首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

The MkaH protein from the archaeon Methanopyrus kandleri, an unusual assembly of two histone-fold domains in a single polypeptide chain, demonstrates high structural similarity to eukaryal histones. We studied the DNA binding and self-association properties of MkaH by means of the electrophoretic mobility shift assay (EMSA), electron microscopy (EM), chemical cross-linking, and analytical gel filtration. EMSA showed an increased mobility of linear DNA complexed with MkaH protein with a maximum at a protein-DNA weight ratio (Rw) of ≈3; the mobility decreased at higher protein concentration. EM of the complexes formed at Rw ≤ 3 revealed formation of isometric loops encompassing 71 +/- 7 bp of DNA duplex. At high values of Rw (≥9) thickened compact nucleoprotein structures were observed; no individual loops were seen within the complexes. Gel filtration chromatography and chemical fixation indicated that in the absence of DNA the dominant form of the MkaH in solution, unlike other archaeal histones, is a stable dimer (pseudo-tetramer of the histone-fold domain) apparently resembling the eukaryal (H3-H4)2 tetramer. Similarly, dimers are the dominant form of the protein interacting with DNA. The properties of MkaH supporting the assignment of its intermediate position between other archaeal and eukaryal histones are discussed.  相似文献   

3.
4.
5.
The molecules occurring as terminal residues on the external surfaces of nuclei prepared from rat liver by either sucrose-CaCl2 or citric acid methods and nucleoli derived from the sucrose-CaCl2 nuclei were studied chemically and electrokinetically. In 0.0145 M NaCl, 4.5% sorbitol, and 0.6 mM NaHCO3 with pH 7.2 ± 0.1 at 25°C, the sucrose-CaCl2 nuclei had an electrophoretic mobility of -1.92 µm/s/V/cm, the citric acid nuclei, -1.63 µm/s/V/cm, and the nucleoli, -2.53 µm/s/V/cm. The citric acid nuclei and the nucleoli contained no measurable sialic acid. The sucrose-CaCl2 nuclei contained 0.7 nmol of sialic acid/mg nuclear protein; this was essentially located in the nuclear envelope. Treatment of these nuclei with 50 µg neuraminidase/mg protein resulted in release of 0.63 nmol of sialic acid/mg nuclear protein; treatment with 1 % trypsin caused release of 0.39 nmol of the sialic acid/mg nuclear protein. The pH-mobility curves for the particles indicated the sucrose-CaCl2 nuclei surface had an acid-dissociable group of pK. ~2.7 while the pK for the nucleoli was considerably lower. Nucleoli treated with 50 µg neuraminidase/mg particle protein had a mobility of -2.53 µm/s/V/cm while sucrose-CaCl2 nuclei similarly treated had a mobility of -1.41 µm/s/V/cm. Hyaluronidase at 50 µg/mg protein had no effect on nucleoli mobility but decreased the sucrose-CaCl2 nuclei mobility to -1.79 µm/s/V/cm. Trypsin at 1 % elevated the electrophoretic mobility of the sucrose-CaCl2 nuclei slightly but decreased the mobility of the nucleoli to -2.09 µm/s/V/cm. DNase at 50 µg/mg protein had no effect on the mobility of the isolated sucrose-CaCl2 nuclei but decreased the electrophoretic mobility of the nucleoli to -1.21 µm/s/V/cm. RNase at 50 µg/mg protein also had no effect on the electrophoretic mobility of the sucrose-CaCl2 nuclei but decreased the nucleoli mobility to -2.10 µm/s/V/cm. Concanavalin A at 50 µg/mg protein did not alter the nucleoli electrophoretic mobility but decreased the sucrose-CaCl2 nuclei electrophoretic mobility to -1.64 µm/s/V/cm. The results are interpreted to mean that the sucrose-CaCl2 nuclear external surface contains terminal sialic acid residues in trypsin-sensitive glycoproteins, contains small amounts of hyaluronic acid, is completely devoid of nucleic acids, and binds concanavalin A. The nucleolus surface is interpreted to contain a complex made up of protein, RNA, and primarily DNA, to be devoid of sialic acid and hyaluronic acid, and not to bind concanavalin A.  相似文献   

6.
Abstract

We extracted pA03 plasmid DNA from E. coli cells, having “frozen” the transitions between cruciform and double-helical conformations in DNA. The characteristic feature of the DNA isolation procedure is that all steps were carried out at temperature between 0 and 4 C and no phenol deproteinization was used, since it has been discovered that phenol destabilizes cruciform structures in pA03 DNA. Two-dimensional gel electrophoresis has revealed no cruciform structures in the pA03 DNA preparations obtained this way, although the superhelical density of DNA was sufficient for them. Cruciform structures are absent from intracellular pA03 DNA at all growth stages of the bacterial culture: stationary and logarithmic, and under the induction of pA03 DNA replication in chloramphenicol-treated cells.  相似文献   

7.
 The compound [Pt(lysine)Cl2] (Kplatin) was previously identified in a study of platinum amino acid complexes as a potential antitumor drug candidate. The DNA binding properties, high mobility group (HMG)-domain protein affinity for the platinated DNA, and cytotoxicity against HeLa cells of Kplatin and three related (N,O) chelated platinum(II) amino acid complexes, [Pt(arginine)Cl2] (Rplatin), K[Pt(Ne-acetyllysine)Cl2] (NacKplatin), and K[Pt(norleucine)Cl2] (Norplatin), are reported. The four complexes have identical PtCl2(N,O) coordination environments. A new solid phase screening methodology was devised in which platinated DNA probes are covalently attached to a nylon support and tested for their ability to bind a fluorescently labeled HMG-domain protein. The fluorescent HMG-domain protein was generated by expressing a fusion of the green fluorescent protein (GFP) with recombinant rat HMG1. Binding revealed by the solid phase method correlated well with the results of gel mobility shift and HeLa cytotoxicity assays. These results suggest that the net charge on the complex, rather than the nature of the side chain, is the most important factor underlying the DNA binding properties and toxicity of amino acid (N,O) chelated platinum complexes. This property explains why Kplatin was previously selected from the pool of platinum amino acid complexes based on the ability of its DNA adducts to bind HMG1. Received: 3 February 1999 / Accepted: 7 April 1999  相似文献   

8.
Protein HU binds specifically to kinked DNA   总被引:22,自引:8,他引:14  
We have purified the main four-way junction DNA-binding protein of Escherichia coli, and have found It to be the well-known HU protein. HU protein recognizes with high-affinity one of the angles present in the junction, a molecule with the shape of an X. Other DNA structures characterized by sharp bends or kinks, like bulged duplex DNAs containing unpaired bases, are also bound. HU protein appears to inhibit cruciform extrusion from supercoiled inverted repeat (palindromic) DNA, either by constraining supercoiling or by trapping a metastable interconversion intermediate. All these properties are analogous to the properties of the mammalian chromatin protein HMG1. We suggest that HU is a prokaryotic HMG1-like protein rather than a histone-like protein.  相似文献   

9.
Abstract

We have constructed plasmids carrying d(AT)n·d(AT)n inserts of different lengths. Two- dimensional gel electrophoresis patterns show that an increase in the negative superhelicity of these DNAs brings about a structural transition within the inserts, resulting in a reduction of the superhelical stress. However, this reduction corresponds to the expected values neither for cruciform nor for the Z form. Those DNA topoisomers in which the structural transition had occurred proved to be specifically recognizable by single-strand-specific endonuclease SI, with the cleavage site situated at the centre of the insert. These data, as well as kinetic studies, suggest that the cloned d(AT)n·d(AT) n sequences adopt a cruciform rather than the Z-form structure. We discuss plausible reasons of the discrepancy between the observed superhelical stress release and that expected for the transition of the insert to the cruciform state.  相似文献   

10.
The human sex-determining gene on the Y chromosome, termed SRY, has recently been isolated by positional cloning; compelling evidence now exists equating SRY with the testis-determing factor, TDF. The SRY gene product is an HMG box protein whose DNA-binding activity is vital for testis formation as sex-reversed patients with SRY mutations lack this activity in vitro. The in vivo DNA target for SRY, however, remains elusive. Here, we show, by gel retardation analysis, that SRY recognises specific DNA sequences and that such sequences exist upstream of the AMH promoter, a potential downstream target for SRY. We also describe the DNA bending and cruciform DNA-binding functions of SRY and propose a model for the potential action of SRY in the “HMG-1-rich” mammalian nucleus. © 1994 Wiley-Liss, Inc.  相似文献   

11.
There is accumulating evidence to suggest that palindromic AT-rich repeats (PATRRs) represent hot spots of double-strand breakage that lead to recurrent chromosomal translocations in humans. As a mechanism for such rearrangements, we proposed that the PATRR forms a cruciform structure that is the source of genomic instability. To test this hypothesis, we have investigated the tertiary structure of a cloned PATRR. We have observed that a plasmid containing this PATRR undergoes a conformational change, causing temperature-dependent mobility changes upon agarose gel electrophoresis. The mobility shift is observed in physiologic salt concentrations and is most prominent when the plasmid DNA is incubated at room temperature prior to electrophoresis. Analysis using two-dimensional gel electrophoresis indicates that the mobility shift results from the formation of a cruciform structure. S1 nuclease and T7 endonuclease both cut the plasmid into a linear form, also suggesting cruciform formation. Furthermore, anti-cruciform DNA antibody reduces the electrophoretic mobility of the PATRR-containing fragment. Finally, we have directly visualized cruciform extrusions from the plasmid DNA with the size expected of hairpin arms using atomic force microscopy. Our data imply that for human chromosomes, translocation susceptibility is mediated by PATRRs and likely results from their unstable conformation.  相似文献   

12.
Proteins which, on the basis of their solubility in 0.35% NaCl-2%TCA and of their electrophoretic mobility, correspond to animalHMG 1/2 family were isolated from nuclei of ungerminated peaembryos. These proteins ound with a high degree of specificityto synthetic cruciform DNA produced by annealing chemicallysynthesized oligonucleotides. Hence, specific binding to four-wayjunction DNA, previously reported for animal HMG 1 and 2 proteinsproved also to be a property of plant HMG 1/2 family, in spiteof their low homology to the animal ones. Key words: Pisum sativum, chromosomal proteins, cruciform DNA, high mobility group proteins  相似文献   

13.
Mammalian Rif1 is a key regulator of DNA replication timing, double-stranded DNA break repair, and replication fork restart. Dissecting the molecular functions of Rif1 is essential to understand how it regulates such diverse processes. However, Rif1 is a large protein that lacks well defined functional domains and is predicted to be largely intrinsically disordered; these features have hampered recombinant expression of Rif1 and subsequent functional characterization. Here we applied ESPRIT (expression of soluble proteins by random incremental truncation), an in vitro evolution-like approach, to identify high yielding soluble fragments encompassing conserved regions I and II (CRI and CRII) at the C-terminal region of murine Rif1. NMR analysis showed CRI to be intrinsically disordered, whereas CRII is partially folded. CRII binds cruciform DNA with high selectivity and micromolar affinity and thus represents a functional DNA binding domain. Mutational analysis revealed an α-helical region of CRII to be important for cruciform DNA binding and identified critical residues. Thus, we present the first structural study of the mammalian Rif1, identifying a domain that directly links its function to DNA binding. The high specificity of Rif1 for cruciform structures is significant given the role of this key protein in regulating origin firing and DNA repair.  相似文献   

14.
The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by ~50% and the poorly hydrolyzed GTP analog, GTPγS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBPGTP and TB-RBPGTP no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBPGTP will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBPGTP into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBPGTP in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.  相似文献   

15.
Summary A protein of Mr 47,000 is synthesized in Escherichia coli minicells, when these harbor a multicopy plasmid carrying IS4 in either orientation and between different flanking sequences. The protein corresponds to the sequence predicted from the known DNA sequence of IS4, as shown by partial N-terminal radiolabel protein sequence analysis. Its apparent molecular weight, however, as determined from its electrophoretic mobility in SDS polyacrylamide gels, is smaller than predicted. When compared with other plasmid-encoded proteins, the IS4-encoded protein is synthesized in minicells in small amounts. Its synthesis has not been detected in a DNA-dependent cell-free system.  相似文献   

16.
17.
We have cloned and sequenced a DNA fragment that encodes the arylmalonate decarboxylase (AMDase) gene from Alcaligenes bronchisepticus KU 1201. The AMDase gene consists of an open reading frame of 720 nucleotides, which specifies a 240-amino-acid protein of relative molecular mass (Mr) 24734. The Mr deduced from the AMDase gene is in good agreement with that of the AMDase isolated from A. bronchisepticus. No TATA or TTGA sequence was observed within the cloned DNA fragment, but the fragment was expressed in Escherichia coli by the lac promoter of pUC19. The enzyme produced in E. coli has the same Mr and the same enzyme activity as the purified from A. bronchisepticus. Comparison of the DNA sequence and the deduced amino acid sequence of AMDase with available DNA and amino acid sequence data bases revealed that there are no significant sequence homologies.Correspondence to: Hiromichi Ohta  相似文献   

18.
The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein‐binding surface of an immobilized four‐way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ‐PNA1 and 4WJ‐PNA3). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two‐state equilibrium between: (i) an open‐x state favored by absence of Mg2+, low salt, and protein binding, and (ii) a compact stacked‐x state favored by Mg2+. 4WJ‐PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg+2, while 4WJ‐PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ‐PNA3 with nearly identical affinity (KDs) and 4WJ‐PNA1 with two‐fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.  相似文献   

19.
20.
Summary The nuclei and cytoplasm ofN. gossei andN. tabacum are compatible to the extent that reciprocal, interspecific F1 hybrids can be produced by conventional breeding techniques. Conditions were established in which manyN. gossei isolated chloroplasts could be seen by phase and fluorescence microscopy to adhere to 40% of the population of protoplasts obtained from white tissue of variegatedN. tabacum plants and to remain attached after washing the protoplasts. Chloroplasts also could be seen to enter the interior of the protoplasts. After treating albino protoplasts withN. gossei chloroplasts, the protoplasts were subjected to further conditions whereby 65 calluses containing shoots developed. TwentyN. tabacum protoplasts not treated with foreign chloroplasts also produced calluses with shoots to serve as a control. All calluses developed chlorophyll irrespective of whether or not the albino protoplasts had been treated with isolatedN. gossei chloroplasts. The Fraction 1 protein ofN. tabacum has a different electrophoretic mobility from the protein ofN. gossei or anN. gossei xN. tabacum F1 hybrid. The Fraction 1 protein large subunit is coded by chloroplast DNA, whereas the small subunit is coded by nuclear DNA. Fraction 1 protein was isolated from the variegated shoots of the 65 calluses obtained after treating albino protoplasts with foreign chloroplasts. Immunoelectrophoresis demonstrated the protein from each callus to have a mobility identical toN. tabacum protein. Therefore, under circumstances highly favorable for the direct transfer ofN. gossei isolated chloroplasts (and possibly nuclei also) intoN. tabacum protoplasts, no evidence was obtained to suggest that genetic information contained in the isolated foreign organelles was being translated into the polypeptides of either the large or small subunits of Fraction 1 protein contained in newly differentiated leaves derived from the protoplasts. Supported by Research Grant PCM-75-07368 from the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号