首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacteria on the surface of a farmhouse smear-ripened cheese at four stages of ripening (4, 16, 23, and 37 days) from inoculated (i.e., deliberately inoculated with Brevibacterium linens BL2) and noninoculated (not deliberately inoculated with B. linens BL2) cheese were investigated. The results show that, contrary to accepted belief, B. linens is not a significant member of the surface flora of smear cheese and no microbial succession of species occurred during the ripening of the cheeses. Of 400 isolates made, 390 were lactate-utilizing coryneforms and 10 were coagulase-negative Staphylococcus spp. A detailed analysis of the coryneforms was undertaken using phenotypic analysis, molecular fingerprinting, chemotaxonomic techniques, and 16S rRNA gene sequencing. DNA banding profiles (ramdom amplified polymorphic DNA [RAPD]-PCR) of all the coryneform isolates showed large numbers of clusters. However, pulsed-field gel electrophoresis (PFGE) of the isolates from the cheeses showed that all isolates within a cluster and in many contiguous clusters were the same. The inoculated and noninoculated cheeses were dominated by single clones of novel species of Corynebacterium casei (50.2% of isolates), Corynebacterium mooreparkense (26% of isolates), and Microbacterium gubbeenense (12.8% of isolates). In addition, five of the isolates from the inoculated cheese were Corynebacterium flavescens. Thirty-seven strains were not identified but many had similar PFGE patterns, indicating that they were the same species. C. mooreparkense and C. casei grew at pH values below 4.9 in the presence of 8% NaCl, while M. gubbeenense did not grow below pH 5.8 in the presence of 5 to 10% NaCl. B. linens BL2 was not recovered from the inoculated cheese because it was inhibited by all the Staphylococcus isolates and many of the coryneforms. It was concluded that within a particular batch of cheese there was significant bacterial diversity in the microflora on the surface.  相似文献   

2.
The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses.  相似文献   

3.
Surface Microflora of Four Smear-Ripened Cheeses   总被引:6,自引:5,他引:1       下载免费PDF全文
The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses.  相似文献   

4.
AIMS: To study the survival of bacteria isolated from the surface of smear cheese and monitor their development during cheese ripening. METHODS AND RESULTS: The storage of five potential bacterial surface-ripening cheese cultures, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variable, Microbacterium gubbeenense and Staphylococcus saprophyticus, in maximum recovery diluent (MRD), containing 0.85% w/v or 5% w/v NaCl, at 21 or 4 degrees C for 40 days, was investigated. All five strains studied survived well with a maximum decrease of c. 2.5 log(10) CFU ml(-1) after storage for 40 days at 4 degrees C in 0.85% or 5% w/v NaCl. Survival, especially of C. variable, was less at 21 degrees C. The development of defined ripening cultures containing C. casei and Debaryomyces hansenii on two farmhouse cheeses was also evaluated. Using pulsed-field gel electrophoresis (PFGE) for the bacteria and mitochondrial DNA restriction fragment length polymorphism (mtDNA-RFLP) for the yeast, it was shown that the ripening cultures could be re-isolated in high numbers, 10(8) CFU cm(-2) for C. casei and 10(6) CFU cm(-2) for D. hansenii, from the cheese surface after 2.5 weeks of ripening. CONCLUSIONS: Ripening strains of surface ripening cultures can be stored in MRD containing 5% w/v salt at 4 degrees C for at least 40 days. Such cultures are recovered in high numbers from the cheese during ripening. SIGNIFICANCE AND IMPACT OF STUDY: This study has provided a low-cost and efficient way to store bacteria that could be used as ripening cultures for smear cheese. Such cultures can be recovered in high numbers from the cheese surface during ripening.  相似文献   

5.
Amplified ribosomal DNA restriction enzyme analysis (ARDRA), pulsed field gel electrophoresis (PFGE) and ribotyping were used to differentiate among 24 strains of Brevibacterium linens, Brevibacterium casei and Brevibacterium epidermidis obtained from type culture collections or isolated from various smear ripened cheeses. ARDRA was applied to the 16S rDNA. B. linens was shown to be a quite heterogenic group with 2 to at least 4 copies of rrn operons per strain with aberrant nucleotide sequences. AccI gave genus specific restriction patterns and was used to separate Brevibacterium from Corynebacterium species. The expected species specificity of TaqI applied to B. linens type culture strains, but not to all strains isolated from cheese. By AvaI restriction, B. casei and B. linens were differentiated from B. epidermidis and the orange pigmented Arthrobacter casei, a new species of coryneform bacteria; by XmnI restriction, B. linens and B. epidermidis were differentiated from B. casei. One of 4 B. linens genotypes could not be distinguished from B. casei by this method. Here, the typical orange B. linens pigments were used for classification, which was confirmed by partial sequencing of the 16S rDNA.  相似文献   

6.
Two staphylococcal strains, RP29T and RP33, were isolated from the main microflora of a surface ripened Swiss mountain cheese made from raw milk. These two strains were differentiated from the most closely related species Staphylococcus equorum on the basis of DNA-DNA hybridisation and phenotypic characteristics and are proposed as Staphylococcus equorum subsp. linens subsp. nov. They could be distinguished phenotypically from S. equorum by their sensitivity to all 14 tested antibiotics, especially to novobiocin, their incapability to ferment alpha-D-lactose, maltose, sucrose, D-trehalose, D-xylose, L-arabinose, salicin, D-ribose, D-raffinose, D-mannitol, and D-alanine. The GenBank accession numbers for the reference sequences of the 16S rDNA and the hsp60 gene used in this study are AF527483 and AF527484, respectively. 30 tons of a semi-hard Swiss cheese were produced with Staphylococcus equorum subsp. linens DSM 15097T as starter culture component in addition to Debaryomyces hansenii, Geotrichum candidum, Brevibacterium linens, Corynebacterium casei for surface ripened cheeses. The products were sensorically and hygienically perfect. Therefore, Staphylococcus equorum subsp. linens DSM 15097T can be proposed as starter culture component for surface ripened cheeses without any detected antibiotic resistances. The type strain of Staphylococcus equorum subsp. linens is DSM 15097T (CIP 107656T).  相似文献   

7.
AIMS: The microbial and chemical composition of seven different semi-ripened (45 days) Provola dei Nebrodi Sicilian cheese samples were assessed in order to investigate the diversity of the microbial population in cheese made from different geographical areas throughout Sicily. METHODS AND RESULTS: The samples, which were obtained from seven different Provola dei Nebrodi manufacturers, were assessed using selective media. Interestingly, concentrations of presumptive lactobacilli represented over 90% of the total microbial population. In total, 105 presumptive Lactobacillus isolates were characterized to determine the relatedness of the isolates between the seven different cheeses. Randomly amplified polymorphic DNA polymerase chain reaction (RAPD PCR) analysis of the 105 presumptive lactobacilli indicated the presence of 22 distinct isolates. Further investigation of the isolates using pulsed field gel electrophoresis (PFGE) following restriction with the enzyme ApaI revealed the presence of 19 distinct macrorestriction patterns and the presence of between one and four distinct isolates per cheese sample (out of a total of 15 isolates per cheese randomly taken from Lactobacillus selective media plates). Analysis of the 16S rDNA sequence of each genetically distinct isolate demonstrated the dominance of the Lactobacillus casei species in all cheese samples assessed. Lactobacillus delbrueckii and Pediococcus pentosaceus species were also detected. The concentration of free amino acids, used to estimate the extent of proteolysis in each cheese, ranged from 59 to 433 mg 100 g(-1) cheese. CONCLUSIONS: Microbiological assessment of the cheeses demonstrated the dominance of Lactobacillus species after 45 days of ripening with levels ranging from 8.3 to 9.4 log CFU g(-1). SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides new information on the diversity of lactobacilli within an artisanal Sicilian cheese, enabling the identification of 17 strains of Lact. casei, one strain of Lact. delbrueckii and Ped. pentosaceus through the combined use of RAPD PCR, PFGE and 16S rDNA sequencing.  相似文献   

8.
The species composition of microbial communities in natural habitats may be extremely complex and therefore a quantitative analysis of the fraction each species contributes to the consortium has proven to be difficult. During recent years, the identification of bacterial pure cultures based on their infrared spectra has been established. Fourier-transform infrared microspectroscopy now proceeds a step further and allows identification of microorganisms directly plated from community dilutions. Infrared spectra of microcolonies of 70-250 microm in diameter can be recorded without producing a pure culture of the isolate. We have applied this novel technique for quantitative comparative analysis of two undefined, geographically separated food-borne smear cheese microbial consortia of limited complexity. Due to the high degree of automation, up to 200 microcolonies could be identified in 1 day and, in total, 3170 infrared spectra of microcolonies were recorded. The results obtained have been verified by Fourier-transform infrared macrospectroscopy and 16S rDNA sequencing. Interestingly, although the communities were unrelated, Staphylococcus equorum, Corynebacterium casei, Arthrobacter casei and Brevibacterium linens were found to be part of both consortia, however, with different incidence. In addition, Corynebacterium variabile, Microbacterium gubbeenense, Brachybacterium alimentarium, Enterococcus faecalis and an unknown species were detected in either one of the consortia.  相似文献   

9.
The flora on the surface of smear-ripened cheeses is composed of numerous species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. Due to the absence of selective media, it is very difficult to quantify cheese surface bacteria, and, consequently, the ecology of the cheese surface microflora has not been extensively investigated. We developed a SYBR green I real-time PCR method to quantify Corynebacterium casei, a major species of smear-ripened cheeses, using primers designed to target the 16S rRNA gene. It was possible to recover C. casei genomic DNA from the cheese matrix with nearly the same yield that C. casei genomic DNA is recovered from cells recovered by centrifugation from liquid cultures. Quantification was linear over a range from 10(5) to 10(10) CFU per g of cheese. The specificity of the assay was demonstrated with DNA from species related to C. casei and from other bacteria and yeasts belonging to the cheese flora. Nine commercial cheeses were analyzed by real-time PCR, and six of them were found to contain more than 10(5) CFU equivalents of C. casei per g. In two of them, the proportion of C. casei in the total bacterial flora was nearly 40%. The presence of C. casei in these samples was further confirmed by single-strand conformation polymorphism analysis and by a combined approach consisting of plate counting and 16S rRNA gene sequencing. We concluded that SYBR green I real-time PCR may be used as a reliable species-specific method for quantification of bacteria from the surface of cheeses.  相似文献   

10.
The surface microflora (902 isolates) of Livarot cheeses from three dairies was investigated during ripening. Yeasts were mainly identified by Fourier transform infrared spectroscopy. Geotrichum candidum was the dominating yeast among 10 species. Bacteria were identified using Biotype 100 strips, dereplicated by repetitive extragenic palindromic PCR (rep-PCR); 156 representative strains were identified by either BOX-PCR or (GTG)(5)-PCR, and when appropriate by 16S rDNA sequencing and SDS-PAGE analysis. Gram-positive bacteria accounted for 65% of the isolates and were mainly assigned to the genera Arthrobacter , Brevibacterium , Corynebacterium , and Staphylococcus . New taxa related to the genera Agrococcus and Leucobacter were found. Yeast and Gram-positive bacteria strains deliberately added as smearing agents were sometimes undetected during ripening. Thirty-two percent of the isolates were Gram-negative bacteria, which showed a high level of diversity and mainly included members of the genera Alcaligenes , Hafnia , Proteus , Pseudomonas , and Psychrobacter . Whatever the milk used (pasteurized or unpasteurized), similar levels of biodiversity were observed in the three dairies, all of which had efficient cleaning procedures and good manufacturing practices. It appears that some of the Gram-negative bacteria identified should now be regarded as potentially useful in some cheese technologies. The assessment of their positive versus negative role should be objectively examined.  相似文献   

11.
Non-starter lactic acid bacteria (NSLAB) were isolated from 12 Italian ewe cheeses representing six different types of cheese, which in several cases were produced by different manufacturers. A total of 400 presumptive Lactobacillus isolates were obtained, and 123 isolates and 10 type strains were subjected to phenotypic, genetic, and cell wall protein characterization analyses. Phenotypically, the cheese isolates included 32% Lactobacillus plantarum isolates, 15% L. brevis isolates, 12% L. paracasei subsp. paracasei isolates, 9% L. curvatus isolates, 6% L. fermentum isolates, 6% L. casei subsp. casei isolates, 5% L. pentosus isolates, 3% L. casei subsp. pseudoplantarum isolates, and 1% L. rhamnosus isolates. Eleven percent of the isolates were not phenotypically identified. Although a randomly amplified polymorphic DNA (RAPD) analysis based on three primers and clustering by the unweighted pair group method with arithmetic average (UPGMA) was useful for partially differentiating the 10 type strains, it did not provide a species-specific DNA band or a combination of bands which permitted complete separation of all the species considered. In contrast, sodium dodecyl sulfate-polyacrylamide gel electrophoresis cell wall protein profiles clustered by UPGMA were species specific and resolved the NSLAB. The only exceptions were isolates phenotypically identified as L. plantarum and L. pentosus or as L. casei subsp. casei and L. paracasei subsp. paracasei, which were grouped together. Based on protein profiles, Italian ewe cheeses frequently contained four different species and 3 to 16 strains. In general, the cheeses produced from raw ewe milk contained a larger number of more diverse strains than the cheeses produced from pasteurized milk. The same cheese produced in different factories contained different species, as well as strains that belonged to the same species but grouped in different RAPD clusters.  相似文献   

12.
AIMS: To determine the relationships between the major organisms from the cheese-making personnel and environment and the surface of a smear cheese. METHODS AND RESULTS: 360 yeast and 593 bacteria from the cheese surface, the dairy environment and the hands and arms of personnel were collected. Pulsed-field gel electrophoresis, repetitive sequence-based polymerase chain reaction and 16S rDNA sequencing were used for typing and identifying the bacteria, and mitochondrial DNA restriction fragment length polymorphism and Fourier-transform infrared spectroscopy for typing and identifying the yeast. The three most dominant bacteria were Corynebacterium casei, Corynebacterium variabile and Staphylococcus saprophyticus, which were divided into three, five and seven clusters, respectively, by macrorestriction analysis. The same clones from these organisms were isolated on the cheese surface, the dairy environment and the skin of the cheese personnel. Debaryomyces hansenii was the most dominant yeast. CONCLUSIONS: A 'house' microflora exists in the cheese plant. Although the original source of the micro-organisms was not identified, the brines were an important source of S. saprophyticus and D. hansenii and, additionally, the arms and hands of the workers the sources of C. casei and C. variabile. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first time that the major contribution of the house microflora to the ripening of a smear-ripened cheese has been demonstrated.  相似文献   

13.
Manchego-type cheese, a typical Spanish cheese, was inoculated in various ways with an aflatoxigenic organism, Aspergillus parasiticus NRRL 2999, to study the production of aflatoxin. When the original milk was contaminated with a spore suspension, aflatoxin was not detected in paraffin-covered cheeses although it was present in the top layer of non-paraffin-covered cheeses after ripening at 15 degrees C for 60 d. When the cheese surface was inoculated, no aflatoxins were detected in paraffin-covered cheeses after ripening for 60 d although they were found when the cheeses were ripened for 30 d. In non-paraffin-covered cheeses aflatoxins were detected only in the top layer and in the second 10 mm layer when cheeses were incubated after the normal ripening at 28 degrees C for 30 d. When the centre of the cheese was inoculated, no aflatoxins were detected although Aspergillus grew slightly along the inoculation area. When cheese portions were inoculated, fungal growth was evident after incubation at 28 degrees and 15 degrees C for 6 d but there was no growth at 10 degrees C after 50 d. At 28 degrees C aflatoxins were detected at a concentration of 132 micrograms/g after 13 d, the highest level obtained. In cheese paste at 28 degrees and 15 degrees C, growth was intense, but the level of aflatoxins detected was lower than in cheese portions. At 10 degrees C the growth was heavy, but aflatoxins were not detected.  相似文献   

14.
15.
Experimental aflatoxin production in Manchego-type cheese   总被引:1,自引:1,他引:0  
Manchego-type cheese, a typical Spanish cheese, was inoculated in various ways with an aflatoxigenic organism, Aspergillus parasiticus NRRL 2999, to study the production of aflatoxin. When the original milk was contaminated with a spore suspension, aflatoxin was not detected in paraffin-covered cheeses although it was present in the top layer of non-paraffin-covered cheeses after ripening at 15°C for 60 d. When the cheese surface was inoculated, no aflatoxins were detected in paraffin-covered cheeses after ripening for 60 d although they were found when the cheeses were ripened for 30 d. In non-paraffin-covered cheeses aflatoxins were detected only in the top layer and in the second 10 mm layer when cheeses were incubated after the normal ripening at 28°C for 30 d. When the centre of the cheese was inoculated, no aflatoxins were detected although Aspergillus grew slightly along the inoculation area. When cheese portions were inoculated, fungal growth was evident after incubation at 28° and 15°C for 6 d but there was no growth at 10°C after 50 d. At 28°C aflatoxins were detected at a concentration of 132 μg/g after 13 d, the highest level obtained. In cheese paste at 28° and 15°C, growth was intense, but the level of aflatoxins detected was lower than in cheese portions. At 10°C the growth was heavy, but aflatoxins were not detected.  相似文献   

16.
17.
St. Nectaire cheese is a semisoft cheese of French origin that, along with Brie and Camembert cheeses, belongs to the class of surface mold-ripened cheese. The surface microorganisms that develop on the cheese rind during ripening impart a distinctive aroma and flavor to this class of cheese. We have documented the sequential appearance of microorganisms on the cheese rind and in the curd over a 60-day ripening period. Scanning electron microscopy was used to visualize the development of surface fungi and bacteria. Light microscopy of stained paraffin sections was used to study cross sections through the rind. We also monitored the development of bacterial and yeast populations in and the pH of the curd and rind. The earliest stage of ripening (0 to 2 days) is dominated by the lactic acid bacterium Streptococcus cremoris and multilateral budding yeasts, primarily Debaryomyces and Torulopsis species. Geotrichum candidum follows closely, and then zygomycetes of the genus Mucor develop at day 4 of ripening. At day 20, the deuteromycete Trichothecium roseum appears. From day 20 until the end of the ripening process, coryneforms of the genera Brevibacterium and Arthrobacter can be seen near the surface of the cheese rind among fungal hyphae and yeast cells.  相似文献   

18.
Microbiological profile in Serra ewes' cheese during ripening   总被引:2,自引:0,他引:2  
The microflora of Serra cheese was monitored during a 35 d ripening period at three different periods within the ewe's lactation season. After 7 d ripening, the numbers of micro-organisms reached their maximum, and lactic acid bacteria (LAB) and coliforms were the predominant groups. Pseudomonads were not detected after 1 week of ripening. At all stages of ripening, cheeses manufactured in spring exhibited the lowest numbers of LAB and yeasts, whereas cheeses manufactured in winter showed the lowest numbers of coliforms and staphylococci.
Leuconostoc lactis was the most abundant LAB found in Serra cheese whereas Enterococcus faecium and Lactococcus lactis spp. lactis exhibited the highest decrease in percentage composition. Numbers of both Leuc. mesenteroides and Lactobacillus paracasei tended to increase throughout ripening. The most abundant coliform was Hafnia alvei. Klebsiella oxytoca was found in curd but declined in number during ripening. Staphylococcal flora of curd was mainly composed of Staphylococcus xylosus, Staph. aureus and Staph. epidermidis. Staphylococcus xylosus was the major species found at the end of ripening. Pseudomonas fluorescens , was the only Pseudomonas species isolated from the curd. Although a broad spectrum of yeasts were found in Serra cheese, Sporobolomyces roseus was the most abundant yeast isolated.  相似文献   

19.
AIMS: To screen the cystathionine lyase and L-methionine aminotransferase activities of cheese-related bacteria (lactococci, non-starter lactobacilli and smear bacteria) and to determine the individual and interactive effects of temperature, pH and NaCl concentration on selected enzyme activities. METHODS AND RESULTS: A subcellular fractionation protocol and specific enzyme assays were used, and a quadratic response surface methodology was applied. The majority of the strains, 21 of 33, had detectable cystathionine lyase activity which differed in the specificity. Aminotransferase activity on L-methionine was observed in only three strains. The cystathionine lyase activities of Lactobacillus reuteri DSM20016, Lactococcus lactis subsp. cremoris MG1363, Brevibacterium linens 10 and Corynebacterium ammoniagenes 8 and the L-methionine aminotransferase activity of Lact. reuteri DSM20016 had temperature and pH optima of 30-45 degrees C, and 7.5-8.0, respectively. As shown by the quadratic response surface methodology these enzymes retained activities in the range of temperature, pH and NaCl concentration which characterized the cheeses from which the bacteria originated. CONCLUSION: The enzyme activities may have a role in flavour development during cheese ripening. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge about the amino acid catabolic enzymes in order to improve cheese ripening.  相似文献   

20.
For studying the microbiota of four Danish surface-ripened cheeses produced at three farmhouses and one industrial dairy, both a culture-dependent and culture-independent approach were used. After dereplication of the initial set of 433 isolates by (GTG)5-PCR fingerprinting, 217 bacterial and 25 yeast isolates were identified by sequencing of the 16S rRNA gene or the D1/D2 domain of the 26S rRNA gene, respectively. At the end of ripening, the cheese core microbiota of the farmhouse cheeses consisted of the mesophilic lactic acid bacteria (LAB) starter cultures Lactococcus lactis subsp. lactis and Leuconostoc mesenteorides as well as non-starter LAB including different Lactobacillus spp. The cheese from the industrial dairy was almost exclusively dominated by Lb. paracasei. The surface bacterial microbiota of all four cheeses were dominated by Corynebacterium spp. and/or Brachybacterium spp. Brevibacterium spp. was found to be subdominant compared to other bacteria on the farmhouse cheeses, and no Brevibacterium spp. was found on the cheese from the industrial dairy, even though B. linens was used as surface-ripening culture. Moreover, Gram-negative bacteria identified as Alcalignes faecalis and Proteus vulgaris were found on one of the farmhouse cheeses. The surface yeast microbiota consisted primarily of one dominating species for each cheese. For the farmhouse cheeses, the dominant yeast species were Yarrowia lipolytica, Geotrichum spp. and Debaryomyces hansenii, respectively, and for the cheese from the industrial dairy, D. hansenii was the dominant yeast species. Additionally, denaturing gradient gel electrophoresis (DGGE) analysis revealed that Streptococcus thermophilus was present in the farmhouse raw milk cheese analysed in this study. Furthermore, DGGE bands corresponding to Vagococcus carniphilus, Psychrobacter spp. and Lb. curvatus on the cheese surfaces indicated that these bacterial species may play a role in cheese ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号