics ampicillin (Apr) and tetracycline (Tcr) and the colicin E1 structural and immunity genes derived from plasmid pMBI. Plasmid pBR325 carries the Apr and Tcr genes from pBR322 and the cloramphenicol resistance gene (Cmr) from phage P1Cm. In these plasmids the unique EcoRI restriction site present in the DNA molecule is located either in the colicin E1 structural gene (pBR324) or in the Cmr gene (pBR325). These vectors were constructed in order to have a single EcoRI site located in the middle of a structural gene which when inactivated would allow, for the easy selection of plasmid recombinant DNA molecules. These plasmids permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, (XmaI), BglII and DpnII restriction generated DNA molecules.  相似文献   

20.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号