首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Damsma  H C Fibiger 《Life sciences》1991,48(25):2469-2474
The effects of the general anaesthetics pentobarbital, chloral hydrate, and halothane on interstitial concentrations of acetylcholine (ACh) in rat striatum were determined using in vivo microdialysis. All 3 anaesthetics decreased ACh. Emergence from anaesthesia coincided with a recovery of ACh to about 80% of basal values. Pentobarbital increased choline in a profile that was the mirror image of ACh. Chloral hydrate had a biphasic effect on choline, consisting of a shortlasting (20 min) initial decrease followed by an increase. When halothane anaesthetized rats were subjected to forced hypothermia by placing them on ice for 30 min, ACh release was further depressed whereas choline was greatly increased. These finding demonstrate that general anaesthetics decrease extracellular concentrations of ACh in the rat striatum and that this effect can be exacerbated by hypothermia.  相似文献   

2.
Methane production from pyruvate by mixed rumen bacteria in vitro was nearly totally inhibited by chloral hydrate (0.1 mumole/ml of incubation fluid). This effect was accompanied by an accumulation of gaseous hydrogen and an increase in propionic acid production. Infusion of chloral hydrate (4 g/day) into the rumen of a sheep produced the same effects. Evidence is presented for a direct toxic effect of chloral hydrate upon methane bacteria. Results are discussed in terms of fermentation balances.  相似文献   

3.
—A superfusion system has been used to examine the effects of choline and the utilization of [3H]choline during resting and potassium-stimulated release of ACh from rat cerebrum slices. The rate of ACh release from unstimulated tissue, 0·25 nmol/g per min, increased 8-fold when the concentration of KCl in the superfusing medium was increased from 5 to 50 mm . This rate was not maintained, however, but gradually declined to one-half the peak rate after approx. 30 min. After an initial washout period, choline was released at a rate of 2·5-5 nmol/g per min, which was equal to 1-2 × 10?6m in the superfusate. The addition of 1 × 10?5m -choline to the superfusing medium was required to maintain the stimulated ACh release at near peak rates for 90 min. When hemicholinium-3 was added to the 50 mm -KCl medium, the release of ACh reached a peak as usual but then declined to prestimulation rates. After introducing a pulse of radioactive choline in the superfusing medium, the specific radioactivity of choline and ACh in the superfusate was determined before and during stimulation with 50 mm -KCl. The specific radioactivity of released ACh was always greater than that of released choline; it decreased rapidly at the onset of stimulation, and then more gradually as stimulation proceeded. The specific radioactivity of ACh released in the initial minutes of stimulation was higher than that of ACh in the tissue before stimulation. In the last 10-20 min of stimulation the specific radioactivity of the released ACh was lower than that of the tissue ACh at the end of stimulation. The relative contributions of old and newly synthesized ACh to the releasable transmitter pool are discussed.  相似文献   

4.
The proper use of anesthetics in animal experimentation has been intensively studied. In this study we compared the use of chloral hydrate (500 mg kg(-1)) and ketamine (167 mg kg(-1)) combined with xylazine (33 mg kg(-1)) by the s.c. route in male Wistar rats. Chloral hydrate and ketamine/xylazine produced a depth of anesthesia and analgesia sufficient for surgical procedures. The decrease of systolic and diastolic blood pressure was of a higher magnitude in rats anesthetized with chloral hydrate than with ketamine/xylazine. The initial microvascular diameter and blood flow velocity did not differ between both agents. On the other hand, ketamine/xylazine reduced the heart rate more intensively than chloral hydrate. Both anesthetics promoted an increase in arterial pCO(2) and a decrease in pH levels compared to unanesthetized animals. The blood glucose levels were of a higher magnitude in rats after ketamine/xylazine anesthesia than after chloral hydrate. In mesenteric arterioles studied in vivo, ketamine/xylazine anesthesia reduced the constrictive effect of noradrenaline and the dilator effect of bradykinin. However, both anesthetics did not modify the vasodilator effect promoted by acetylcholine. Based on our data, we concluded that both anesthetics alter metabolic and hemodynamic parameters, however the use of chloral hydrate in studies of microvascular reactivity in vivo is more appropriate since ketamine/xylazine reduces the responses to vasoactive agents and increases blood glucose levels.  相似文献   

5.
Abstract: The purpose of these experiments was to determine if cholinergic agents affected the release of acetylcholine (ACh) from a synaptosomal preparation of the guinea pig ileum myenteric plexus. The synaptosomal preparation was first incubated with the precursor [3H]choline; subsequently, release of the stored [3H]ACh was measured. The release was decreased by oxotremorine or exogenous ACh plus hexamethonium and increased by exogenous ACh plus atropine. The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) evoked release that was inhibited by nicotinic antagonists or muscarinic agonists. Release was stimulated half-maximally by approximately 2 μ m - and maximally by 10 μ m -DMPP. Either in the absence of calcium or at 0°C, DMPP was without effect. The effect of 10 μ m -DMPP was brief, a significant stimulation occurring only within the first 2 min at 37°C. Tetrodotoxin also inhibited excitation by DMPP but not completely. Thus, the release of [3H]ACh appears to be presynaptically modulated, negatively by muscarinic agonists and positively by nicotinic agonists.  相似文献   

6.
Abstract: Ouabain, an Na+,K+-ATPase inhibitor, increases the release of acetylcholine (ACh) from various preparations in a Ca2+-independent way. However, in other preparations the release of ACh evoked by ouabain is dependent on the presence of extracellular calcium. In the present study, we have labeled the ACh of myenteric plexus longitudinal muscles of guinea pig ileum and compared the effect of calcium channel blockers on ouabain-evoked release of [3H]ACh. Release of [3H]ACh evoked by ouabain is dose dependent and decreased markedly in the absence of calcium or in the presence of cadmium, a nonspecific calcium channel blocker. N-type calcium channel blockage by the ω-conotoxins GVIA (selective N-type calcium channel blocker) and MVIIC (a nonselective calcium channel blocker) inhibited by 45 and 55%, respectively, the release of [3H]ACh. L-type calcium channel suppression by low concentrations of verapamil, nifedipine, and diltiazem had no effect on the release of [3H]ACh. The release of transmitter was also not affected significantly by nickel, a T-type calcium channel blocker. In addition, ω-agatoxin-IVA, at concentrations that block P- and Q-type calcium channels, did not affect significantly the release of [3H]ACh. Thus, extracellular Ca2+ is essential for the release of ACh induced by ouabain from guinea pig ileum myenteric plexus. In this preparation, the N-type calcium channel plays a dominant role in transmitter release evoked by inhibition of Na+,K+-ATPase, but other routes of calcium entry in addition to these channels can also support the release of neurotransmitter induced by ouabain.  相似文献   

7.
The release of striatal dopamine (DA) and its metabolites in response to locally-induced K+ depolarization was investigated in vivo in chloral hydrate-anesthetized and freely moving rats. KCl at concentrations of 30, 50, and 100 mM induced significant dose-dependent increases in extracellular DA overflow in both chloral hydrate-anesthetized and freely moving rats (P<0.05). Extracellular levels of dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were decreased. The DA overflow in response to 30 mM KCl stimulation in anesthetized rats was significantly greater than that in freely moving rats (P<0.05). In addition, chloral hydrate anesthesia resulted in a significant decrease in extracellular levels of DOPAC and significant increases in extracellular levels of HVA and 5-HIAA in comparison with freely moving rats (P<0.05). Furthermore, the basal level of extracellular HVA in chloral hydrateanesthetized rats was significantly higher than that in freely moving rats. These results suggest that chloral hydrate anesthesia could have significant effects on the pharmacological response of the striatal dopaminergic neurons.  相似文献   

8.
We evaluated ketoprofen, a nonsteroidal anti-inflammatory drug (NSAID), as an antinociceptive supplement to chloral hydrate anesthesia in mouse. Effects of ketoprofen on main olfactory bulb (MOB) neuronal spontaneous activity were investigated using extracellular recordings in mouse in vivo. These effects were compared with those of another nociceptive supplement, the mu-opioid agonist buprenorphine. Ketoprofen (100 or 200 mg/kg) did not significantly alter MOB single-unit spontaneous rates in either ICR or C57BL/6J mice. In contrast, buprenorphine, at doses of 0.02, 0.05, and 0.20 mg/kg, inhibited MOB neuronal spontaneous rates by 19%, 49%, and 57%, respectively. Neither drug altered the temporal patterning of single-unit spike trains, as measured by the interspike interval (ISI) coefficient of variation (CV). We also investigated the ability of ketoprofen and buprenorphine to induce antinociception in the anesthetized mouse. The electroencephalogram (EEG) was used to measure the anesthetic plane. Both ketoprofen and buprenorphine altered the EEG trace and ketoprofen altered the power spectrum in a manner consistent with deepening anesthesia. Lastly, when applied at the time of anesthesia induction, ketoprofen decreased the amount of chloral hydrate necessary to maintain a defined anesthetic plane during the rest of the experiment. These results suggest that ketoprofen induces antinociception under chloral hydrate anesthesia without significantly inhibiting spontaneous activity of MOB neurons. Ketoprofen is therefore suitable as an antinociceptive supplement to chloral hydrate anesthesia during in vivo electrophysiologic recordings of the mouse MOB.  相似文献   

9.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

10.
The effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol), a compound known to block the uptake of acetylcholine (ACh) into cholinergic synaptic vesicles, on the release of endogenous and [14C]ACh from slices of rat striatum was investigated. ACh release was evoked either by electrical stimulation or by veratridine. The effect of electrical stimulation was entirely dependent on external Ca2+. By contrast, veratridine (40 microM) also enhanced ACh release in the absence of Ca2+. Indeed, with veratridine two components were clearly distinguished: one dependent on external Ca2+ and the other not. Vesamicol inhibited [14C]ACh release evoked by both veratridine and electrical stimulation in the presence of external Ca2+, provided it was added to the tissue prior to loading with [14C]choline. With the same treatment vesamicol only slightly affected the release of endogenous ACh. Under the same conditions the Ca2(+)-independent [14C]ACh release evoked by veratridine was not prevented by vesamicol. The differential responsiveness to vesamicol suggests that ACh pools involved in Ca2+o-dependent ACh release are different from those mobilized during Ca2+o-independent ACh release.  相似文献   

11.
Abstract: Adult male Sprague-Dawley rats anesthetized with chloral hydrate and pentobarbital sodium were used as two different treatment groups. Conscious rats were used as a control group. By using baseline (precocaine) concentration as 100%, after cocaine administration (3.0 mg/kg i.v.), the maximal dopamine (DA) increase occurring at the first microdialysis collection period (20 min) in the medial prefrontal cortex was 299 ± 46% for the chloral hydrate group, 168 ± 12% for the pentobarbital sodium group, and 325 ± 23% for the conscious group. At the same time, norepinephrine (NA) increases reached a maximum and were 162 ± 20%, 100 ± 5%, and 141 ± 17%, respectively. The maximal changes of DA and NA in the chloral hydrate group and in the control group were both significantly higher than that in the pentobarbital sodium group. Meanwhile, the cocaine concentration was higher over a 100-min period of time in the chloral hydrate group when compared with the pentobarbital group and the control group. The peak cocaine concentration in dialysate occurred in the same time slot of maximal DA and NA responses, which were 0.65 ± 0.08, 0.30 ± 0.02, and 0.41 ± 0.05 µ M , respectively. Anesthetics suppress the pharmacologic response of neurons, which may explain the difference in catecholamine response between the pentobarbital sodium and the conscious groups. Conversely, because there was no significant difference in DA and NA response between the chloral hydrate group and the conscious group, it may possibly be due to the balancing effect between the higher existing cocaine concentration and the anesthetic suppression on pharmacological response of neurons in the chloral hydrate group. The effect of guide cannula implantation on the cocaine-induced catecholamine response was also evaluated.  相似文献   

12.
Vesamicol [2-(4-phenylpiperidino)cyclohexanol, formerly AH5183] at a concentration of 10 μM reduced by 16–20% the amount of vesicle-bound ACh in intact pieces of Torpedo electric organ (isolated prisms). When [14C]acetate was applied to prisms in the presence of 10 μM vesamicol, vesicular translocation of newly synthesized [14C]ACh was inhibited by 40%. During short trains of field shocks given at 10 Hz to the tissue, vesamicol inhibited by 93% the release of [14C]ACh, but left the release of prestored ACh unaltered. In spite of these alterations, 10 μM vesamicol did not impair nerve-electroplaque transmission, even after prolonged electrical stimulation and during a recovery period. It is concluded that in the Torpedo electric organ the actions of vesamicol on ACh metabolism have apparently little or no effect on the efficiency of synaptic transmission.  相似文献   

13.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

14.
Forskolin, 1 microM, increased acetylcholine (ACh)-stimulated 45Ca uptake by chromaffin cells. The stimulatory effects of forskolin decreased with increasing concentration of ACh. The attenuation of the effect of forskolin on 45Ca uptake as a function of ACh concentration correlated well with changes in the forskolin effect on ACh-evoked catecholamine (CA) release. Forskolin increased excess KCl- and veratrine-evoked CA release and 45Ca uptake. Forskolin by itself stimulated 45Ca efflux and enhanced ACh-, excess KCl-, and veratrine-stimulated 45Ca efflux. High doses of forskolin inhibited both ACh-evoked 45Ca uptake and CA release. The inhibitory action of forskolin was specific to receptor-mediated response because excess KCl- and veratrine-stimulated 45Ca uptake and CA release were not inhibited. Forskolin, 0.3-30 microM, dose-dependently increased caffeine-stimulated CA release and 45Ca efflux in the absence of Ca2+ in the medium, and the effects were mimicked by dibutyryl cyclic AMP. These results suggest that cyclic AMP increases stimulation-induced CA release by enhancing calcium uptake across the plasma membrane and/or altering calcium flux in an intracellular calcium store.  相似文献   

15.

Background

Exhaled pentane, which is produced as a consequence of reactive oxygen species-mediated lipid peroxidation, is a marker of oxidative stress. Propofol is widely used as a hypnotic agent in intensive care units and the operating room. Moreover, this agent has been reported to inhibit lipid peroxidation by directly scavenging reactive oxygen species. In this study, using a porcine liver ischemia-reperfusion injury model, we have evaluated the hypothesis that high concentrations of breath pentane are related to adverse outcome and that propofol could reduce breath pentane and improve liver injury and outcome in swine in this situation.

Methodology/Principal Findings

Twenty male swine were assigned to two groups: propofol (n = 10) and chloral hydrate groups (n = 10). Hepatic ischemia was induced by occluding the portal inflow vessels. Ischemia lasted for 30 min, followed by reperfusion for 360 min. Exhaled and blood pentane concentrations in the chloral hydrate group markedly increased 1 min after reperfusion and then decreased to baseline. Breath and blood pentane concentrations in the propofol group increased 1 min after reperfusion but were significantly lower than in the chloral hydrate group. A negative correlation was found between breath pentane levels and survival in the chloral hydrate group. The median overall survival was 251 min after reperfusion (range 150–360 min) in the chloral hydrate group. All of the swine were alive in the propofol group.

Conclusions

Monitoring of exhaled pentane may be useful for evaluating the severity of hepatic ischemia-reperfusion injury and aid in predicting the outcome; propofol may improve the outcome in this situation.  相似文献   

16.
S Atweh  J R Simon  M J Kuhar 《Life sciences》1975,17(10):1535-1544
Previous reports indicate that alterations of activity of cholinergic neurons in vivo are followed by parallel changes in sodium-dependent high affinity choline uptake in vitro. These results are consistent with the proposal that this portion of choline uptake is regulatory in the synthesis of ACh. These results also suggest the possibility of utilizing sodium-dependent high affinity choline uptake as a measure of the relative state of cholinergic activity in vivo. In this study, we administer a number of drugs reported to alter turnover and release of ACh (both are measures of cholinergic activity in vivo, and subsequently examine sodium-dependent high affinity choline uptake in vitro. Administration of pentobarbital, chloral hydrate, morphine, physostigmine, Δ9 THC, hemicholinium-3 and oxotremorine, drugs which decrease ACh turnover and release, caused a reduction in choline uptake. Conversely, administration of pentylenetetrazol, atropine, scopolamine, and haloperidol, drugs which increase ACh turnover and release, caused an increase in choline uptake in vitro. These findings support the proposal that sodium-dependent high affinity choline uptake can be used as a relative measure of the activity of cholinergic neurons in vivo.  相似文献   

17.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

18.
We have shown that aq. 100% (w/v) chloral hydrate (2,2,2-trichloroethane-1,1-diol) dissociates bovine heart cytochrome c oxidase. We have developed new procedures of polyacrylamide-gel electrophoresis in the presence of chloral hydrate that permit variation in the pH of the separation, and, by using these procedures, we have observed 15 components in preparations of the enzyme. This number contrasts with the eight bands that were seen on electrophoresis in the presence of SDS (sodium dodecyl sulphate) and urea. We have isolated material from these eight bands and have characterized each by electrophoresis in the presence of chloral hydrate. Twelve of the fifteen components that were seen by electrophoresis in chloral hydrate were identified as constituents of the eight bands seen by electrophoresis in the presence of SDS and urea. Two-dimensional electrophoretic separations confirmed these identifications ans showed that the other three components which were resolved as discrete bands by electrophoresis in the presence of chloral hydrate appeared to be diffusely present in the electrophoretic separations performed in the presence of SDS and urea, which suggested anomalous behaviour in that detergent. Trypsin treatment of cytochrome c oxidase caused total loss, as observed by electrophoretic separations in the presence of chloral hydrate, of a number of components. The trypsin-sensitive components included all of those that behaved anomalously in the presence of SDS and urea. Chloral hydrate is a potent non-ionic dissociating agent for cytochrome c oxidase and its use in polyacrylamide-gel electrophoresis, with variation in the pH of the gel, permits charge-dependent separations that should have general application in the analysis of membrane proteins.  相似文献   

19.
To elucidate the types of voltage-dependent Ca(2+) channels controlling ACh and catecholamine releases in the in vivo adrenal medulla, we implanted microdialysis probes in the left adrenal medulla of anesthetized rats and investigated the effects of Ca(2+) channel antagonists on ACh, norepinephrine, and epinephrine releases induced by nerve stimulation. The dialysis probes were perfused with Ringer solution containing a cholinesterase inhibitor, neostigmine. The left splanchnic nerves were electrically stimulated at 2 and 4 Hz before and after intravenous administration of Ca(2+) channel antagonists. omega-Conotoxin GVIA (an N-type Ca(2+) channel antagonist, 10 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 40%, norepinephrine release at 4 Hz by approximately 50%, and epinephrine release at 2 and 4 Hz by approximately 45%. A fivefold higher dose of omega-conotoxin GVIA (50 microg/kg) did not further inhibit these releases. omega-Conotoxin MVIIC (a P/Q-type Ca(2+) channel antagonist, 50 microg/kg) inhibited ACh and epinephrine releases at 4 Hz by approximately 30%. Combined omega-conotoxin GVIA (50 microg/kg) and MVIIC (250 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 70% and norepinephrine and epinephrine releases at 2 and 4 Hz by approximately 80%. Nifedipine (an L-type Ca(2+) channel antagonist, 300 and 900 microg/kg) did not change ACh release at 2 and 4 Hz; however, nifedipine (300 microg/kg) inhibited epinephrine release at 4 Hz by 20%, and nifedipine (900 microg/kg) inhibited norepinephrine and epinephrine releases at 4 Hz by 30%. In conclusion, both N- and P/Q-type Ca(2+) channels control ACh release on preganglionic splanchnic nerve endings while L-type Ca(2+) channels do not. L-type Ca(2+) channels are involved in norepinephrine and epinephrine releases on chromaffin cells.  相似文献   

20.
The effect of analgesically active opiate agonists dl-methadone, levorphanol, and their less active forms d-methadone and dextrorphan, respectively, were tested on, (a) the spontaneous release of cortical acetylcholine (ACh) in vivo; (b) the spontaneous and K+-evoked release of cortical ACh in vitro. The injections of dl-methadone, but not d-methadone, inhibited the output of ACh in vivo. Naloxone completely reversed this effect of methadone. Levorphanol in small doses inhibited, and in larger doses stimulated, the in vivo release of ACh. Both effects were antagonized by naloxone. Its dextroisomer dextrorphan was completely inactive. The in vitro release of ACh from cortical slices was inhibited by all four agents. The effects of analgesically active opiates dl-methadone and levorphanol on the in vitro release were not clearly separable from the effects of their inactive forms d-methadone and dextrorphan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号