首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three Galphai subunits were independently depleted from rat pituitary GH4C1 cells by stable transfection of each Galphai antisense rat cDNA construct. Depletion of any Galphai subunit eliminated receptor-induced inhibition of basal cAMP production, indicating that all Galphai subunits are required for this response. By contrast, receptor-mediated inhibition of vasoactive intestinal peptide (VIP)-stimulated cAMP production was blocked by selective depletions for responses induced by the transfected serotonin 1A (5-HT1A) (Galphai2 or Galphai3) or endogenous muscarinic-M4 (Galphai1 or Galphai2) receptors. Strikingly, receptor activation in Galphai1-depleted clones (for the 5-HT1A receptor) or Galphai3-depleted clones (for the muscarinic receptor) induced a pertussis toxin-sensitive increase in basal cAMP production, whereas the inhibitory action on VIP-stimulated cAMP synthesis remained. Finally, in Galphai2-depleted clones, activation of 5-HT1A receptors increased VIP-stimulated cAMP synthesis. Thus, 5-HT1A and muscarinic M4 receptor may couple dominantly to Galphai1 and Galphai3, respectively, to inhibit cAMP production. Upon removal of these Galphai subunits to reduce inhibitory coupling, stimulatory receptor coupling is revealed that may involve Gbetagamma-induced activation of adenylyl cyclase II, a Gi-stimulated cyclase that is predominantly expressed in GH4C1 cells. Thus Gi-coupled receptor activation involves integration of both inhibitory and stimulatory outputs that can be modulated by specific changes in alphai subunit expression level.  相似文献   

2.
To determine whether a cloned receptor coupled to pertussis toxin (PTx)-sensitive G-proteins can induce cell proliferation and oncogenic transformation, as observed for receptors that elicit PTx-insensitive enhancement of phosphatidyl inositol (PI)-specific phospholipase-C (PLC) activity, nontransformed murine BALB/c-3T3 cells were transfected with the rat serotonin-1A (5-HT1A) receptor. The 5-HT1A receptor is coupled to PTx-sensitive G-proteins to induce a cell-specific activation of PLC. While 1 microM 5-HT induced no change in PI turnover or cytosolic free calcium levels ([Ca2+]i) in receptor-negative nontransfected 3T3 cells, 5-HT induced a 2-fold increase in inositol trisphosphate accumulation and a 2.5-fold increase in [Ca2+]i in the 3T3-ZD8 clone, which expressed 0.6 +/- 0.2 pmol/mg protein of specific 5-HT1A binding sites. The stimulatory actions of 5-HT on PI turnover and [Ca2+]i in 3T3ZD8 cells displayed the pharmacology of the 5-HT1A receptor and were abolished by pretreatment with PTx. Thus, BALB/c-3T3 fibroblast cells express the PLC-linked pathway of the 5-HT1A receptor. Overnight treatment with 5-HT (1 microM) enhanced incorporation of [3H]thymidine into DNA extracted from serum-starved 3T3ZD-8 cells, an action that was also blocked by pretreatment with pertussis toxin. Long term (1-2 weeks) exposure to 5-HT in the medium led to phenotypic transformation of the cells, including the formation of foci with 1 microM 5-HT. These actions of 5-HT were not observed in untransformed 3T3 cells. We conclude that the PTx-sensitive PLC-linked pathway of the 5-HT1A receptor expressed in nontransformed BALB/c-3T3 cells, in concert with other serum-derived factors, predisposes the cells to enhanced proliferation and transformation.  相似文献   

3.
The 5-HT1A receptor is implicated in depression and anxiety. This receptor couples to G(i) proteins to inhibit adenylyl cyclase (AC) activity but can stimulate AC in tissues (e.g. hippocampus) that express ACII. The role of ACII in receptor-mediated stimulation of cAMP formation was examined in HEK-293 cells transfected with the 5-HT1A receptor, which mediated inhibition of basal and G(s)-induced cAMP formation in the absence of ACII. In cells cotransfected with 5-HT1A receptor and ACII plasmids, 5-HT1A agonists induced a 1. 5-fold increase in cAMP level. Cotransfection of 5-HT1A receptor, ACII, and Galpha(i2), but not Galpha(i1), Galpha(i3), or Galpha(o), resulted in an agonist-independent 6-fold increase in the basal cAMP level, suggesting that G(i2) preferentially coupled the receptor to ACII. The 5-HT1B receptor also constitutively activated ACII. Constitutive activity of the 5-HT1A receptor was blocked by pertussis toxin and the Gbetagamma antagonist, betaCT, suggesting an important role for Gbetagamma-mediated activation of ACII. The Thr-149 --> Ala mutation in the second intracellular domain of the 5-HT1A receptor disrupted Gbetagamma-selective activation of ACII. Spontaneous 5-HT1A receptor activity was partially attenuated by 5-HT1A receptor partial agonists with anxiolytic activity (e.g. buspirone and flesinoxan) but was not altered by full agonists or antagonists. Thus, anxiolytic activity may involve inhibition of spontaneous 5-HT1A receptor activity.  相似文献   

4.
Basic fibroblast growth factor (FGF) has no effect alone on the basal cAMP synthesis in Chinese hamster fibroblasts (CCL39) but it potentiates (by up to 50%) the stimulation of adenylate cyclase by prostaglandin E1, cholera toxin or forskolin. This potentiating effect is not abolished by pretreatment of the cells with pertussis toxin, which indicates that it is not due to the withdrawal of a tonic inhibition of adenylate cyclase by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi). Therefore, we conclude that FGF enhances the activation of adenylate cyclase by the stimulatory GTP-binding protein (Gs). Although activation of protein kinase C in CCL39 cells results in a similar potentiation of cAMP production, we provide evidence that the effect of FGF is not mediated by protein kinase C, since (1) the potentiating effects of FGF and phorbol esters are additive and (2) FGF effect persists after down-regulation of protein kinase C. A role of FGF-induced rise in cytoplasmic Ca2+ can also be ruled out because the FGF effect is not mimicked by a Ca2+ ionophore and it persists in Ca2(+)-free medium. Since a similar potentiating effect on cAMP production is elicited by epidermal growth factor, a mitogen known to activate a receptor tyrosine kinase, we suggest that the FGF effect on adenylate cyclase might be mediated by the tyrosine kinase activity that is very likely to be associated with FGF receptors.  相似文献   

5.
Cross-regulation from the stimulatory to the inhibitory adenylylcyclase pathways has been described (Hadcock, J. R., Ros, M., Watkins, D. C., and Malbon, C. C. (1990) J. Biol. Chem. 265, 14784-14790). More recently, persistent activation (48 h) of the inhibitory adenylylcyclase pathway has been shown to cross-regulate the stimulatory pathway (i) enhancing the maximal response of beta-adrenergic agonits, (ii) increasing the expression of beta-adrenergic receptor, and (iii) reducing the ED50 for the isoproterenol-stimulated response by 50-fold (Hadcock, J. R., Port, J. D., and Malbon, C. C. (1991) J. Biol. Chem. 266, 11915-11922). Here, we report that short term activation (60 min) of the inhibitory adenylylcyclase pathway of hamster smooth muscle DDT1MF-2 cells with the A1-adenosine receptor agonist N6-phenylisopropyladenosine (PIA) likewise enhances the stimulatory adenylylcyclase response to the beta-adrenergic agonist isoproterenol. The PIA effect was exerted at the level of the receptor, i.e., the beta-adrenergic receptor-mediated response was enhanced, whereas the guanosine 5'-O-(thiotriphosphate)- and forskolin-stimulated adenylylcyclase activities were largely unaffected. In contrast to longer term persistent activation of the inhibitory pathway, receptor number and affinity for 125I-labeled cyanopindolol were unaffected. Metabolic labeling of cells with [32P]orthophosphate and immuneprecipitation of beta-adrenergic receptors detected phosphorylation of the receptor in unstimulated cells and marked phosphorylation in cells challenged with epinephrine. When cells were challenged short term with PIA, the basal state of beta-adrenergic receptor phosphorylation was reduced by 75%. Treating cells with PIA in combination with the cAMP analog 8-(4-chlorophenylthio)adenosine cyclic AMP attenuated the enhanced receptor-mediated adenylylcyclase response observed in cells treated with PIA alone. These data suggest that short term cross-regulation from the inhibitory to stimulatory adenylylcyclase pathways results in the following: (i) decreased intracellular cAMP levels and protein kinase A activity, (ii) reduced phosphorylation of the beta 2-adrenergic receptor in the "basal" (i.e. unstimulated) state, and (iii) enhanced receptor-mediated activation of Gs.  相似文献   

6.
To evaluate a possible modulation by protein kinase C of hormonal, cAMP-mediated effects on renal epithelial cells, we studied the effect of protein kinase C activators and of bradykinin on intracellular cAMP accumulation in MDCK cells. A 15-min pretreatment of cells with phorbol 12-myristate 13-acetate or 1-oleoyl-2-acetylglycerol induced a dose-dependent inhibition of vasopressin-stimulated cAMP synthesis, but not of basal or glucagon-, prostaglandin E2-, and forskolin-stimulated cAMP generation. 4 alpha-Phorbol 12,13-didecanoate, inactive on protein kinase C, did not affect cAMP accumulation. Bradykinin (0.1-10 microM) also inhibited the stimulatory effect of vasopressin on cAMP synthesis in a concentration-dependent manner, but affected neither basal cAMP content, nor its stimulation by glucagon, prostaglandin E2 and forskolin. The effect of activators of protein kinase C and of bradykinin occurred while renal prostaglandin synthesis was blocked with indomethacin. The inhibitory effect of protein kinase C activators and bradykinin on cAMP generation was reversed by the protein kinase C inhibitor H7, was enhanced by monensin, one effect of which is to block the recycling of membrane receptors, and persisted when the GTP-binding protein N1 was blocked with 1 mM Mn2+. Our data suggest that: protein kinase C can modulate the tubular effects of vasopressin by inhibiting cAMP generation; this effect is not mediated by renal prostaglandins, and might result from a direct action on the vasopressin receptor, or on its coupling with Ns; the modulation by bradykinin of vasopressin effects are likely to be exerted, at least partly, through activation of protein kinase C.  相似文献   

7.
Carbamoylcholine (carbachol) has been shown to inhibit somatostatin release from gastric D-cells. We observed that this dose-dependent inhibitory effect was accompanied by decreases in cellular cyclic adenosine 3':5'-monophosphate (cAMP) production and increases in parameters of membrane inositol phospholipid turnover. However, after pretreatment of D-cells with pertussis toxin (200 ng/ml), carbachol paradoxically stimulated basal somatostatin release and potentiated the secretagogue action of forskolin. Pertussis toxin pretreatment blocked the ability of carbachol to decrease cAMP production but changes in inositol phospholipid turnover were unaffected. Atropine reversed all of the observed changes induced by carbachol. These data suggest that muscarinic cholinergic receptors mediate both stimulatory and inhibitory regulation of D-cells. The inhibitory effect may involve pertussis toxin-sensitive inhibitory guanine nucleotide binding proteins while the stimulatory effect may result from the consequences of membrane phosphoinositide turnover.  相似文献   

8.
9.
The serotonin 5-HT(4) receptor has recently gained a lot of attention for its functional roles in central processes such as memory and cognition. In this study, we show that activation of the human 5-HT(4) (h5-HT(4)) receptor stimulates the secretion of the non-amyloidogenic soluble form of the amyloid precursor protein (sAPPalpha). 5-HT enhanced the level of secreted sAPPalpha in a time- and dose-dependent manner in Chinese hamster ovary cells stably expressing the h5-HT(4(e)) receptor isoform. The increase was inhibited by the selective 5-HT(4) receptor antagonist, GR113808. The 5-HT(4) selective agonists, prucalopride and renzapride, also increased secreted sAPPalpha in IMR32 human neuroblastoma cells. The stimulatory effect of 5-HT was mimicked by forskolin, a direct activator of adenylyl cyclase, and 8-bromo-cAMP, a membrane-permeant cAMP analogue. On the contrary, inhibition of protein kinase A (PKA) by H89 potentiated the 5-HT-induced increase in both secreted and cellular sAPPalpha. This phenomenon involves a novel PKA-independent stimulatory process that overcomes a PKA-dependent inhibitory one. Finally, activation of the h5-HT(4(e)) receptor did not modify extracellular amyloid beta-protein in Chinese hamster ovary cells transfected with the human APP695. Given the neuroprotective and enhancing memory effects of sAPPalpha, our results may open a new avenue for the treatment of Alzheimer's disease.  相似文献   

10.
11.
The signal transduction pathways of the dopamine-D1 receptor were investigated in two cell types stably transfected with the human D1 receptor cDNA, rat pituitary GH4C1 cells (GH4-hD1), and mouse Ltk-fibroblast cells (L-hD1). In both GH4-hD1 and L-hD1 cell lines, stimulation of the dopamine-D1 receptor induced a marked increase in cAMP accumulation. In addition, dopamine potentiated activation of L-type voltage-dependent calcium channels in a cAMP-dependent manner in GH4-hD1 cells. However, in L-hD1 cells, dopamine increased cytosolic free calcium concentrations ([Ca++]i) by mobilization of intracellular calcium rather than by calcium influx. This effect was correlated with a dopamine-induced enhancement of phospholipase C activity in L-hD1 cells. Pretreatment (24 h) with cholera toxin (CTX) was used to maximally activate the GTP-binding protein (G protein) Gs, causing a maximal elevation of cAMP levels and uncoupling the D1 receptor from Gs. The described actions of dopamine in both cell lines were abolished by pretreatment with CTX, indicating that CTX substrates (e.g. Gs) may mediate these actions. The blockade by CTX was not due to CTX-induced elevation of cAMP, since pretreatment with forskolin or 8-bromo-cAMP to activate cAMP-dependent protein kinase did not inhibit dopamine actions nor alter basal [Ca++]i. Pretreatment (1-3 h) of L-hD1 cells with forskolin (10 microM) or 8-bromo-cAMP (5 mM) altered neither the basal activity of phospholipase C nor basal [Ca++]i in L-hD1 cells but greatly enhanced the dopamine-induced increase of phosphatidyl inositol turnover and [Ca++]i. From these results we conclude that: 1) the dopamine-D1 receptor induces multiple and cell-specific signals, including elevation of cAMP levels in both GH and L cells, cAMP-dependent activation and potentiation of opening of L-type voltage-dependent calcium channel in GH cells, and a novel phosphatidyl inositol-linked mobilization of cellular calcium in L cells; 2) coupling of the D1 receptor to these responses involves CTX-sensitive proteins, possibly Gs; and 3) acute preactivation of cAMP-dependent protein kinase can markedly enhance, rather than attenuate, certain pathways of dopamine-D1 transmembrane signaling.  相似文献   

12.
Regulation of phosphate uptake was studied in HeLa cell lines after transfection with DNA encoding the human 5-HT1A receptor. Phosphate uptake was saturable and greater than 90% sodium-dependent, with Vmax approximately 30-35% without changing Km. Treatment with 5-HT or the 5-HT1A-specific agonist 8-OH-2-(di-n-propylamino)1,2,3,4-tetrahydronaphthalene increased Vmax approximately 40% without affecting Km. This effect was blocked by pretreatment with the 5-HT1 antagonists, methiothepine and spiperone, or pertussis toxin. Surprisingly, the stimulation was not secondary to an inhibition of adenylyl cyclase because 5-HT stimulated phosphate uptake approximately 20% in the presence of 1 mM 8-Br-cAMP. Rather, the primary pathway linked to the stimulation of phosphate uptake involved activation of protein kinase C because (i) 5-HT measurably activated protein kinase C in these cells, (ii) activators of protein kinase C (phorbol esters and diacylglycerol analogues) stimulated phosphate uptake in these cells (iii) the half-maximal doses for 5-HT-induced phosphatidylinositol hydrolysis and stimulation of phosphate uptake were virtually equivalent, and both effects were equally sensitive to pertussis toxin, and (iv) the stimulation was markedly attenuated in cells made deficient in protein kinase C. These results demonstrate that the stimulation of phosphatidylinositol hydrolysis by the 5-HT1A receptor can generate physiologically measurable effects on cellular transport and suggest that such accessory pathways may play a prominent role in signal transduction.  相似文献   

13.
Effector coupling mechanisms of the cloned 5-HT1A receptor   总被引:12,自引:0,他引:12  
The signal transduction pathways of the cloned human 5-HT1A receptor have been examined in two mammalian cell lines transiently (COS-7) or permanently (HeLa) expressing this receptor gene. In both systems, 5-hydroxytryptamine (5-HT, serotonin) mediated a marked inhibition of beta 2-adrenergic agonist-stimulated (80% inhibition in COS-7 cells) or forskolin-stimulated cAMP formation (up to 90% inhibition in HeLa cells). This serotonin effect (EC50 = 20 nM) could be competitively antagonized by metitepine and spiperone (Ki = 81 and 31 nM, respectively) and could also be blocked by pretreatment of cells with pertussis toxin. In both cell types, 5-HT failed to stimulate adenylyl cyclase through the expressed receptors. In HeLa cells, 5-HT also stimulated phospholipase C (approximately 40-75% stimulation of formation of inositol phosphates). Again, this effect was inhibited by metitepine. However, the EC50 of 5-HT was considerably higher (approximately 3.2 microM) than that found for inhibition of adenylyl cyclase. Both pathways were demonstrated to be similarly affected by pertussis toxin. These findings indicate that like the M2 and M3 muscarinic cholinergic receptors, the 5-HT1A receptor can couple to multiple transduction pathways with varying efficiencies via pertussis toxin-sensitive G-proteins. The lack of stimulation of cAMP formation by this 5-HT1A receptor may suggest the existence of another pharmacologically closely related receptor.  相似文献   

14.
G protein-coupled receptors comprise a family of genes that share significant sequence similarity. We have screened a rat genomic library under low stringency hybridization conditions with the coding portion of the hamster beta 2-adrenergic receptor gene to isolate new members of this gene family. We show that one of these clones, clone D, codes for a 5-hydroxytryptamine1A (5-HT1A) binding site since: 1) it possesses an intronless open reading frame encoding a protein with seven putative transmembrane domains and 89% amino acid identity with the human 5-HT1A receptor (G21); 2) when transfected into Ltk- cells, it expresses a ligand-binding site with the pharmacology of the 5-HT1A receptor subtype, including 5-HT- and spiroxatrine-displaceable binding of 8-hydroxy-(2-(N,N-di[2,3-3H]propylamino)-1,2,3,4-tetrahydronaphthalene (KH = 0.8 nM). We further show that clone D encodes a functional receptor because its binding site interacts with G proteins and because it mediates agonist-induced inhibition of basal and stimulated cAMP accumulation in transfected GH4C1 pituitary cells. Finally, we have analyzed the tissue distribution of 5-HT1A receptor mRNA in rat brain and have found that 5-HT1A mRNA is present with the expected distribution of the 5-HT1A receptor (highest in septum and hippocampus) but is present as three RNA species (3.9, 3.6, and 3.3 kilobases). These studies represent the first characterization of receptor function and brain distribution of the cloned rat 5-HT1A receptor.  相似文献   

15.
16.
Serotonin (5-HT) suppresses the photo-responsiveness of medulla bilateral neurons (MBNs) that are involved in the coupling mechanism of the bilaterally paired optic lobe circadian pacemakers in the cricket, Gryllus bimaculatus. We found that forskolin, a highly specific activator of adenylate cyclase, mimicked the effects of serotonin on the MBNs. This fact suggests the involvement of cyclic 3', 5'-adenosine monophosphate (cAMP) in mediating the action of serotonin. We therefore tested the effects of various 5-HT receptor agonists and antagonists that are coupled to adenylate cyclase to specify the receptor involved. Application of 8-OH-DPAT that has affinity for both 5-HT(1A) and 5-HT(7) receptors suppressed the photo-responsiveness, like forskolin. The inhibitory effect of 8-OH-DPAT was effectively blocked by clozapine, a high affinity 5-HT(7) receptor antagonists with a very low affinity for 5-HT(2). Ketanserin, a selective 5-HT(2) antagonist, and NAN-190, a 5-HT(1A) antagonist, did not block it. These results suggest that serotonergic suppression of the photo-responsiveness of the MBNs is mediated by 5-HT(7)-like receptor subtypes.  相似文献   

17.
Corticotropin-releasing factor receptors and actions in rat Leydig cells   总被引:5,自引:0,他引:5  
Rat Leydig cells possess functional high affinity receptors for corticotropin-releasing factor (CRF). CRF inhibited human chorionic gonadotropin (hCG)-induced androgen production in cultured fetal and adult Leydig cells in a dose-dependent manner, but it had no effect on basal testosterone secretion. Comparable inhibitory effects of CRF were observed in the presence or absence of 3-isobutyl-1-methylxanthine. CRF treatment caused a marked reduction of steroid precursors of the androgen pathway (from pregnenolone to testosterone) during gonadotropin stimulation, but it did not influence their basal levels. The inhibitory action of CRF on hCG-induced steroidogenesis was fully reversed by 8-bromo-cAMP but was not affected by pertussis toxin. The action of CRF was rapid; and it was blocked by coincubation with anti-CRF antibody. CRF caused no changes in hCG binding to Leydig cells, and in contrast to other target tissues, CRF did not stimulate cAMP production, indicating that CRF receptors are not coupled to Gs in Leydig cells. These studies have demonstrated that CRF-induced inhibition of the acute steroidogenic action of hCG is exerted at sites related to receptor/cyclase coupling or cAMP formation. The inhibitory effects of CRF in the Leydig cell do not occur through the Gi unit of adenylate cyclase, but could involve pertussis toxin-insensitive G protein(s). These observations demonstrate that CRF has a novel and potent antireproductive effect at the testicular level. Since CRF is synthesized in the testis and is present in Leydig cells, it is likely that locally produced CRF could exert negative autocrine modulation on the stimulatory action of luteinizing hormone on Leydig cell function.  相似文献   

18.
Adenylate cyclase in cultured human fibroblasts is activated by prostaglandin E1 (PGE1) or beta-adrenergic agonists, e.g., isoproterenol, and inhibited by muscarinic agonists. Incubation with PGE1 reduced adenylate cyclase responsiveness to both PGE1 and isoproterenol; this so-called heterologous desensitization is believed to result from impaired function of the stimulatory guanyl nucleotide-binding protein of the cyclase complex. The effect of heterologous desensitization by PGE1 on inhibition of adenylate cyclase by the muscarinic agonist oxotremorine was examined. Muscarinic inhibition of basal and isoproterenol-stimulated cAMP accumulation was attenuated following exposure to PGE1; the concentration of oxotremorine required for half-maximal inhibition of cAMP accumulation was increased. In both intact cells and membrane preparations the number of binding sites for [3H]scopolamine, a muscarinic antagonist, was unaltered by desensitization. Following exposure to PGE1, receptor affinity for oxotremorine, assessed by competition with [3H] scopolamine, and the guanyl nucleotide sensitivity of agonist binding were reduced. The amount of inhibitory guanyl nucleotide-binding regulatory protein available for [32P]ADP-ribosylation by pertussis toxin was unaltered by desensitization. Thus, heterologous desensitization of adenylate cyclase with the stimulatory agonist PGE1 alters sensitivity to inhibitory as well as stimulatory ligands.  相似文献   

19.
BACKGROUND: Evidences have shown that beta1 and beta2 adrenoceptors co-exist in human fibroblasts, but it is not yet clear the functional expression of beta3 adrenoceptor in these cells. The aim of this study was to investigate the expression and biological effect of beta3 adrenoceptor activation in human skin fibroblast and the different signaling pathways involved in its effect. Methods: For this purpose in vitro cultures of human skin fibroblast were established from human foreskin and grown in Dulbecco's modified Eagle's medium. The effect of ZD 7114 (beta3 agonist) on cell DNA synthesis, radioligand binding assay, cyclic GMP and cyclic AMP accumulation and nitric oxide synthase (NOS) activity were evaluated. RESULTS: 3H-CGP binding to human fibroblast membranes was a saturable process to a single class of binding site. The equilibrium parameters were: Kd 20+/-3 pM and Bmax 222+/-19 fmol/mg protein. Ki values showed that these cells express a high number of beta(3)adrenoceptor subtypes. ZD 7114 stimulation of beta3 adrenoceptor exerts a concentration-dependent inhibition of DNA synthesis and cAMP accumulation with parallel increase in NOS activity that led to cGMP accumulation. All these effects were blocked by the beta3 adrenoceptor antagonist (SR 59230A). The effect of ZD 7114 on DNA synthesis significantly correlated with its action either on cAMP or NOS-cGMP signaling system. Inhibitors of NOS activity and NO-sensitive guanylate cyclase prevented the inhibitory effect of ZD 7114 on DNA synthesis. In addition, the beta3 adrenoceptor-dependent increase in cGMP and activation of NOS were blocked by the inhibition of phospholipase C (PLC), calcium/calmodulin (CaM), endothelial NOS activity and cGMP accumulation. CONCLUSIONS: beta3 adrenoceptor activation exerts inhibitory effect on human fibroblast DNA synthesis as a result of the activation of NO-cGMP pathway and the inhibition of adenylate cyclase activity. The mechanism appears to occurs secondarily to stimulation of PLC and CaM. This in turn triggers cascade reaction leading to increase production of NO-cGMP with decrease in cAMP accumulation.  相似文献   

20.
Immortalized GnRH neurons (GT1-7) express receptors for estrogen [estrogen receptor-alpha and-13(ERa and ERI3)] and progesterone (progesterone receptor A) and exhibit positive immunostaining for both intracellular and plasma membrane ERs. Exposure of GT1-7 cells to picomolar estradiol concentrations for 5-60 min caused rapid, sustained,and dose-dependent inhibition of cAMP production. In contrast, treatment with nanomolar estradiol concentrations for 60 min increased cAMP production. The inhibitory and stimulatory actions of estradiol on cAMP formation were abolished by the ER antagonist, ICI 182,780. The estradiol-induced inhibition of cAMP production was prevented by treatment with pertussis toxin, consistent with coupling of the plasma membrane ER to an inhibitory G protein. Coimmunoprecipitation studies demonstrated an estradiol-regulated stimulatory interaction between ERa and G,3 that was prevented by the ER antagonist, ICI 182,780. Exposure of perifused GT1-7 cells and hypothalamic neurons to picomolar estradiol levels increased the GnRH peak interval, shortened peak duration, and increased peak amplitude. These findings indicate that occupancy of the plasma membrane-associated ERs expressed in GT1-7 neurons by physio-logical estradiol levels causes activation of a G, protein and modulates cAMP signaling and neuropeptide secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号