首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
There is an urgent need for more efficient therapies for people infected with hepatitis C virus (HCV). HCV NS3 protease inhibitors have shown proof-of-concept in clinical trials, which make the virally encoded NS3 protease an attractive drug target. Product-based NS3 protease inhibitors comprising a P1 C-terminal carboxylic acid have shown to be effective and we were interested in finding alternatives to this crucial carboxylic acid group. Thus, a series of diverse P1 functional groups with different acidity and with possibilities to form a similar, or an even more powerful, hydrogen bond network as compared to the carboxylic acid were synthesized and incorporated into potential inhibitors of the NS3 protease. Biochemical evaluation of the inhibitors was performed in both enzyme and cell-based assays. Several non-acidic C-terminal groups, such as amides and hydrazides, were evaluated but failed to produce inhibitors more potent than the corresponding carboxylic acid inhibitor. The tetrazole moiety, although of similar acidity to a carboxylic acid, provided an inhibitor with mediocre potencies in both assays. However, the acyl cyanamide and the acyl sulfinamide groups rendered compounds with low nanomolar inhibitory potencies and were more potent than the corresponding carboxylic acid inhibitor in the enzymatic assay. Additionally, results from a pH-study suggest that the P(1) C-terminal of the inhibitors comprising a carboxylic acid, an acyl sulfonamide or an acyl cyanamide group binds in a similar mode in the active site of the NS3 protease.  相似文献   

2.
Inhibition of bacterial peptide deformylase by biaryl acid analogs   总被引:2,自引:0,他引:2  
Peptide deformylase is an essential eubacterial metalloenzyme involved in the maturation of proteins by cleaving the N-formyl group from N-blocked methionine polypeptides. Biaryl acid analogs containing tetrazole, acyl sulfonamide, or carboxylate pharmacophores were found to be potent inhibitors of recombinant Escherichia coli peptide deformylase. Two of these compounds, a biphenyl tetrazole, compound 1, and a biphenyl acyl sulfonamide, compound 4, were competitive inhibitors with K(i) values of 1.2 and 6.0 microM, respectively. By analogy to the binding of related compounds to other metalloenzymes such as Bacteroides fragilis metallo-beta-lactamase CcrA and human carbonic anhydrase, a mechanism of inhibition is proposed for these peptide deformylase inhibitors where the acidic moieties form direct ionic interactions with the active site metal cation.  相似文献   

3.
The synthesis of a new class of sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs), also possessing carboxylate/hydroxamate moieties in their molecule, is reported. These compounds may act on dual antitumor targets, the tumor-associated CA isozymes (CA IX) and some matrix metalloproteinases (MMPs). The compounds were prepared by an original method starting from iminodiacetic acid, and assayed as inhibitors of three isozymes, hCA I, II (cytosolic), and IX (transmembrane). The new derivatives showed weak inhibitory activity against isozyme I (K(I)s in the range of 95-8300 nM), were excellent to moderate CA II inhibitors (K(I)s in the range of 8.4-65 nM), and very good and selective CA IX inhibitors (K(I)s in the range of 3.8-26 nM). The primary sulfonamide moiety is a better zinc-binding group in the design of CAIs as compared to the carboxylate/hydroxamate one, but the presence of hydroxamate functionalities in the molecule of CAIs leads to selectivity for the tumor-associated isozyme IX over the ubiquitous, cytosolic isoform II.  相似文献   

4.
Bauhinia bauhinoides cruzipain inhibitor (BbCI) and Bauhinia bauhinioides kallikrein inhibitor (BbKI) are cysteine and serine proteinase inhibitors structurally homologous to plant Kunitz-type inhibitors, but are devoid of disulfide bridges. Based on cDNA sequences, we found that BbKI and BbCI are initially synthesized as a prepropeptide comprising an N-terminal signal peptide (19 residues), the mature protein (164 residues) and a C-terminal targeting peptide (10 residues). Partial cDNAs encoding the mature enzymes plus N-terminal His-tags and thrombin cleavage sites were expressed in E. coli and the soluble proteins were purified by one-step nickel affinity chromatography. After thrombin cleavage, both proteins exhibited potent inhibitory activities toward their cognate proteinases like the wild-type proteins. BbCI inhibits human neutrophil elastase ( K i(app) 5.3 nM), porcine pancreatic elastase ( K i(app) 40 nM), cathepsin G ( K i(app) 160 nM) and the cysteine proteinases cruzipain ( K i(app) 1.2 nM), cruzain ( K i(app) 0.3 nM) and cathepsin L ( K i(app) 2.2 nM), while BbKI strongly inhibits plasma kallikrein ( K i(app) 2.4 nM) and plasmin ( K i(app) 33 nM). Circular dichroism spectra of BbCI and BbKI were in agreement with the beta-trefoil fold described for Kunitz inhibitors. The inhibitory potency of both BbCI- and BbKI-type inhibitors suggests that other, non-covalent interactions may compensate for the lack of disulfide bridges.  相似文献   

5.
Synthesis of novel inhibitors of human IMP dehydrogenase is described. These inhibitors are isosteric methylenebis(sulfonamide) analogues 5-8 of earlier reported mycophenolic adenine methylenebis(phosphonate)s 1-3. The parent bis(phosphonate) 1 and its bis(sulfonamide) analogue 5 showed similar sub-micromolar inhibitory activity against IMPDH2 (K(i) approximately 0.2 microM). However, the bis(sulfonamide) analogues 6 and 8 substituted at the position 2 of adenine were approximately 3- to 10-fold less potent inhibitors of IMPDH2 (K(i)=0.3-0.4 microM) than the corresponding parent bis(phosphonate)s 2 and 3 (K(i)=0.04-0.11 microM), respectively.  相似文献   

6.
A library of cathepsin S inhibitors of the dipeptide nitrile chemotype, bearing a bioisosteric sulfonamide moiety, was synthesized. Kinetic investigations were performed at four human cysteine proteases, i.e. cathepsins S, B, K and L. Compound 12 with a terminal 3-biphenyl sulfonamide substituent was the most potent (Ki = 4.02 nM; selectivity ratio cathepsin S/K = 5.8; S/L = 67) and 24 with a 4′-fluoro-4-biphenyl sulfonamide substituent the most selective cathepsin S inhibitor (Ki = 35.5 nM; selectivity ratio cathepsin S/K = 57; S/L = 31). In silico design and biochemical evaluation emphasized the impact of the sulfonamide linkage on selectivity and a possible switch of P2 and P3 substituents with respect to the occupation of the corresponding binding sites of cathepsin S.  相似文献   

7.
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors.  相似文献   

8.
A series of aromatic sulfonamides incorporating indane moieties were prepared starting from commercially available 1- and 2-indanamine, and their activity as inhibitors of two carbonic anhydrase (CA, EC 4.2.1.1) isozymes, hCA I and II was studied. The new sulfonamides incorporating acetamido, 4-chloro-benzoyl, valproyl, tetra-, and pentafluorobenzoyl moieties acted as very potent inhibitors of the slow red blood cell isozyme hCA I (K(i)s in the range of 1.6-8.5 nM), which usually has a lower affinity for such inhibitors, as compared to isozyme II. Some derivatives also showed excellent hCA II inhibitory properties (K(i)s in the range of 2.3-12 nM), but the anticonvulsant activity of these sulfonamides was rather low as compared to that of other sulfonamide/sulfamate CA inhibitors, such as methazolamide. Furthermore, the 2-amino/acetamido-indane-5-sulfonic acids prepared during this work also showed interesting CA inhibitory properties, with inhibition constants in the range of 43-89 nM against the two isozymes, being among the most potent sulfonic acid CA inhibitors reported so far.  相似文献   

9.
The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with sulpiride, a sulfonamide derivative clinically used as antipsychotic drug, has been resolved at a resolution of 1.6 A. This compound is an effective inhibitor of the physiologically most relevant isozyme hCA II (K(i) of 40 nM), being only a moderate or moderate-weak inhibitor of the cytosolic isozyme hCA I (K(i) of 1200 nM) and the membrane-bound isozyme hCA IV (K(i) of 620 nM). Sulpiride shows CA inhibitory properties of the same magnitude as dichlorophenamide, a clinically used antiglaucoma sulfonamide, or valdecoxib, a COX-2 selective inhibitor recently shown to inhibit CA. The binding of sulpiride to the hCA II active site is similar to that of other sulfonamide inhibitors, considering the interactions of the sulfonamide zinc anchoring group, but differs considerably when the organic scaffold of the molecule is analyzed. Indeed, one unprecedented hydrogen bond involving the imino moiety of the carboxamido group of sulpiride and a water molecule was observed, together with a unique stacking interaction of the N-methyl-pyrrolidine ring of the inhibitor and the aromatic ring of Phe 131 of the enzyme active site, which has been observed only recently in another CA-sulfonamide complex.  相似文献   

10.
The hepatitis C virus (HCV) NS3 protease has emerged as a promising anti-HCV drug target. Herein, we present an investigation of NS3 inhibitors comprising the acyl sulfonamide functionality. A series of tetra- and tripeptide based acyl sulfonamide inhibitors and their structure-activity relationships from both enzymatic and cell-based in vitro assays are presented. In summary, the acidity of the acyl sulfonamide functionality, the character of the P1 side chain, and the acyl sulfonamide substituent were found to be important for the inhibitory potencies.  相似文献   

11.
A library of glycoconjugate benzenesulfonamides that contain diverse carbohydrate-triazole tails were investigated for their ability to inhibit the enzymatic activity of the three human transmembrane carbonic anhydrase (CA) isozymes hCA IX, hCA XII and hCA XIV. These isozymes have their CA domains located extracellularly, unlike the physiologically dominant hCA II, and are of immense current interest as druggable targets. Elevated expression of isozymes IX and XII is a marker for a broad spectrum of hypoxic tumors-this physiology may facilitate a novel approach to discriminate between healthy cells and cancerous cells. Many of these glycoconjugates were potent inhibitors (low nM), but importantly exhibited different isozyme selectivity profiles. The most potent hCA IX inhibitor was the glucuronic acid derivative 20 (K(i)=23nM). This compound was uniquely hCA IX selective cf. all other isozymes (16.4-, 16.8- and 4.6-fold selective against hCA II, XII, and XIV, respectively). At hCA XII there were many inhibitors with K(i)s<10nM that also demonstrated excellent selectivity (up to 344-fold) against other isozymes. Potent hCA XIV inhibitors were also identified, several with K(i)s approximately 10nM, however no hCA XIV-selective derivatives were evidenced from this library. The sugar tails of this study have shown promise as a valuable approach to both solubilize the aromatic sulfonamide CA recognition pharmacophore and to deliver potent inhibition and isozyme differentiation of the transmembrane CAs.  相似文献   

12.
Inhibitors that are structurally related to the transition-state model of the proposed SN1-type mechanism of sialyl transfer, exhibit particularly high binding affinities to alpha(2-6)sialyltransferases. Furthermore, replacing the neuraminyl residue with a simple aryl or hetaryl ring and substituting the carboxylate group for a phosphonate moiety, improves both binding affinity and synthetic accessibility. Herein we report on the synthesis and inhibition of a wide range of novel, potent transition-state analogue based alpha(2-6)sialyltransferase inhibitors comprising a planar anomeric carbon, an increased distance between the anomeric carbon and the CMP leaving group, and at least two negative charges. We also present a short, efficient asymmetric synthesis of the most promising benzyl inhibitors, providing rapid access to large quantities of highly potent, stereochemically-pure (>96% de) inhibitors for further biological investigation (e.g.(R)-3b, Ki = 70 nM).  相似文献   

13.
PMP-D2 and HI, two peptides from Locusta migratoria, were shown to belong to the family of tight-binding protease inhibitors. However, they interact weakly with bovine trypsin (K(i) around 100 nM) despite a trypsin-specific Arg at the primary specificity site P1. Here we demonstrate that they are potent inhibitors of midgut trypsins isolated from the same insect and of a fungal trypsin from Fusarium oxysporum (K(i) 相似文献   

14.
2-(2-Chloro-6-fluorophenyl)acetamides having 2,2-difluoro-2-aryl/heteroaryl-ethylamine P3 and oxyguanidine P1 substituents are potent thrombin inhibitors (K(i)=0.9-33.9 nM). 2-(5-Chloro-pyridin-2-yl)-2,2-difluoroethylamine was the best P3 substituent, yielding the most potent inhibitor (K(i)=0.7 nM). Replacing the P3 heteroaryl group with a phenyl ring or replacing the difluoro substitution with dimethyl or cyclopropyl groups in the linker reduced the affinity for thrombin significantly. The aminopyridine P1s also provided an increase in potency.  相似文献   

15.
The discovery of potent N-hydroxyl caprolactam matrix metalloproteinase (MMP) inhibitors (6) based on the natural product Cobactin-T (2) is described. The synthetic method, which utilizes the ring closing metathesis reaction, is compatible to provide complementary (R) and (S) enantiomers. These compounds tested against MMP-2 and 9, show that the R stereochemistry (i.e., 16), which is opposite for that found in the natural product Cobactin-T is >1000-fold more active with IC(50) values of 0.2-0.6nM against both enzymes. The variation in the incorporation of the sulfonamide enzyme recognition element (Ar(2)XAr(1)SO(2)N(R(1)), 6), along with alterations in the RCM/double bond chemistry (R(2)) provided a series of sub nanomolar MMP inhibitors. For example, compounds 16 and 34 were found to be the most potent with IC(50) values against MMP-2 and MMP-9 found to be between 0.2 and 0.6nM with 34 being the most potent compound discovered (MMP-2 IC(50)=0.39nM and MMP-9 IC(50)=0.22nM). Compounds 16 and 34 showed acceptable drug-like properties in vivo with compound 34 showing oral bioavailability.  相似文献   

16.
Three nonhydrolyzable aspartyl adenylate analogs have been prepared and tested as inhibitors of E. coli aspartyl-tRNA synthetase. 5'-O-[N-(L-Aspartyl)sulfamoyl]adenosine is a potent competitive inhibitor (K(i) = 15 nM) whereas L-aspartol adenylate is a weaker inhibitor (K(i) = 45 microM) with respect to aspartic acid. The corresponding ketomethylphosphonate (a novel isosteric replacement) is also a strong inhibitor (K(i) = 123 nM).  相似文献   

17.
The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with 4-methyl-5-perfluorophenylcarboximido-δ2-1,3,4-thiadiazoline-2-sulfonamide (PFMZ), a topically acting antiglaucoma sulfonamide, has been resolved at a resolution of 1.8?Å. This compound is almost 10 times more effective as a hCA II inhibitor (KI of 1.5?nM) compared to the lead molecule, methazolamide, a clinically used drug (KI of 14?nM). Its binding to the enzyme active site is similar to that of other sulfonamide inhibitors, considering the interactions of the sulfonamide zinc anchoring group and thiadiazoline ring contacts, but differs considerably when the perfluorobenzoylimino fragment of the molecule is analyzed. Indeed, several unprecedented strong hydrogen bonds involving the imino nitrogen, carbonyl oxygen, a fluorine atom in the ortho position of the inhibitor, and two water molecules, as well as Gln 92 of the enzyme active site were seen. A stacking interaction of the perfluorophenyl ring of the inhibitor and the aromatic ring of Phe 131 was also observed for the first time in a CA–sulfonamide adduct. All these findings prove that more potent CA inhibitors incorporating perfluoroaryl/alkyl tails may be designed, with potentially improved antiglaucoma properties, in view of the new types of interactions seen here between the enzyme and the perfluorobenzoylated analogue of methazolamide.  相似文献   

18.
The synthesis of 10-formyl-DDACTHF (3) as a potential inhibitor of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide ribonucleotide transformylase (AICAR Tfase) is reported. Aldehyde 3, the corresponding gamma- and alpha-pentaglutamates 21 and 25 and related agents were evaluated for inhibition of folate-dependent enzymes including GAR Tfase and AICAR Tfase. The inhibitors were found to exhibit potent cytotoxic activity (CCRF-CEM IC(50) for 3=60nM) that exceeded their enzyme inhibition potency [K(i) (3)=6 and 1 microM for Escherichia coli GAR and human AICAR Tfase, respectively]. Cytotoxicity rescue by medium purines, but not pyrimidines, indicated that the potent cytotoxic activity is derived from selective purine biosynthesis inhibition and rescue by AICAR monophosphate established that the activity is derived preferentially from GAR versus AICAR Tfase inhibition. The potent cytotoxic compounds including aldehyde 3 lost activity against CCRF-CEM cell lines deficient in the reduced folate carrier (CCRF-CEM/MTX) or folylpolyglutamate synthase (CCRF-CEM/FPGS(-)) establishing that their potent activity requires both reduced folate carrier transport and polyglutamation. Unexpectedly, the pentaglutamates displayed surprisingly similar K(i)'s versus E. coli GAR Tfase and only modestly enhanced K(i)'s versus human AICAR Tfase. On the surface this initially suggested that the potent cytotoxic activity of 3 and related compounds might be due simply to preferential intracellular accumulation of the inhibitors derived from effective transport and polyglutamation (i.e., ca. 100-fold higher intracellular concentrations). However, a subsequent examination of the inhibitors against recombinant human GAR Tfase revealed they and the corresponding gamma-pentaglutamates were unexpectedly much more potent against the human versus E. coli enzyme (K(i) for 3, 14nM against rhGAR Tfase versus 6 microM against E. coli GAR Tfase) which also accounts for their exceptional cytotoxic potency.  相似文献   

19.
Starting from the previously reported HCV NS3/4A protease inhibitor BILN 2061, we have used a fast-follower approach to identify a novel series of HCV NS3/4A protease inhibitors in which (i) the P3 amino moiety and its capping group have been truncated, (ii) a sulfonamide is introduced in the P1 cyclopropyl amino acid, (iii) the position 8 of the quinoline is substituted with a methyl or halo group, and (iv) the ring size of the macrocycle has been reduced to 14 atoms. SAR analysis performed with a limited set of compounds led to the identification of N-{17-[8-chloro-2-(4-isopropylthiazol-2-yl)-7-methoxyquinolin-4-yloxy]-2,14-dioxo-3,15-diazatricyclo [13.3.0.0 [Bartenschlager, R.; Lohmann, V. J. Gen. Virol. 2000, 81, 1631; Vincent Soriano, Antonio Madejon, Eugenia Vispo, Pablo Labarga, Javier Garcia-Samaniego, Luz Martin-Carbonero, Julie Sheldon, Marcelle Bottecchia, Paula Tuma, Pablo Barreiro Expert Opin. Emerg. Drugs, 2008, 13, 1-19]]octadec-7-ene-4-carbonyl}(1-methylcyclopropyl)(1-methylcyclopropyl)sulfonamide 19l an extremely potent (K(i)=0.20 nM, EC(50)=3.7 nM), selective, and orally bioavailable dipeptide NS3/4A protease inhibitor, which has features attractive for further preclinical development.  相似文献   

20.
The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with 4-methyl-5-perfluorophenylcarboximido-delta2-1,3,4-thiadiazoline-2-sulfonamide (PFMZ), a topically acting antiglaucoma sulfonamide, has been resolved at a resolution of 1.8 A. This compound is almost 10 times more effective as a hCA II inhibitor (KI of 1.5 nM) compared to the lead molecule, methazolamide, a clinically used drug (KI of 14 nM). Its binding to the enzyme active site is similar to that of other sulfonamide inhibitors, considering the interactions of the sulfonamide zinc anchoring group and thiadiazoline ring contacts, but differs considerably when the perfluorobenzoylimino fragment of the molecule is analyzed. Indeed, several unprecedented strong hydrogen bonds involving the imino nitrogen, carbonyl oxygen, a fluorine atom in the ortho position of the inhibitor, and two water molecules, as well as Gln 92 of the enzyme active site were seen. A stacking interaction of the perfluorophenyl ring of the inhibitor and the aromatic ring of Phe 131 was also observed for the first time in a CA-sulfonamide adduct. All these findings prove that more potent CA inhibitors incorporating perfluoroaryl/alkyl tails may be designed, with potentially improved antiglaucoma properties, in view of the new types of interactions seen here between the enzyme and the perfluorobenzoylated analogue of methazolamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号