首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Serotonin regulates aggressive behavior. The production or release of serotonin is sexually dimorphic and related to social rank in many species. We examined serotonin expression in the central posterior/prepacemaker nucleus (CP/PPn) of the electric fish Apteronotus leptorhynchus. The CP/PPn is a thalamic nucleus that controls agonistic and reproductive electrocommunication signals known as chirps and gradual frequency rises. In parts of the CP/PPn that control chirping, females had more than twice as many serotonergic fibers and terminals as did males. Serotonin immunoreactivity in chirp-controlling areas of the CP/PPn was also negatively correlated with two indicators of dominance: electric organ discharge (EOD) frequency and body mass. Within sexes, the negative correlation between EOD frequency and serotonergic innervation of the PPn was significant in females, but not in males. Females with higher EOD frequencies had less serotonin in the CP/PPn than did females with lower EOD frequencies. Thus, the CP/PPn contained more serotonin in females than in males, and in particular, more serotonin in females with EOD frequencies typical of social subordinates than in females with EOD frequencies typical of social dominants. These results, combined with previous findings that serotonin inhibits chirping and that females chirp much less than males, suggest that serotonin may link sex, social rank, and the production of agonistic communication signals. The relative simplicity of the neural circuits that control the EOD and chirping make the electromotor system well-suited for studying the cellular, physiological, and behavioral mechanisms by which serotonin modulates agonistic communication.  相似文献   

2.
Some gymnotiform electric fish modulate their electric organ discharge for intraspecific communication. In Apteronotus leptorhynchus, chirps are usually rapid (10-30 ms) modulations that are activated through non- N-methyl- d-aspartate (non-NMDA) glutamate receptors in the hindbrain pacemaker nucleus. Males produce longer chirp types than females and chirp at higher rates. In Apteronotus albifrons, chirp rate is sexually monomorphic, but chirp structure (change in frequency and amplitude during a chirp) was unknown. To better understand the neural regulation and evolution of chirping behavior, we compared chirp structure in these two species under identical stimulus regimes. A. albifrons, like A. leptorhynchus, produced distinct types of chirps that varied, in part, by frequency excursion. However, unlike in A. leptorhynchus, chirp types in A. albifrons varied little in duration, and chirps were all longer (70-200 ms) than those of A. leptorhynchus. Chirp type production was not sexually dimorphic in A. albifrons, but within two chirp types males produced longer chirps than females. We suggest that species differences in chirp duration might be attributable to differences in the relative proportions of fast-acting (non-NMDA) and slow-acting (NMDA) glutamate receptors in the pacemaker. Additionally, we map species difference onto a phylogeny and hypothesize an evolutionary sequence for the diversification of chirp structure.  相似文献   

3.
The South American weakly-electric knifefish (Apteronotidae) produce highly diverse and readily quantifiable electrocommunication signals. The electric organ discharge frequency (EODf), and EOD modulations (chirps and gradual frequency rises (GFRs)), vary dramatically across sexes and species, presenting an ideal opportunity to examine the proximate and ultimate bases of sexually dimorphic behavior. We complemented previous studies on the sexual dimorphism of apteronotid communication signals by investigating electric signal features and their hormonal correlates in Apteronotus bonapartii, a species which exhibits strong sexual dimorphism in snout morphology. Electrocommunication signals were evoked and recorded using a playback paradigm, and were analyzed for signal features including EOD frequency and the structure of EOD modulations. To investigate the androgenic correlates of sexually dimorphic EOD signals, we measured plasma concentrations of testosterone and 11-ketotestosterone. A. bonapartii responded robustly to stimulus playbacks. EODf was sexually monomorphic, and males and females produced chirps with similar durations and amounts of frequency modulation. However, males were more likely than females to produce chirps with multiple frequency peaks. Sexual dimorphism in apteronotid electrocommunication signals appears to be highly evolutionarily labile. Extensive interspecific variation in the magnitude and direction of sex differences in EODf and in different aspects of chirp structure suggest that chirp signals may be an important locus of evolutionary change within the clade. The weakly-electric fish represent a rich source of data for understanding the selective pressures that shape, and the neuroendocrine mechanisms that underlie, diversity in the sexual dimorphism of behavior.  相似文献   

4.
In this study we examined electrocommunication behavior in Sternarchogiton nattereri (Apteronotidae), a weakly electric fish from South America. We focused on variation between females and males lacking external dentition and used playbacks of simulated conspecifics to elicit chirps (modulations of their electric organ discharge, EOD). Chirp responses were not affected by the frequency of the playback stimulus. EOD frequency, chirp rate, and chirp duration were not sexually dimorphic; however, the amount of chirp frequency modulation was significantly greater in toothless males than in females. These results reinforce that sex differences in chirp structure are highly diverse and widespread in the Apteronotidae.  相似文献   

5.
Behavior in electric fish includes modulations of a stereotyped electric organ discharge (EOD) in addition to locomotor displays. Gymnotiformes can modulate the EOD rate to produce signals that participate in different behaviors. We studied the reproductive behavior of Brachyhypopomus pinnicaudatus both in the wild and laboratory settings. During the breeding season, fish produce sexually dimorphic social electric signals (SES): males emit three types of chirps (distinguished by their duration and internal structure), and accelerations, whereas females interrupt their EOD. Since these SES imply EOD frequency modulations, the pacemaker nucleus (PN) is involved in their generation and constitutes the main target organ to explore seasonal and sexual plasticity of the CNS. The PN has two types of neurons, pacemakers and relays, which receive modulatory inputs from pre-pacemaker structures. These neurons show an anisotropic rostro-caudal and dorso-ventral distribution that is paralleled by different field potential waveforms in distinct portions of the PN. In vivo glutamate injections in different areas of the PN provoke different kinds of EOD rate modulations. Ventral injections produce chirp-like responses in breeding males and EOD interruptions in breeding females, whereas dorsal injections provoke EOD frequency rises in both sexes. In the non-breeding season, males and females respond with interruptions when stimulated ventrally and frequency rises when injected dorsally. Our results show that changes of glutamate effects in the PN could explain the seasonal and sexual differences in the generation of SES. By means of behavioral recordings both in the wild and in laboratory settings, and by electrophysiological and pharmacological experiments, we have identified sexual and seasonal plasticity of the CNS and explored its underlying mechanisms.  相似文献   

6.
Weakly electric "wave" fish make highly regular electric organ discharges (EODs) for precise electrolocation. Yet, they modulate the ongoing rhythmicity of their EOD during social interactions. These modulations may last from a few milliseconds to tens of minutes. In this paper we describe the different types of EOD modulations, what they may signal to recipient fish, and how they are generated on a neural level. Our main conclusions, based on a species called the brown ghost (Apteronotus leptorhynchus) are that fish: (1) show sexual dimorphism in the signals that they generate; (2) make different signals depending on Whether they are interacting with a fish of the opposite sex or, within their own sex, to a fish of that which is dominant or subordinate to it; (3) are able to assess relative dominance from electrical cues; (4) have a type of plasticity in the pacemaker nucleus, the control center for the EOD, that occurs after stimulation of NMDA receptors that causes a long-lasting (tens of minutes to hours) change in EOD frequency; (5) that this NMDA receptor-dependent change may occur in reflexive responses, like the jamming avoidance response (JAR), as well as after certain long-lasting social signals. We propose that NMDA-receptor dependent increases in EOD frequency during the JAR adaptively shift the EOD frequency to a new value to avoid jamming by another fish and that such increases in EOD frequency during social encounters may be advantageous since social dominance seems to be positively correlated with EOD frequency in both sexes.  相似文献   

7.
The weakly electric fish, Apteronotus leptorhynchus, produces a wave-like electric organ discharge (EOD) utilized for electrolocation and communication. Both sexes communicate by emitting chirps: transient increases in EOD frequency. In males, chirping behavior and the jamming avoidance response (JAR) can be evoked by an artificial EOD stimulus delivered to the water at frequencies 1–10 Hz below the animal's own EOD. In contrast, females rarely chirp in response to this stimulus even though they show consistent JARs. To investigate whether this behavioral difference is hormone dependent, we implanted females with testosterone (T) and monitored their chirping activity over a 5 week period. Our findings indicate that elevations in blood levels of T cause an enhancement of chirping behavior and a lowering of basal EOD frequency in females. Elevated blood levels of T also appear to modulate the quality of chirps produced by hormone treated females. The effects of T on female chirping behavior and basal EOD frequency appear specific, since the magnitude of the JAR was not affected by the hormonal treatment. These findings suggest that seasonal changes in circulating concentrations of T may regulate behavioral changes in female chirping behavior and basal EOD frequency.Abbreviations DHT dihydrotestosterone - E estradiol - EOD elecdric organ discharge - GSI gonadal size index - JAR jamming avoidance response - PPn prepacemaker nucleus - T testosterone  相似文献   

8.
Sex steroids were initially defined by their actions shaping sexually dimorphic behavioral patterns. More recently scientists have begun exploring the role of steroids in determining sex differences in behavioral plasticity. We investigated the role of androgens in potentiating circadian, pharmacological, and socially-induced plasticity in the amplitude and duration of electric organ discharges (EODs) of female gymnotiform fish. We first challenged female fish with injections of serotonin (5-HT) and adrenocorticotropic hormone (ACTH), and with social encounters with female and male conspecifics to characterize females' pre-implant responses to each treatment. Each individual was then implanted with a pellet containing dihydrotestosterone (DHT) concentrations of 0.0, 0.03, 0.1, 0.3, or 1.0 mg 10 g− 1 body weight. We then repeated all challenges and compared each female's pre- and post-implant responses. The highest implant dose enhanced EOD duration modulations in response to all challenge types, responses to male challenge were also greater at the second highest dose, and responses to ACTH challenge were enhanced in females receiving all but the smallest dose (and blank) implants. Alternatively, amplitude modulations were enhanced only during female challenges and only when females received the highest DHT dose. Our results highlight the differential regulation of EOD duration and amplitude, and suggest that DHT enhanced the intrinsic plasticity of the electrogenic cells that produce the EOD rather than modifying behavioral phenotypes. The relative failure of DHT to enhance EOD amplitude plasticity also implies that factors other than androgens are involved in regulating/promoting male-typical EOD circadian rhythms and waveform modulations displayed in social contexts.  相似文献   

9.
Weakly electric fish communicate with brief electrostatic field pulses called electric organ discharges (EODs). EOD waveforms are sexually dimorphic in most genera, a condition thought to result from mate choice acting to shape the electric signal's constituent action potentials. We have no direct behavioural evidence that sexual selection by either mate choice or intrasexual competition is responsible for sex differences in the EOD waveforms of electric fish. We explored sexual selection in electric fish by conducting two-choice unforced preference tests with live, unaltered gymnotiform electric fish,Brachyhypopomus pinnicaudatus , which are sexually dimorphic. In the initial test, gravid females selected males over females only when the males were larger than average. Gravid females in later tests preferred larger males to smaller males in a significant majority of those trials in which they showed a preference. In about one-third of those trials, females spawned with their preferred male, confirming their preference. We concluded that passage through the choice apparatus was related to mate choice. The signals of chosen males had larger EOD amplitudes and longer EOD durations. These findings show that femaleB. pinnicaudatus do have a preference for a certain male phenotype. The system requires additional study to dissociate correlated male phenotypic characters to identify which male traits the female prefers. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

10.
The cyclic enrichment of behavioral repertoires is a common event in seasonal breeders. Breeding males Brachyhypopomus gauderio produce electric organ discharge (EOD) rate modulations called chirps while females respond with interruptions. The electromotor system is commanded by a pacemaker nucleus (PN) which sets the basal rate and produces the rate modulations. We focused on identifying functional, seasonal and sexual differences in this nucleus in correlation to these differences in behavior. The in vivo response to glutamate injection in the PN was seasonal, sexually dimorphic and site specific. Non-breeding adults and breeding females injected in dorsal and ventral sites generated EOD rate increases and interruptions, respectively. Reproductive males added a conspicuous communication signal to this repertoire. They chirped repetitively when we injected glutamate in a very restricted area of the ventral–rostral nucleus, surprisingly one with a low number of relay cell somata. This study shows that the PN is functionally organized in regions in a caudal–rostral axis, besides the previously documented dorsal–ventral division. Functional regions are revealed by seasonal changes that annually provide this nucleus with the cellular mechanisms that allow the bursting activity underlying chirp production, only in males.  相似文献   

11.
1. The weakly electric gymnotiform fish, Apteronotus leptorhynchus, can be induced to perform a variety of modulations of its quasi-sinusoidal, electric organ discharge (EOD) in acute physiological preparations. These modulations, many of which are communicatory in function, include the jamming avoidance response (JAR). We have recorded intracellularly from neurons of the medullary pacemaker nucleus which is responsible for maintaining the ongoing EOD frequency during these modulatory behaviors. 2. We have used dye-filled microelectrodes to characterize single cell morphology of the two types of cells in the pacemaker nucleus (relay and pacemaker cells) and to localize anatomically the site of the differing responses we see during frequency modulations. We have also recorded with KCl-filled electrodes and attributed these data to cell type and location on the basis of characteristic behavior during these modulations. 3. Much of our data deals with chirps, brief accelerations of the EOD frequency lasting 10 to 14 ms. We see distinct patterns of activity in the pacemaker nucleus corresponding to different anatomical locations: the relay cell soma and axon, and the pacemaker cell soma and axon. Most of these loci show a marked rise in baseline voltage during the acceleration in spike frequency. The most unusual of these is the pacemaker cell axon which displays an often extreme decline in spike amplitude concurrent with the chirp (Fig. 7A). 4. 'Yodeling' (Dye 1987) appears to involve similar, characteristic changes in the pattern of firing as those seen during chirping. Similar quantitative analyses suggest that the JAR involves a different mechanism, however.  相似文献   

12.
Weakly electric fish such as Sternopygus macrurus utilize a unique signal production system, the electric organ (EO), to navigate within their environment and to communicate with conspecifics. The electric organ discharge (EOD) generated by the Sternopygus electric organ is quasi-sinusoidal and sexually dimorphic; sexually mature males produce long duration EOD pulses at low frequencies, whereas mature females produce short duration EOD pulses at high frequencies. EOD frequency is set by a medullary pacemaker nucleus, while EOD pulse duration is determined by the kinetics of Na+ and K+ currents in the electric organ. The inactivation of the Na+ current and the activation of the delayed rectifying K+ current of the electric organ covary with EOD frequency such that the kinetics of both currents are faster in fish with high (female) EOD frequency than those with low (male) EOD frequencies. Dihydrotestosterone (DHT) implants masculinize the EOD centrally by decreasing frequency at the pacemaker nucleus (PMN). DHT also acts at the electric organ, broadening the EO pulse, which is at least partly due to a slowing of the inactivation kinetics of the Na+ current. Here, we show that chronic DHT treatment also slows the activation and deactivation kinetics of the electric organ's delayed rectifying K+ current. Thus, androgens coregulate the time-varying kinetics of two distinct ion currents in the EO to shape a sexually dimorphic communication signal.  相似文献   

13.
Electric organ discharge (EOD) frequency in the brown ghost knifefish (Apteronotus leptorhynchus) is sexually dimorphic, steroid-regulated, and determined by the discharge rates of neurons in the medullary pacemaker nucleus (Pn). We pharmacologically characterized ionic currents that regulate the firing frequency of Pn neurons to determine which currents contribute to spontaneous oscillations of these neurons and to identify putative targets of steroid action in regulating sexually dimorphic EOD frequency. Tetrodotoxin (TTX) initially reduced spike frequency, and then reduced spike amplitude and stopped pacemaker activity. The sodium channel blocker muO-conotoxin MrVIA also reduced spike frequency, but did not affect spike amplitude or production. Two potassium channel blockers, 4-aminopyridine (4AP) and kappaA-conotoxin SIVA, increased pacemaker firing rates by approximately 20% and then stopped pacemaker firing. Other potassium channel blockers (tetraethylammonium, cesium, alpha-dendrotoxin, and agitoxin-2) did not affect the pacemaker rhythm. The nonspecific calcium channel blockers nickel and cadmium reduced pacemaker firing rates by approximately 15-20%. Specific blockers of L-, N-, P-, and Q-type calcium currents, however, were ineffective. These results indicate that at least three ionic currents-a TTX- and muO-conotoxin MrVIA-sensitive sodium current; a 4AP- and kappaA-conotoxin SIVA-sensitive potassium current; and a T- or R-type calcium current-contribute to the pacemaker rhythm. The pharmacological profiles of these currents are similar to those of currents that are known to regulate firing rates in other spontaneously oscillating neural circuits.  相似文献   

14.
Central pattern generators play a critical role in the neural control of rhythmic behaviors. One of their characteristic features is the ability to modulate the oscillatory output. An important yet little‐studied type of modulation involves the generation of oscillations that are sexually dimorphic in frequency. In the weakly electric fish Apteronotus leptorhynchus, the pacemaker nucleus serves as a central pattern generator that drives the electric organ discharge of the fish in a one‐to‐one fashion. Males discharge at higher frequencies than females—a sexual dimorphism that develops under the influence of steroid hormones. The two principal neurons that constitute the oscillatory network of the pacemaker nucleus are the pacemaker and relay cells. Whereas the number and size of the pacemaker and relay cells are sexually monomorphic, pronounced sex‐dependent differences exist in the morphology, and subcellular properties of astrocytes, which form a syncytium closely associated with these neurons. In females, compared to males, the astrocytic syncytium covers a larger area surrounding the pacemaker and relay cells and exhibits higher levels of expression of connexin‐43 expression. The latter indicates a strong gap‐junction coupling of the individual cells within the syncytium. It is hypothesized that these sex‐specific differences result in an increased capacity for buffering of extracellular potassium ions, thereby lowering the potassium equilibrium potential, which, in turn, leads to a decrease in the oscillation frequency. This hypothesis has received strong support from simulations based on computational models of individual neurons and the whole neural network of the pacemaker nucleus.  相似文献   

15.
Attachment organs are known in certain teleosts but have not been reported in gymnotiforms. This study demonstrates the presence and describes the structure of attachment organs in three species of gymnotiforms: the apteronotids Apteronotus albifrons and A. leptorhynchus , and the rhamphichthyid Rhamphichthys sp. Attachment organs are present only during the first few days after hatching. Organs were studied with light microscopy, SEM, and TEM. In all three species attachment organs are restricted to the head region. They consist of numerous individual attachment cells and modified epithelial cells distributed on the frontal, lateral, and dorsal head area. Only the apical parts of the attachment cells reach the body surface between the epithelium of the epidermis. Attachment cells contain considerable amounts of rough ER and Golgi vesicles filled a the glutinous substance. Epithelial cells in the area in which attachment cells are developed differ in structure from those on the rest of the body and form a functional complex with the attachment cells. In the two Apteronotus species they possess 4–10 μm long projections that are located in the cell centre in A. albifrons , but are slightly shifted to one side of the cells in A. leptorhynchus . Epithelial cells in the organ area of Rhamphichthys sp. lack any projections and resemble cells of the trunk region. However, their pattern of microridges on the outer cell surface is more pronounced and conspicuous. Projections along with modified microridges may aid in distributing and focusing adhesive substances released by attachment cells, and thus may enhance adhesive properties.  相似文献   

16.
Brown ghost knife fish, Apteronotus leptorhynchus, produce sexually dimorphic, androgen-sensitive electrocommunication signals termed chirps. The androgen regulation of chirping has been studied previously by administering exogenous androgens to females and measuring the chirping response to artificial electrical signals. The present study examined the production of chirps during dyadic interactions of fish and correlated chirp rate with endogenous levels of one particular androgen, 11-ketotestosterone (11KT). Eight males and four females were exposed to short-term (5-min) interactions in both same-sex and opposite-sex dyads. Twenty-four hours after all behavioral tests, fish were bled for determination of plasma 11KT levels. Males and females differed in both their production of chirps and their ability to elicit chirps from other fish: males chirped about 20-30 times more often than females and elicited 2-4 times as many chirps as females. Among males, chirp rate was correlated positively with plasma 11KT, electric organ discharge frequency, and body size. Combined with results from experimental manipulation of androgen levels, these results support the hypothesis that endogenous 11KT levels influence electrocommunication behavior during interactions between two male fish.  相似文献   

17.
The African electric fish Gymnarchus niloticus rhythmically emits electric organ discharges (EODs) for communication and navigation. The EODs are generated by the electric organ in the tail in response to the command signals from the medullary pacemaker complex, which consists of a pacemaker nucleus (PN), two lateral relay nuclei (LRN) and a medial relay nucleus (MRN). The premotor structure and its modulatory influences on the pacemaker complex have been investigated in this paper. A bilateral prepacemaker nucleus (PPn) was found in the area of the dorsal posterior nucleus (DP) of the thalamus by retrograde labeling from the PN. No retrogradely labeled neurons outside the pacemaker complex were found after tracer injection into the LRN or MRN. Accordingly, anterogradely labeled terminal fibers from PPn neurons were found only in the PN. Iontophoresis of l-glutamate into the region of the PPn induced EOD interruptions. Despite the exclusive projection of the PPn neurons to the PN, extracellular and intracellular recordings showed that PN neurons continue their firing while MRN neurons ceased their firing during EOD interruption. This mode of EOD interruption differs from those found in any other weakly electric fishes in which EOD cessation mechanisms have been known.  相似文献   

18.
In several species of electric fish with a sex difference in their pulse-type electric organ discharge (EOD), the action potential-generating cells of the electric organ (electrocytes) of males are larger and more invaginated compared to females. Androgen treatment of females and juveniles produces a longer-duration EOD pulse that mimics the mature male EOD, with a concurrent increase in electrocyte size and/or membrane infolding. In Sternopygus macrurus, which generates a wave-type EOD, androgen also increases EOD pulse duration. To investigate possible morphological correlates of hormone-dependent changes in EOD in Sternopygus, we examined electric organs from both fish collected in the field, and untreated and androgen-treated specimens in the laboratory. The electrocytes are cigar shaped, with prominent papillae on the posterior, innervated end. Electrocytes of field-caught specimens were significantly larger in all parameters than were electrocytes of specimens maintained in the laboratory. EOD pulse duration and frequency were highly correlated, and were significantly different between the sexes in sexually mature fish. Nevertheless, no sex difference in electrocyte morphology was observed, nor did any parameters of electrocyte morphology correlate with EOD pulse duration or frequency. Further, whereas androgen treatment significantly lowered EOD frequency and broadened EOD pulse duration, there was no difference in electrocyte morphology between hormone-treated and control groups. Thus, in contrast to results from studies on both mormyrid and gymnotiform pulse fish, electrocyte morphology is not correlated with EOD waveform characteristics in the gymnotiform wave-type fish Sternopygus. The data, therefore, suggest that sex differences in EOD are dependent on changes in active electrical properties of electrocyte membranes.  相似文献   

19.
Brown ghost knife fish, Apteronotus leptorhynchus, continually emit a weakly electric discharge that serves as a communication signal and is sensitive to sex steroids. Males modulate this signal during bouts of aggression by briefly (approximately 15 ms) increasing the discharge frequency in signals termed "chirps." The present study examined the effects of short-term (1-7 days) and long-term (6-35 days) male-male interaction on the continuous electric organ discharge (EOD), chirping behavior, and plasma levels of cortisol and two androgens, 11-ketotestosterone (11KT) and testosterone. Males housed in isolation or in pairs were tested for short-term and long-term changes in their EOD frequency and chirping rate to standardized sinusoidal electrical stimuli. Within 1 week, chirp rate was significantly higher in paired fish than in isolated fish, but EOD frequency was equivalent in these two groups of fish. Plasma cortisol levels were significantly higher in paired fish than in isolated fish, but there was no difference between groups in plasma 11KT levels. Among paired fish, cortisol levels correlated positively with chirp rate. To determine whether elevated cortisol can cause changes in chirping behavior, isolated fish were implanted with cortisol-filled or empty Silastic tubes and tested for short-term and long-term changes in electrocommunication signals and steroid levels. After 2 weeks, fish that received cortisol implants showed higher chirp rates than blank-implanted fish; there were no difference between groups in EOD frequency. Cortisol implants significantly elevated plasma cortisol levels compared to blank implants but had no effect on plasma 11KT levels. These results suggest that male-male interaction increases chirp rate by elevating levels of plasma cortisol, which, in turn, acts to modify neural activity though an 11KT-independent mechanism.  相似文献   

20.
Adult males of African weakly discharging electric fish (family: Mormyridae) are distinguished from juveniles and adult females by a dorsally directed indentation of the posterior ventral body wall and by massive bone expansion of the bases of a select number of anal-fin rays. These sexually dimorphic structures seem to facilitate the anal-fin reflex that is displayed during courtship when the male envelopes its anal fin around the female's to form a common spawning pouch. Expanded bone could provide additional surface for muscle attachment and thus assist in part with the courtship sequence. Based on the fact that the expression of the male sexually dimorphic electric organ discharge (EOD) is under androgen control, and that the female EOD can be masculinized through testosterone administration, we hypothesized that androgens should also drive anal-fin ray bone expansion in male mormyrids and equally effect male-like changes in treated juveniles and adult females. Exogenous androgen treatment (17α-methyltestosterone) of adult femaleBrienomyrus nigerresulted in a male-like EOD, and male-typical structural transformations (body wall indentation and anal-fin ray bone expansion). Some of these changes were immediate and receded following hormone withdrawal (EOD), while others developed more slowly and were apparently permanent (indentation and bone formation). 17α-Methyltestosterone administration affected only those targets in females that are normally involved in the male's reproductive behavior, i.e., its courtship signal (EOD) and two morphological features (body-wall indentation and bone expansion). Rays of the dorsal or caudal fins were never affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号