首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the prediction of hydrogen positions in proteins is presented. The method is based on the knowledge of the heavy atom positions obtained, for instance, from X-ray crystallography. It employs an energy minimization limited to the environment of the hydrogen atoms bound to a common heavy atom or to a single water molecule. The method is not restricted to proteins and can be applied without modification to nonpolar hydrogens and to nucleic acids. The method has been applied to the neutron diffraction structures of trypsin ribonuclease A, and bovine pancreatic trypsin inhibitor. A comparison of the constructed and the observed hydrogen positions shows few deviations except in situations in which several energetically similar conformations are possible. Analysis of the potential energy of rotation of Lys amino and Ser, Thr, Tyr hydroxyl groups reveals that the conformations of lowest intrinsic torsion energies are statistically favored in both the crystal and the constructed structures.  相似文献   

2.
We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and (2) they help the user understand how different energy terms interact to stabilize a given conformation. The Sculpt paradigm combines many of the best features of interactive graphical modeling, energy minimization, and actual physical models, and we propose it as an especially productive way to use current and future increases in computer speed.  相似文献   

3.
The pseudocontact shifts of NMR signals, which arise from the magnetic susceptibility anisotropy of paramagnetic molecules, have been used as structural constraints under the form of a pseudopotential in the SANDER module of the AMBER 4.1 molecular dynamics software package. With this procedure, restrained energy minimization (REM) and restrained molecular dynamics (RMD) calculations can be performed on structural models by using pseudocontact shifts. The structure of the cyanide adduct of the Met80Ala mutant of the yeast iso-1-cytochrome c has been used for successfully testing the calculations. For this protein, a family of structures is available, which was obtained by using NOE and pseudocontact shifts as constraints in a distance geometry program. The structures obtained by REM and RMD calculations with the inclusion of pseudocontact shifts are analyzed. Proteins 29:68–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Studies were conducted to optimize matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI TOF MS) in analyzing the composition of nicotinic acetylcholine receptors (nAChR) from Torpedo californica electric tissue in their membrane-bound, detergent-solubilized, and affinity-purified states. Mass spectra obtained from nAChR-rich membrane fractions gave reasonably good representations of protein compositions indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of those same samples. Efficiency of extraction of nAChR from membranes was not markedly different for most detergents, but quality and signal size of mass spectra were clearly influenced by detergent composition and concentration, protein concentration, and MALDI matrix composition. The best spectra, allowing detection and accurate size determinations for samples containing as little as 10 fmol of pure nAChR, were obtained for samples solubilized in Triton X-100 and assayed by use of a sinapinic acid matrix. Although informative spectra could be obtained for nAChR affinity purified on alpha-cobratoxin (Naja naja siamensis) columns and extracted using sinapinic acid, superior spectra with much higher signal:noise were obtained if extraction media contained Triton X-100 or sodium dodecyl sulfate. nAChR subunit masses determined were similar regardless of the membrane-associated, detergent-solubilized, or affinity-purified state of the preparation. These studies illustrate how masses can be determined for nAChR subunits and for other protein components in Torpedo membrane preparations, such as RAPsyn and Na(+)-K(+)-ATPase alpha and beta subunits. They also provide an underpinning for streamlined analysis of the composition of complex transmembrane proteins using MALDI TOF MS.  相似文献   

5.
Morra G  Colombo G 《Proteins》2008,72(2):660-672
Most proteins must fold to a well-defined structure with a minimal stability to perform their function. Here we use a simple, molecular dynamics-based, energy decomposition approach to map the principal energetic interactions in a set of proteins representative of different folds. This work involves the all-atom simulation and analysis of the native structures and mutants of five different proteins representative of an all-alpha (yACPB, Protein A), all-beta (SH3), and a mixed alpha/beta fold (Proteins G and L). Given a certain structure, a native sequence and a set of mutants, we show that our model discriminates the ability of a mutation to yield a more or less stable protein, in agreement with experimental data, catching the principal energetic determinants of protein stabilization. Our approach identifies the interaction determinants responsible to define a fold and shows that mutations can either modulate the strength of pair-wise coupling between residues important for folding, or modify the profile of the principal interactions. Furthermore, we address the question of how to evaluate the fitness of a sequence to a given structure by comparing the information contained in the energy map, which recapitulates the chemistry of the sequence, to that contained in the contact map, which recapitulates the fold topology. The results show that the better fit between the energetic properties of the sequence and the fold topology corresponds to a higher stabilization of the protein. We discuss the relevance of these observations to the analysis of protein designability and to the rational evolution of new sequences.  相似文献   

6.
A combined force field of molecular mechanics and solvation free energy is tested by carrying out energy minimization and molecular dynamics on several conformations of the alanyl dipeptide. Our results are qualitatively consistent with previous experimental and computational studies, in that the addition of solvation energy stabilizes the C5 conformation of the alanyl dipeptide relative to the C7.  相似文献   

7.
Alanine racemase (AlaR) is a bacterial enzyme that catalyzes the interconversion of L- and D-alanine, which is an essential constituent of the peptidoglycan layer of the bacterial cell wall and requires pyridoxal 5'-phosphate (PLP) as a cofactor. The enzyme is universal to bacteria, including mycobacteria, making it an attractive target for drug design. To investigate the effects of flexibility on the binding modes of the substrate and an inhibitor and to analyze how the active site is affected by the presence of the substrate versus inhibitor, a molecular dynamics simulation on the full AlaR dimer from Bacillus stearothermophilus (pdb code: 1SFT) with a D-alanine molecule in one active site and the noncovalent inhibitor, propionate, in the second site has been carried out. Within the time scale of the simulation, we show that the active site becomes more stabilized in the presence of substrate versus inhibitor. The results of this simulation are in agreement with the proposed mechanism of alanine racemase reaction in which the substrate carboxyl group directly participates in the catalysis by acting cooperatively with Tyr 265' and Lys 39. A structural water molecule in contact with both substrate and inhibitor (i.e., in both active sites) and bridging residues in both active sites was identified. It shows a remarkably low mobility and does not exchange with bulk water. This water molecule can be taken into account for the design of specific AlaR inhibitors by either utilizing it as a bridging group or displacing it with an inhibitor atom. The results presented here provide insights into the dynamics of the alanine racemase in the presence of substrate/inhibitor, which will be used for the rational design of novel inhibitors.  相似文献   

8.
Debye and Waller showed how to adjust scattering intensities in diffraction experiments for harmonic motions of atoms about an average, static reference configuration. However, many motions, particularly in biological molecules as compared to simple crystals, are far from harmonic. We show how, using a variety of simple anharmonic, multiconformational models, it is possible to construct a variety of Generalized Debye-Waller Factors, and understand their meaning. A central result for these cases is that, in principle, intensity factors cannot be obtained from true total mean square displacements of the atoms. We make the distinction between the intensity factors for unimodal quasiharmonic motions and those for the anharmonic, multimodal (valley hopping) motions. Only the former affect the conventional B factors. Proteins 29:153–160, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    9.
    McPhie P 《Biopolymers》2004,75(2):140-147
    Irrespective of the constituent protein, all amyloid fibrils show similar morphology in the electron microscope and x-ray diffraction patterns characteristic of a "cross-beta" structure, with extended beta-strands perpendicular to the fibril's long axis. Little is known about the amount or type of this structure. I have measured CD spectra of films formed from a number of amyloid proteins and polypeptides, and estimated their contents of extended secondary structure, by analysis of their g-factor spectra, the ratio of the CD and absorbance signals (P. McPhie, Analytical Biochemistry, 2001, Vol. 293, pp. 109-119). Amyloid films of Abeta-(1-40) peptide, beta-2-microglobulin, insulin, and three homopolypeptides show very intense CD spectra, compatible with the presence of a beta-helix-like structure, arranged in a common framework in the fibrils. The extent of this structure was estimated as 45-80% in the protein fibrils and 30-80% in the polypeptide fibrils.  相似文献   

    10.
    11.
    A new approach to NMR solution structure refinement is introduced that uses paramagnetic effects on nuclear chemical shifts as constraints in energy minimization or molecular dynamics calculations. Chemical shift differences between oxidized and reduced forms of horse cytochrome c for more than 300 protons were used as constraints to refine the structure of the wild-type protein in solution and to define the structural changes induced by a Leu 94 to Val mutation. A single round of constrained minimization, using the crystal structure as the starting point, converged to a low-energy structure with an RMS deviation between calculated and observed pseudo-contact shifts of 0.045 ppm, 7.5-fold lower than the starting structure. At the same time, the procedure provided stereospecific assignments for more than 45 pairs of methylene protons and methyl groups. Structural changes caused by the mutation were determined to a precision of better than 0.3 A. Structure determination based on dipolar paramagnetic (pseudocontact) shifts is applicable to molecules containing anisotropic paramagnetic centers with short electronic relaxation times, including numerous naturally occurring metalloproteins, as well as proteins or nucleic acids to which a paramagnetic metal ion or ligand may be attached. The long range of paramagnetic shift effects (up to 20 A from the iron in the case of cytochrome c) provides global structural constraints, which, in conjunction with conventional NMR distance and dihedral angle constraints, will enhance the precision of NMR solution structure determination.  相似文献   

    12.
    All-atom molecular dynamics is used to investigate the transport of Na+ across a 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayer facilitated by a diazacrown hydraphile. Specifically, the free energy of Na+ passing through the bilayer is calculated using the adaptive biasing force method to study the free energy associated with the increase in Na+ transport in the presence of the hydraphile molecule. The results show that water interaction greatly influences Na+ transport through the lipid bilayer as water is pulled through the bilayer with Na+ forming a water channel. The hydraphile causes a reduction in the free energy barrier for the transport of Na+ through the head group part of the lipid bilayer since it complexes the Na+ reducing the necessity for water to be complexed and, therefore, dragged through with Na+, an energetically unfavorable process. The free energy associated with Na+ being desolvated within the bilayer is significantly decreased in the presence of the hydraphile molecule; the hydraphile increases the number of solvation states of Na+ that can be adopted, and this increase in the number of available configurations provides an entropic explanation for the success of the hydraphile.  相似文献   

    13.
    Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.  相似文献   

    14.
    A method is presented that allows the calculation of the lifetimes of tryptophan residues on the basis of spectral and structural data. It is applied to two different proteins. The calcium binding protein from the sarcoplasm of the muscles of the sand worm Nereis diversicolor (NSCP) changes its conformation upon binding of Ca2+ or Mg2+. NSCP contains three tryptophan residues at position 4, 57, and 170, respectively. The fluorescence lifetimes of W57 are investigated in a mutant in which W4 and W170 have been replaced. The time resolved fluorescence properties of W57 are linked to its different microconformations, which were determined by a molecular dynamics simulation map. Together with the determination of the radiative rate constant from the wavelength of maximum intensity of the decay associated spectra, it was possible to determine an exponential relation between the nonradiative rate constant and the distance between the indole CE3 atom and the carbonyl carbon of the peptide bond reflecting a mechanism of electron transfer as the main determinant of the value for the nonradiative rate constant. This result allows the calculation of the fluorescence lifetimes from the protein structure and the spectra. This method was further tested for the tryptophan of Ha-ras p21 (W32) and for W43 of the Tet repressor, which resulted in acceptable values for the predicted lifetimes.  相似文献   

    15.
    P2X receptors are cation channels gated by extracellular ATP. The seven known P2X isoforms possess no sequence homology with other proteins. Here we studied the quaternary structure of P2X receptors by chemical cross-linking and blue native PAGE. P2X1 and P2X3 were N-terminally tagged with six histidine residues to allow for non-denaturing receptor isolation from cRNA-injected, [35S]methionine-labeled oocytes. The His-tag did not change the electrophysiological properties of the P2X1 receptor. His-P2X1 was found to carry four N-glycans per polypeptide chain, only one of which acquired Endo H resistance en route to the plasma membrane. 3, 3'-Dithiobis(sulfosuccinimidylpropionate) (DTSSP) and two of three bifunctional analogues of the P2X receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) cross-linked digitonin-solubilized His-P2X1 and His-P2X3 quantitatively to homo-trimers. Likewise, when analyzed by blue native PAGE, P2X receptors purified in digitonin or dodecyl-beta-D-maltoside migrated entirely as non-covalently linked homo-trimers, whereas the alpha2 beta gamma delta nicotinic acetylcholine receptor (used as a positive control) migrated as the expected pentamer. P2X monomers remained undetected soon after synthesis, indicating that trimerization occurred in the endoplasmic reticulum. The plasma membrane form of His-P2X1 was also identified as a homo-trimer. If n-octylglucoside was used for P2X receptor solubilization, homo-hexamers were observed, suggesting that trimers can aggregate to form larger complexes. We conclude that trimers represent an essential element of P2X receptor structure. Keywords: blue native PAGE/cross-linking/P2X receptor/quaternary structure.  相似文献   

    16.
    Lingueglia E  Deval E  Lazdunski M 《Peptides》2006,27(5):1138-1152
    FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.  相似文献   

    17.
    A computer algorithm, CLIX, capable of searching a crystallographic data-base of small molecules for candidates which have both steric and chemical likelihood of binding a protein of known three-dimensional structure is presented. The algorithm is a significant advance over previous strategies which consider solely steric or chemical requirements for binding. The algorithm is shown to be capable of predicting the correct binding geometry of sialic acid to a mutant influenza-virus hemagglutinin and of proposing a number of potential new ligands to this protein.  相似文献   

    18.
    The factors determining the onset and extent of reconstructive denaturation of proteins were considered by comparing circular dichroism (CD) data of seven proteins and previously published findings. The effects of sodium dodecyl sulfate (SDS) on the conformation of the following proteins were tested: lysozyme, the mitogens fromPhytolacca americana (fractions Pa2 and Pa4), lectin fromWistaria floribunda, ovine lutropin, a Bence Jones protein, and histone H2B. While the helix content of lysozyme was raised by SDS slightly, in the Bence Jones protein andW. floribunda lectin it increased from near zero to about 25–30%. In histone H2B the helix content was raised by SDS even to about 48%. However, no clear indication of helix formation could be observed in the mitogens and lutropin, even at low pH or 2.0–2.5. The tertiary structure of the proteins was perturbed by SDS. It was concluded that the reorganization of secondary structure of the proteins was favored by the following factors: (1) presence of helicogenic amino acid sequences in the protein, (2) availability of positively charged sites of the basic amino acids for interactions with the dodecyl ion, (3) absence of a large surplus of negatively charged sites on the surface of protein, and (4) absence of extensive disulfide cross-linking within the macromolecule. Both hydrophobic and electrostatic interactions occur in reconstructive denaturation, and the newly formed helices are stabilized by hydrophobic shielding by the alkyl chains of the alkyl sulfate.  相似文献   

    19.
    Protein biogenesis and quality control are essential to maintaining a functional pool of proteins and involve numerous protein factors that dynamically and transiently interact with each other and with the substrate proteins in living cells. Conventional methods are hardly effective for studying dynamic, transient, and weak protein–protein interactions that occur in cells. Herein, we review how the site‐directed photocrosslinking approach, which relies on the genetic incorporation of a photoreactive unnatural amino acid into a protein of interest at selected individual amino acid residue positions and the covalent trapping of the interacting proteins upon ultraviolent irradiation, has become a highly efficient way to explore the aspects of protein contacts in living cells. For example, in the past decade, this approach has allowed the profiling of the in vivo substrate proteins of chaperones or proteases under both physiologically optimal and stressful (e.g., acidic) conditions, mapping residues located at protein interfaces, identifying new protein factors involved in the biogenesis of membrane proteins, trapping transiently formed protein complexes, and snapshotting different structural states of a protein. We anticipate that the site‐directed photocrosslinking approach will play a fundamental role in dissecting the detailed mechanisms of protein biogenesis, quality control, and dynamics in the future.  相似文献   

    20.
    N-terminal myristoylation of the immunoglobulin-binding domain of protein G (GB1) from group G Streptococcus provides the means to bind the protein to aligned phospholipid bilayers for solid-state NMR structural studies. The myristoylated protein is immobilized by its interactions with bilayers, and the sample alignment enables orientationally dependent 15N chemical shifts and 1H-15N-dipolar couplings to be measured. Spectra calculated for the average solution NMR structure of the protein at various orientations with respect to the magnetic field direction were compared to the experimental spectrum. The best fit identified the orientation of the myristoylated protein on the lipid bilayers, and demonstrated that the protein adopts a similar structure in both its myristoylated and non-myristoylated forms, and that the structure is not grossly distorted by its interaction with the phosholipid bilayer surface or by its location in the restricted aqueous space between bilayer leaflets. The protein is oriented such that its charged sides face the phosphatidylcholine headgroups of the lipids with the single amphiphilic helix running parallel to the bilayer surface.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号