共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Harry Schachter 《Seminars in cell & developmental biology》2010,21(6):609-615
UDP-GlcNAc:α3-d-mannoside β1,2-N-acetylglucosaminyltransferase I (GnTI, encoded by Mgat1) first appeared in evolution at about the same time as metazoa suggesting that GnTI-dependent glycans are essential for the development of multicellular organisms. This review describes the effects of mutations in the Mgat1 gene on the development of Caenorhabditis elegans, Drosophila melanogaster and mice. 相似文献
3.
Li F Cao H Zhang Q Li R Chen X Fang Z Xue K Chen da Y Sheng HZ 《Cloning and stem cells》2008,10(3):297-306
Cross-species somatic all number transfer (SCNT) provides a potential solution to overcome the problem of oocyte shortage for therapeutic cloning. To further characterize the system, we constructed cytoplasm hybrid embryos between bovine oocytes and human fibroblasts and examined dynamics of human gene activation during preimplantation stages. Data from this study showed that human embryonic genes, OCT4, SOX2, NANOG, E-CADHERIN, as well as beta-ACTIN, were activated by enucleated bovine oocytes. Activation of human genes was correlated with developmental potential of the embryos. The extent of human gene activation varied drastically and was incomplete in a large proportion of the embryos. Activation of human genes in the human-bovine cytoplasm hybrid embryos occurs in a temporal pattern resembling that of the bovine species. Results from this study suggest that human gene products are required for hybrid embryos to develop to later preimplantation stages. Facilitating human genome activation may improve successful rates in cross-species SCNT. 相似文献
4.
5.
Chen CL Singh N Yull FE Strayhorn D Van Kaer L Kerr LD 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(10):5418-5427
NF-kappaB has been implicated in the development, activation, and function of B and T lymphocytes. We have evaluated the in vivo effects of deletion of IkappaB-alpha, a major inhibitor of NF-kappaB, on lymphocyte development, proliferation, and function. To elucidate the long term role of IkappaB-alpha in lymphocytes, fetal liver cells of 14.5-day-old IkappaB-alpha(-/-) or wild-type embryos were transplanted into irradiated recombinase-activating gene-2-deficient mice. Within 4 wk, the IkappaB-alpha(-/-) fetal liver cells reconstitute mature B and T cell populations in the recipients comparable to those produced by wild-type fetal liver cells. However, the proliferative responses of IkappaB-alpha(-/-) B cells are enhanced, whereas those of IkappaB-alpha(-/-) T cells are reduced. The levels of IgG1, IgG2a, IgA, and IgE produced by IkappaB-alpha(-/-) B cells are elevated relative to those produced by IkappaB-alpha(+/+) or IkappaB-alpha(+/-). Moreover, the specific immune responses to OVA and the generation of germinal centers are impaired in recipients of IkappaB-alpha(-/-) fetal liver cells. These results indicate that IkappaB-alpha plays a vital role in signal transduction pathways regulating lymphocyte proliferation and also in the production of specific Ig isotypes. 相似文献
6.
Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest 总被引:11,自引:0,他引:11
Fujimori F Takahashi K Uchida C Uchida T 《Biochemical and biophysical research communications》1999,265(3):658-663
The peptidyl prolil cis/trans isomerase Ess1/Pin1 is essential for mitosis progression in yeast cells and is hypothesized to perform the same role in mammalian cells. To investigate the function of Pin1 in mammalian cells, we created mice lacking Pin1. These mice underwent normal development. Although the embryonic Pin1-/- fibroblasts grew normally, they proved significantly deficient in their ability to restart proliferation in response to serum stimulation after G(0) arrest. These results suggest that Pin1 is required for cell cycle progression from G(0) arrest as well as mitosis progression in normal mammalian cells. 相似文献
7.
8.
9.
Summary We have used isotopic labelling and both one-and two-dimensional electrophoretic procedures to analyse the protien synthesis patterns in oocytes and early embryos of three phenotypes of the European green frogs. The results demonstrated that protein patterns of Rana ridibunda and R. esculenta are identical, but that they differ from those of R. lessonae. Progeny of the lethal cross R. esculenta × R. esculenta showed a distinct delay in the appearance of stage-specific proteins during early embryogenesis. The heat-shock response of R. ridibunda and R. esculenta oocytes was found to be identical, but different from that of Xenopus laevis. The implications of these findings, with respect to hybridogenesis in R. esculenta complex and variations in the regulations of heat shock genes in different amphibian species, are discussed. 相似文献
10.
Mitogen-activated protein kinase (MAPK) plays a crucial role in meiotic maturation of mouse oocytes. In order to understand the mechanism by which MAPK regulates meiotic maturation, we examined the effects of the MAPK pathway inhibitor U0126 on microtubule organization, gamma-tubulin and nuclear mitotic apparatus protein (NuMA) distribution, and actin filament assembly in mouse oocytes maturing in vitro. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK was inactive in fully grown germinal vesicle (GV) oocytes. Phosphorylated MAPK was first detected 3 hr after the initiation of maturation cultures, was fully active at 6 hr, and remained active until metaphase II. Treatment of GV stage oocytes with 20 microM U0126 completely blocked MAPK phosphorylation, but did not affect GV breakdown (GVBD). However, the oocytes did not progress to the Metaphase I stage, which would normally occur after 9 hr in the maturation cultures. The inhibition of MAPK resulted in abnormal spindles and abnormal distributions of gamma-tubulin and NuMA, but did not affect actin filament assembly. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, the meiotic abnormalities caused by U0126, a specific inhibitor of MAPK signaling, indicate that MAPK plays an important regulatory role in microtubule and centrosome assembly, but not actin filament assembly. 相似文献
11.
F Carriero N Campioni B Cardinali P Pierandrei-Amaldi 《Molecular reproduction and development》1991,29(4):313-322
A large part of the coding portion of the Xenopus nerve growth factor (NGF) gene has been identified and cloned by the use of a chicken cDNA probe and its sequence has been determined. Comparison of the derived amino acid sequence of mature Xenopus NGF with that of other species showed a high conservation, whereas comparison of the prepropeptide showed large divergent regions alternated with short conserved regions. Expression of the NGF gene was examined during development of oocytes and embryos. Surprisingly, NGF mRNA was found in the oocyte; it is present in small previtellogenic as well as in fully grown oocytes. NGF mRNA, passed to the embryo at fertilization, is degraded before the gastrula stage and starts accumulating again around the stage of the neurula. The association of NGF mRNA with polysomes is indicative of NGF synthesis during oogenesis. In fact, by using antibodies against mouse NGF it was possible to reveal NGF molecules present as precursors. These molecules accumulate during oogenesis and are maintained in the embryos up to the blastula stage; a very faint band corresponding to a smaller size peptide is sometimes detected. A maternal role for the NGF can be proposed, although a possible activity of NGF in the oocyte cannot be ruled out. 相似文献
12.
13.
Mice lacking the 68-amino-acid,mammal-specific N-terminal extension of WT1 develop normally and are fertile 下载免费PDF全文
Miles CG Slight J Spraggon L O'Sullivan M Patek C Hastie ND 《Molecular and cellular biology》2003,23(7):2608-2613
Mutations in the Wilms' tumor 1 gene, WT1, cause pediatric nephroblastoma and the severe genitourinary disorders of Frasier and Denys-Drash syndromes. High levels of WT1 expression are found in the developing kidney, uterus, and testis--consistent with this finding, the WT1 knockout mouse demonstrates that WT1 is essential for normal genitourinary development. The WT1 gene encodes multiple isoforms of a zinc finger-containing protein by a combination of alternative splicing and alternative translation initiation. The use of an upstream, alternative CUG translation initiation codon specific to mammals results in the production of WT1 protein isoforms with a 68-amino-acid N-terminal extension. To determine the function in vivo of mammal-specific WT1 isoforms containing this extension, gene targeting was employed to introduce a subtle mutation into the WT1 gene. Homozygous mutant mice show a specific absence of the CUG-initiated WT1 isoforms yet develop normally to adulthood and are fertile. Detailed histological analysis revealed normal development of the genitourinary system. 相似文献
14.
Magnetotactic bacteria synthesize magnetosomes, which cause them to orient and migrate along magnetic field lines. The analysis of magnetotaxis and magnetosome biomineralization at the molecular level has been hindered by the unavailability of genetic methods, namely the lack of a means to introduce directed gene-specific mutations. Here we report a method for knockout mutagenesis by homologous recombination in Magnetospirillum gryphiswaldense. Multiple flagellin genes, which are unlinked in the genome, were identified in M. gryphiswaldense. The targeted disruption of the flagellin gene flaA was shown to eliminate flagella formation, motility, and magnetotaxis. The techniques described in this paper will make it possible to take full advantage of the forthcoming genome sequences of M. gryphiswaldense and other magnetotactic bacteria. 相似文献
15.
16.
17.
18.
Hernández-Bello R Bermúdez-Cruz RM Fonseca-Liñán R García-Reyna P Le Guerhier F Boireau P Ortega-Pierres G 《International journal for parasitology》2008,38(2):191-202
Caveolins are integral membrane proteins implicated in cholesterol homeostasis and transport, endocytosis mechanisms and regulation of signal transduction in differentiated cells. In this work a caveolin-1 gene from the nematode Trichinella spiralis (Ts-cav-1) was cloned and identified as an adult-specific antigen. For this, a cDNA library of T. spiralis 3-day-old adult worms was screened using a stage-specific cDNA-labelled probe. One positive clone contained a cDNA insert of 1427-bp and a full-length open reading frame (ORF) of 687-bp, which encodes for a 229 amino acid polypeptide with a theoretical molecular weight of 26kDa. BLAST and FASTA searches revealed a 36% and 57% identity with Caenorhabditis elegans caveolin-1, respectively. Confocal laser microscopy analysis using antibodies generated against Ts-CAV-1 protein and cross-sections of adult parasites showed that Ts-CAV-1 gradually accumulates on the surface of Trichinella oocytes and embryos, reaching a maximum at 3days p.i., and decreasing during new-born larvae (NBL) development. RT-PCR assays of parasites from 1 to 4days p.i. showed a similar gene expression profile to that observed for Ts-CAV-1 which suggests a specific developmental regulation. Free cholesterol was mainly distributed in the female germ line and it displayed increasing membrane accumulation, similar to the pattern obtained for Ts-CAV-1 protein, which suggests a temporal membrane association with Ts-CAV-1 that in turn will perform the functions mentioned above. Our results strongly indicate that Ts-cav-1 from T. spiralis plays a role in oocyte maturation and embryogenesis during development, demonstrating gender-specific expression. 相似文献
19.
Single-cell quantitative RT-PCR analysis of Cpt1b and Cpt2 gene expression in mouse antral oocytes and in preimplantation embryos 总被引:1,自引:0,他引:1
Gentile L Monti M Sebastiano V Merico V Nicolai R Calvani M Garagna S Redi CA Zuccotti M 《Cytogenetic and genome research》2004,106(2-4):215-221
Among crustacean Decapoda numerical chromosome variability is frequent, and it has been hypothesized that the presence of supernumerary chromosomes accounts for this variability. Thanks to the improvement of cytogenetic analysis by chromosomal banding techniques, supernumerary B chromosomes (Bs) have been demonstrated in Nephrops norvegicus, Homarus americanus,Palinurus elephas and P. mauritanicus, belonging to different crustacean families. In all four species Bs were variable in number, mainly heterochromatic and undigested by various endonucleases, and in meiosis they showed non-Mendelian segregation. Compared to the other chromosomes of the complement, the Bs are very small in almost all species, but some of them were very large in N. norvegicus. 相似文献
20.
Summary Chromosome errors, inherited or arising de novo during gametogenesis and transmitted at fertilization to the conceptus, may be a major cause of embryonic mortality. The in vitro fertilization and embryo transfer (IVF/ET) procedure provides extra material — oo-cytes, zygotes, and embryos — to investigate the contribution of chromosomal abnormality to implantation failure. This paper reviews the results of cytogenetic studies on such material. Estimates from a total of 1120 oocytes from 11 studies give an overall proportion of chromosomal abnormality of 35%. Single and multiple nullisomies and disomies are found, involving nonrandom chromosome gain or loss. Hypohaploid complements are more frequent than hyperhaploid complements. The higher rate of chromosome loss of hypohaploid karyotypes was found to be largely artifactual. The estimated overall frequency of aneuploidy is 13%. In embryos the level of chromosomal abnormality is 23%–40%. Errors of fertilization are responsible for a substantial number of triploid embryos, many of which develop into mosaics. Factors extrinsic to the conceptus, such as infertility, advanced maternal age, and ovarian hyperstimulation, may increase the level of chromosomal abnormality. More refined methods for accurately recognizing and selecting chromosomally normal embryos for transfer are needed to improve the success rate of this reproductive technology. 相似文献