首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the binding interactions of the methylation-dependent chemotaxis receptors Tsr and Tar with the chemotaxis-specific protein kinase CheA and the coupling factor CheW. Receptor directly bound CheW, but receptor-CheA binding was dependent upon the presence of CheW. These observations in combination with our previous identification of a CheW-CheA complex suggest that CheW physically links the kinase to the receptor. The ternary complex of receptor, CheW, and CheA is both kinetically and thermodynamically stable at physiological concentrations. Stability is not significantly altered by changes associated with attractant or repellent binding to the receptor. Such binding greatly modulates the kinase activity of CheA. Our results demonstrate that modulation of the kinase activity does not require association-dissociation of the ternary complex. This suggests that the receptor signal is transduced through conformational changes in the ternary complex rather than through changes in the association of the kinase CheA with receptor and/or CheW.  相似文献   

2.
In Escherichia coli chemosensory arrays, transmembrane receptors, a histidine autokinase CheA, and a scaffolding protein CheW interact to form an extended hexagonal lattice of signaling complexes. One interaction, previously assigned a crucial signaling role, occurs between chemoreceptors and the CheW-binding P5 domain of CheA. Structural studies showed a receptor helix fitting into a hydrophobic cleft at the boundary between P5 subdomains. Our work aimed to elucidate the in vivo roles of the receptor–P5 interface, employing as a model the interaction between E. coli CheA and Tsr, the serine chemoreceptor. Crosslinking assays confirmed P5 and Tsr contacts in vivo and their strict dependence on CheW. Moreover, the P5 domain only mediated CheA recruitment to polar receptor clusters if CheW was also present. Amino acid replacements at CheA.P5 cleft residues reduced CheA kinase activity, lowered serine response cooperativity, and partially impaired chemotaxis. Pseudoreversion studies identified suppressors of P5 cleft defects at other P5 groove residues or at surface-exposed residues in P5 subdomain 1, which interacts with CheW in signaling complexes. Our results indicate that a high-affinity P5–receptor binding interaction is not essential for core complex function. Rather, P5 groove residues are probably required for proper cleft structure and/or dynamic behavior, which likely impact conformational communication between P5 subdomains and the strong binding interaction with CheW that is necessary for kinase activation. We propose a model for signal transmission in chemotaxis signaling complexes in which the CheW–receptor interface plays the key role in conveying signaling-related conformational changes from receptors to the CheA kinase.  相似文献   

3.
Motor behavior in prokaryotes is regulated by a phosphorelay network involving a histidine protein kinase, CheA, whose activity is controlled by a family of Type I membrane receptors. In a typical Escherichia coli cell, several thousand receptors are organized together with CheA and an Src homology 3-like protein, CheW, into complexes that tend to be localized at the cell poles. We found that these complexes have at least 6 receptors per CheA. CheW is not required for CheA binding to receptors, but is essential for kinase activation. The kinase activity per mole of bound CheA is proportional to the total bound CheW. Similar results were obtained with the E. coli serine receptor, Tsr, and the Salmonella typhimurium aspartate receptor, Tar. In the case of Tsr, under conditions optimal for kinase activation, the ratio of subunits in complexes is approximately 6 Tsr:4 CheW:1 CheA. Our results indicate that information from numerous receptors is integrated to control the activity of a relatively small number of kinase molecules.  相似文献   

4.
Chemoreceptors such as Tsr, the serine receptor, function in trimer-of-dimer associations to mediate chemotactic behavior in Escherichia coli. The two subunits of each receptor homodimer occupy different positions in the trimer, one at its central axis and the other at the trimer periphery. Residue N381 of Tsr contributes to trimer stability through interactions with its counterparts in a central cavity surrounded by hydrophobic residues at the trimer axis. To assess the functional role of N381, we created and characterized a full set of amino acid replacements at this Tsr residue. We found that every amino acid replacement at N381 destroyed Tsr function, and all but one (N381G) of the mutant receptors also blocked signaling by Tar, the aspartate chemoreceptor. Tar jamming reflects the formation of signaling-defective mixed trimers of dimers, and in vivo assays with a trifunctional cross-linking reagent demonstrated trimer-based interactions between Tar and Tsr-N381 mutants. Mutant Tsr molecules with a charged amino acid or proline replacement exhibited the most severe trimer formation defects. These trimer-defective receptors, as well as most of the trimer-competent mutant receptors, were unable to form ternary signaling complexes with the CheA kinase and with CheW, which couples CheA to receptor control. Some of the trimer-competent mutant receptors, particularly those with a hydrophobic amino acid replacement, may not bind CheW/CheA because they form conformationally frozen or distorted trimers. These findings indicate that trimer dynamics probably are important for ternary complex assembly and that N381 may not be a direct binding determinant for CheW/CheA at the trimer periphery.  相似文献   

5.
The initial signaling events underlying the chemotactic response of Escherichia coli to aspartic acid occur within a ternary complex that includes Tar (an aspartate receptor), CheA (a protein kinase), and CheW. Because CheW can bind to CheA and to Tar, it is thought to serve as an adapter protein in this complex. The functional importance of CheW binding interactions, however, has not been investigated. To better define the role of CheW and its binding interactions, we performed biochemical characterization of six mutant variants of CheW. We examined the ability of the purified mutant CheW proteins to bind to CheA and Tar, to promote formation of active ternary complexes, and to support chemotaxis in vivo. Our results indicate that mutations which eliminate CheW binding to Tar (V36M) or to CheA (G57D) result in a complete inability to form active ternary complexes in vitro and render the CheW protein incapable of mediating chemotaxis in vivo. The in vivo signaling pathway can, however, tolerate moderate changes in CheW-Tar and CheW-CheA affinities observed with several of the mutants (G133E, G41D, and 154ocr). One mutant (R62H) provided surprising results that may indicate a role for CheW in addition to binding CheA/receptors and promoting ternary complex formation.  相似文献   

6.
The dynamics of protein phosphorylation in bacterial chemotaxis   总被引:30,自引:0,他引:30  
K A Borkovich  M I Simon 《Cell》1990,63(6):1339-1348
The chemotaxis signal transduction pathway allows bacteria to respond to changes in concentration of specific chemicals (ligands) by modulating their swimming behavior. The pathway includes ligand binding receptors, and the CheA, CheY, CheW, and CheZ proteins. We showed previously that phosphorylation of CheY is activated in reactions containing receptor, CheW, CheA, and CheY. Here we demonstrate that this activation signal results from accelerated autophosphorylation of the CheA kinase. Evidence for a second signal transmitted by a ligand-bound receptor, which corresponds to inhibition of CheA autophosphorylation, is also presented. We postulate that CheA can exist in three forms: a "closed" form in the absence of receptor and CheW; an "open" form that results from activation of CheA by receptor and CheW; and a "sequestered" form in reactions containing ligand-bound receptor and CheW. The system's dynamics depends on the relative distribution of CheA among these three forms at any time.  相似文献   

7.
In bacterial chemotaxis, transmembrane chemoreceptors, the CheA histidine kinase, and the CheW coupling protein assemble into signaling complexes that allow bacteria to modulate their swimming behavior in response to environmental stimuli. Among the protein-protein interactions in the ternary complex, CheA-CheW and CheW-receptor interactions were studied previously, whereas CheA-receptor interaction has been less investigated. Here, we characterize the CheA-receptor interaction in Thermotoga maritima by NMR spectroscopy and validate the identified receptor binding site of CheA in Escherichia coli chemotaxis. We find that CheA interacts with a chemoreceptor in a manner similar to that of CheW, and the receptor binding site of CheA's regulatory domain is homologous to that of CheW. Collectively, the receptor binding sites in the CheA-CheW complex suggest that conformational changes in CheA are required for assembly of the CheA-CheW-receptor ternary complex and CheA activation.  相似文献   

8.
Using protein from the hyperthermophile Thermotoga maritima, we have determined the solution structure of CheW, an essential component in the formation of the bacterial chemotaxis signaling complex. The overall fold is similar to the regulatory domain of the chemotaxis kinase CheA. In addition, interactions of CheW with CheA were monitored by nuclear magnetic resonance (NMR) techniques. The chemical shift perturbation data show the probable contacts that CheW makes with CheA. In combination with previous genetic data, the structure also suggests a possible binding site for the chemotaxis receptor. These results provide a structural basis for a model in which CheW acts as a molecular bridge between CheA and the cytoplasmic tails of the receptor.  相似文献   

9.
In bacterial chemotaxis, clustered transmembrane receptors and the adaptor protein CheW regulate the kinase CheA. Receptors outnumber CheA, yet it is poorly understood how interactions among receptors contribute to regulation. To address this problem, receptor clusters were simulated using liposomes decorated with the cytoplasmic domains of receptors, which supported CheA binding and stimulation. Competitive and cooperative interactions were revealed through the use of known receptor signaling mutants, which were used in mixtures with the wild type domain. Competitive effects among the receptor domains sorted cleanly into two categories defined by either stronger or weaker interactions with CheA. Cooperative effects were also evident in CheA binding and activity. In the transition from the stimulating to the inhibiting states, both the cooperativity of the transition and the persistence of stimulation by the wild type domain increased with receptor modification, as in the intact receptor. We conclude that competitive and cooperative receptor interactions both contribute to CheA regulation and that liposome-mediated assembly is effective in addressing these general membrane phenomena.  相似文献   

10.
Bacterial chemoreceptors form ternary signaling complexes with the histidine kinase CheA through the coupling protein CheW. Receptor complexes in turn cluster into cellular arrays that produce highly sensitive responses to chemical stimuli. In Escherichia coli, receptors of different types form mixed trimer-of-dimers signaling teams through the tips of their highly conserved cytoplasmic domains. To explore the possibility that the hairpin loop at the tip of the trimer contact region might promote interactions with CheA or CheW, we constructed and characterized mutant receptors with amino acid replacements at the two nearly invariant hairpin charged residues of Tsr: R388, the most tip-proximal trimer contact residue, and E391, the apex residue of the hairpin turn. Mutant receptors were subjected to in vivo tests for the assembly and function of trimers, ternary complexes, and clusters. All R388 replacements impaired or destroyed Tsr function, apparently through changes in trimer stability or geometry. Large-residue replacements locked R388 mutant ternary complexes in the kinase-off (F, H) or kinase-on (W, Y) signaling state, suggesting that R388 contributes to signaling-related conformational changes in the trimer. In contrast, most E391 mutants retained function and all formed ternary signaling complexes efficiently. Hydrophobic replacements of any size (G, A, P, V, I, L, F, W) caused a novel phenotype in which the mutant receptors produced rapid switching between kinase-on and -off states, indicating that hairpin tip flexibility plays an important role in signal state transitions. These findings demonstrate that the receptor determinants for CheA and CheW binding probably lie outside the hairpin tip of the receptor signaling domain.  相似文献   

11.
Chemotactic stimuli in bacteria are sensed by large sensory complexes, or receptor clusters, that consist of tens of thousands of proteins. Receptor clusters appear to play a key role in signal processing, but their structure remains poorly understood. Here we used fluorescent protein fusions to study in vivo formation of the cluster core, which consists of receptors, a kinase CheA and an assisting protein CheW. We show that receptors aggregate through their cytoplasmic domains even in the absence of other chemotaxis proteins. Clustering is further enhanced by the binding of CheW. Surprisingly, we observed that some fragments of CheA bind receptor clusters well in the absence of CheW, although the latter does assist the binding of full-length CheA. The resulting mode of receptor cluster formation is consistent with an experimentally observed flexible stoichiometry of chemosensory complexes and with assumptions of recently proposed computer models of signal processing in chemotaxis.  相似文献   

12.
Li G  Weis RM 《Cell》2000,100(3):357-365
In the Escherichia coli chemosensory pathway, receptor modification mediates adaptation to ligand. Evidence is presented that covalent modification influences ligand binding to receptors in complexes with CheW and the kinase CheA. Kinase inhibition was measured with serine receptor complexes in different modification levels; Ki for serine-mediated inhibition increased 10,000-fold from the lowest to the highest level. Without CheA and CheW, ligand binding is unaffected by covalent modification; thus, the influence of covalent modification is mediated only in the receptor complex, a conclusion supported by an analogy to allosteric enzymes and the observation of cooperative kinase inhibition. Also, the finding that a subsaturating serine concentration accelerates active receptor-kinase complex assembly implies that the assembly/disassembly process may also contribute to kinase regulation.  相似文献   

13.
During chemotactic signaling by Escherichia coli, autophosphorylation of the histidine kinase CheA is coupled to chemoreceptor control by the CheW protein, which interacts with the C-terminal P5 domain of CheA. To identify P5 determinants important for CheW binding and receptor coupling control, we isolated and characterized a series of P5 missense mutants. The mutants fell into four phenotypic groups on the basis of in vivo behavioral and protein stability tests and in vitro assays with purified mutant proteins. Group 1 mutants exhibited autophosphorylation and receptor-coupling defects, and their CheA proteins were subject to relatively rapid degradation in vivo. Group 1 mutations were located at hydrophobic residues in P5 subdomain 2 and most likely caused folding defects. Group 2 mutants made stable CheA proteins with normal autophosphorylation ability but with defects in CheW binding and in receptor-mediated activation of CheA autophosphorylation. Their mutations affected residues in P5 subdomain 1 near the interface with the CheA dimerization (P3) and ATP-binding (P4) domains. Mutant proteins of group 3 were normal in all tests yet could not support chemotaxis, suggesting that P5 has one or more important but still unknown signaling functions. Group 4 mutant proteins were specifically defective in receptor-mediated deactivation control. The group 4 mutations were located in P5 subdomain 1 at the P3/P3' interface. We conclude that P5 subdomain 1 is important for CheW binding and for receptor coupling control and that these processes may require substantial motions of the P5 domain relative to the neighboring P3 and P4 domains of CheA.  相似文献   

14.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

15.
Tsr, the serine chemoreceptor of Escherichia coli, has two signaling modes. One augments clockwise (CW) flagellar rotation, and the other augments counterclockwise (CCW) rotation. To identify the portion of the Tsr molecule responsible for these activities, we isolated soluble fragments of the Tsr cytoplasmic domain that could alter the flagellar rotation patterns of unstimulated wild-type cells. Residues 290 to 470 from wild-type Tsr generated a CW signal, whereas the same fragment with a single amino acid replacement (alanine 413 to valine) produced a CCW signal. The soluble components of the chemotaxis phosphorelay system needed for expression of these Tsr fragment signals were identified by epistasis analysis. Like full-length receptors, the fragments appeared to generate signals through interactions with the CheA autokinase and the CheW coupling factor. CheA was required for both signaling activities, whereas CheW was needed only for CW signaling. Purified Tsr fragments were also examined for effects on CheA autophosphorylation activity in vitro. Consistent with the in vivo findings, the CW fragment stimulated CheA, whereas the CCW fragment inhibited CheA. CheW was required for stimulation but not for inhibition. These findings demonstrate that a 180-residue segment of the Tsr cytoplasmic domain can produce two active signals. The CCW signal involves a direct contact between the receptor and the CheA kinase, whereas the CW signal requires participation of CheW as well. The correlation between the in vitro effects of Tsr signaling fragments on CheA activity and their in vivo behavioral effects lends convincing support to the phosphorelay model of chemotactic signaling.  相似文献   

16.
Chemical signals sensed on the periplasmic side of bacterial cells by transmembrane chemoreceptors are transmitted to the flagellar motors via the histidine kinase CheA, which controls the phosphorylation level of the effector protein CheY. Chemoreceptor arrays comprise remarkably stable supramolecular structures in which thousands of chemoreceptors are networked through interactions between their cytoplasmic tips, CheA, and the small coupling protein CheW. To explore the conformational changes that occur within this protein assembly during signalling, we used in vivo cross‐linking methods to detect close interactions between the coupling protein CheW and the serine receptor Tsr in intact Escherichia coli cells. We identified two signal‐sensitive contacts between CheW and the cytoplasmic tip of Tsr. Our results suggest that ligand binding triggers changes in the receptor that alter its signalling contacts with CheW (and/or CheA).  相似文献   

17.
The Salmonella and Escherichia coli aspartate receptor, Tar, is representative of a large class of membrane receptors that generate chemotaxis responses by regulating the activity of an associated histidine protein kinase, CheA. Tar is composed of an NH(2)-terminal periplasmic ligand-binding domain linked through a transmembrane sequence to a COOH-terminal coiled-coil signaling domain in the cytoplasm. The isolated cytoplasmic domain of Tar fused to a leucine zipper sequence forms a soluble complex with CheA and the Src homology 3-like kinase activator, CheW. Activity of the CheA kinase in the soluble complex is essentially the same as in fully active complexes with the intact receptor in the membrane. The soluble complex is composed of approximately 28 receptor cytoplasmic domain chains, 6 CheW chains, and 4 CheA chains. It has a molecular weight of 1,400,000 (Liu, I., Levit, M., Lurz, R., Surette, M.G., and Stock, J.B. (1997) EMBO J. 16, 7231-7240). Electron microscopy reveals an elongated barrel-like structure with a largely hollow center. Immunoelectron microscopy has provided a general picture of the subunit and domain organization of the complex. CheA and CheW appear to be in the middle of the complex with the leucine zippers of the receptor construct at the ends. These findings show that the receptor signaling complex forms higher ordered structures with defined geometric architectures. Coupled with atomic models of the subunits, our results provide insights into the functional architecture by which the receptor regulates CheA kinase activity during bacterial chemotaxis.  相似文献   

18.
Motile prokaryotes employ a chemoreceptor-kinase array to sense changes in the media and properly adjust their swimming behavior. This array is composed of a family of Type I membrane receptors, a histidine protein kinase (CheA), and an Src homology 3-like protein (CheW). Binding of an attractant to the chemoreceptors inhibits CheA, which results in decreased phosphorylation of the chemotaxis response regulator (CheY). Sensitivity of the system to stimuli is modulated by a protein methyltransferase (CheR) and a protein methylesterase (CheB) that catalyze the methylation and demethylation of specific glutamyl residues in the cytoplasmic domain of the receptors. One of the most fundamental unanswered questions concerning the bacterial chemotaxis mechanism is the quantitative relationship between ligand binding to receptors and CheA inhibition. We show that the receptor glutamyl modifications cause adaptation by changing the gain (magnitude amplification) between attractant binding and kinase inhibition without substantially affecting ligand binding affinity. The mechanism adjusts receptor sensitivity to background stimulus intensity over several orders of magnitude of attractant concentrations. The cooperative effects of ligand binding appear to be minimal with Hill coefficients for kinase inhibition less than 2, independent of the state of glutamyl modification.  相似文献   

19.
The C-terminal P5 domain of the histidine kinase CheA is essential for coupling CheA autophosphorylation activity to chemoreceptor control through a binding interaction with the CheW protein. To locate P5 determinants critical for CheW binding and chemoreceptor control, we surveyed cysteine replacements at 39 residues predicted to be at or near the P5 surface in Escherichia coli CheA. Two-thirds of the Cys replacement proteins exhibited in vitro defects in CheW binding, either before or after modification with a bulky fluorescein group. The binding-defective sites were widely distributed on the P5 surface and were often interspersed with sites that caused no functional defects, implying that relatively minor structural perturbations, often far from the actual binding site, can influence its conformation or accessibility. The most likely CheW docking area included loop 2 in P5 folding subdomain 1. All but four of the binding-defective P5-Cys proteins were defective in receptor-mediated activation, suggesting that CheW binding, as measured in vitro, is necessary for assembly of ternary signaling complexes and/or subsequent CheA activation. Other Cys sites specifically affected receptor-mediated activation or deactivation of CheA, demonstrating that CheW binding is not sufficient for assembly and/or operation of receptor signaling complexes. Because P5 is quite similar to CheW, whose structure is known to be dynamic, we suggest that conformational flexibility and dynamic motions govern the signaling activities of the P5 domain. In addition, relative movements of the CheA domains may be involved in CheW binding, in ternary complex assembly, and in subsequent stimulus-induced conformational changes in receptor signaling complexes.  相似文献   

20.
In the Escherichia coli chemotaxis system, a family of chemoreceptors in the cytoplasmic membrane binds stimulatory ligands and regulates the activity of an associated histidine kinase CheA to modulate swimming behaviour and thereby cause a net migration towards attractants and away from repellents. The chemoreceptors themselves have been shown to be predominantly dimeric, but in the presence of the kinase CheA plus an adapter protein, CheW, much higher order structures have been observed. Recent results indicate that transmembrane signalling occurs within receptor clusters rather than through isolated dimers. We propose that the mechanism involves receptor arrays where binding of ligands at the outside surface of the membrane affects lateral packing interactions that cause perturbations in the organization of the signalling array at the opposing surface of the membrane. Results with receptor chimeras as well as findings with tyrosine kinase receptors suggest that this mechanism may represent a common theme in membrane receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号