首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
根瘤菌结瘤因子的微量生物检测法   总被引:6,自引:1,他引:5  
在豆科植物根系分泌物诱导下,根瘤菌在自生状态下能产生胞外寡糖胺类物质─—结瘤因子,其生物学功能之一是引起某些豆科植物根毛卷曲。结瘤因子与根毛接触4h后,即使去除结瘤因子,3~6天后根毛即能发生变形。据此设计出一种结瘤因子微量生物检测法。该法操作方便,并且只需耗用微量结瘤因子。  相似文献   

2.
简要综述了目前根瘤菌结癌基因研究的3个热点方向,即结瘤因子、nodlD基因的调控和结瘤基因系统发育分析的新进展。结瘤因子的骨架核心是结瘤基因中的共同性基因nodABC表达的产物,宿主专一性基因则进行骨架结构的修饰,所形成的特异性结瘤因子是根瘤苗宿主范围的主要决定因素。结瘤调控基因nodD的作用方式与其存在的拷贝数目和产物NodD蛋白活性有关,同时NodD的敏感性还影响到根瘤菌的宿主范围。结瘤基因的系统发育揭示出根瘤菌宿主范围与共同性结瘤基因间比其它基荫的相关性更高。结瘤基因与豆科宿主之间存在一定的共进化关系。  相似文献   

3.
我国9个大豆品种感染根瘤菌USDA110后,产生不同的结瘤数,低者在20个以下,高者在60个以上。赤豆、绿赤豆也可被感染结瘤,而豇豆、扁豆则不能。超结瘤大豆nts382作为接穗时能诱导我国大豆原结瘤数有45个的开育10号、原结瘤数有12个的大黄分别发生高结瘤。nts382作为砧木时,则不能表现超结瘤,表达超结瘤因子能传给我国大豆,反之存在于我国大豆中的限制超结瘤的因子也能传给nts382。nts3  相似文献   

4.
我国9个大豆(GlycinemaxL.Merr.)品种感染根瘤菌USDA110后,产生不同的结瘤数,低者在20个以下.高者在60个以上。赤豆、绿赤豆也可被感染结瘤,而豇豆、扁豆则不能。超结瘤大豆nts382作为接穗时能诱导我国大豆原结瘤数有45个的开育10号、原结瘤数有12个的大黄分别发生高结瘤。nts382作为砧木时,则不能表现超结瘤.表明超结瘤因子能传给我国大豆,反之存在于我国大豆中的限制超结瘤的因子也能传给nts382。nts382于NO3-环境中仍表现超结瘤的特点也能导入开育10号、大黄及赤豆根部,并使之在NO3-环境中结瘤。在NO3-环境中不能结瘤的开育10号作为接穗,nts382作为砧木的嫁接植株,于子叶生长阶段接受NO3-时,仍能结瘤,于真对生长时接受NO3-时.则不能结瘤,表明限制结瘤因子于真叶细胞中被诱导形成。  相似文献   

5.
结瘤因子的研究进展   总被引:4,自引:0,他引:4  
结瘤因子是由根瘤菌产生的一类信号分子,它们在结瘤的起始阶段发挥着十分重要的作用。新近的研究结果证明结瘤因子大分子骨架上的不同侧链基团是决定细菌与宿主植物间相互识别的关键因素,根瘤菌细胞中一系列结瘤基因编码能够合成Lipo-chio-oligosaccharides(LCOs)的各种酶类,进而确定结瘤信号分子的特定结构。目前,一系列令人兴奋的实验结果表明:LCOs不仅可促进豆科作物的生物固氮作用,对一些非豆科作物的细胞分裂作用等同样具有刺激作用。对根瘤菌结瘤因子的研究显然有助于进一步了解细菌与植物的相互作用机理,并进而为农业生产为直接利益。本文在综述这方面的研究进展同时,还就瘤菌,豆科作用和结瘤信号分子之间的相互作用机理,以及根际促生细菌,水杨酸和结瘤信号分子之间的可能关系进行了理论分析。  相似文献   

6.
紫云英根瘤菌结瘤因子的初步研究   总被引:7,自引:1,他引:7  
最近的研究结果表明,豆科植物与根瘤菌的共生识别是一种双向的信号物质交换过程.首先是豆科植物的根或种子分泌类黄酮物质,诱导根瘤菌的结瘤基因(nod genes)产生结瘤因子(nod factors),分泌到胞外,为植物所接受,从而引发植物某些基因表达,细胞分化,细胞壁形成,最终导致根毛变形等一系列变化.已经测定了几种苜蓿根瘤菌(Rhizobium meliloti)和豌豆根瘤菌(R.leguminosarum bv.viciae)结瘤因子的分子结构式,它们均属于寡糖胺类物质,在没有根瘤菌存在的条件下,结瘤因子能独立地促使根毛发生变形,这是检测结瘤因子是否存在的重要手段,即根毛变形试验(Root hairdeformation assay,简称Had试验).高浓度的结瘤因子甚至能诱导植物产生空瘤,其组织结构与典型的根瘤相同.  相似文献   

7.
根瘤菌是一类引起豆科植物结瘤固氮的土壤细菌。根瘤中的类菌体固定空气中的氮气为宿主植物提供充足的氮源。共生体系的建立始于细菌与宿主植物间复杂的信号交换过程。植物产生类黄酮诱导相应的根瘤菌合成分泌结瘤因子 ,后者进而诱导宿主植物根系形态变化以及早期根瘤素基因表达。以下将就宿主植物结瘤因子的特异识别和早期信号传导进行讨论。  相似文献   

8.
根瘤菌结瘤因子的研究进展   总被引:3,自引:0,他引:3  
根瘤菌结瘤因子的研究进展靖元孝(华南师范大学生物系,广州510631)关键词根瘤菌结瘤因子Rhizobium、Bradyrhizobium和Azorhi-zobium三类细菌能侵染豆科植物并形成根瘤。在根瘤形成过程中,共生伙伴之间首先进行信号物质交换...  相似文献   

9.
超结瘤大豆(Glycine m ax (L.) Merr.) nts 382 和不结瘤大豆Nod 49 的叶和根组织水提取物经Sephadex G25 过滤、洗脱,再根据洗脱物对硝酸还原酶(NR)活性的影响可划分为4 个组分(fraction)样品,即nts 382(Nod 49) F1、nts 382(Nod 49) F2、nts 382(Nod 49) F3 和nts 382(Nod 49) F4。其中, nts382 F2 和F4 抑制NR 活性作用在接种USDA110 后明显下降, 但接种的nts 382 F2 却能提高大豆Bragg 的结瘤数达一倍, 而接种的nts 382 F3 和F4 的作用不明显。NR 活性抑制因子不是刺激结瘤的因子, 刺激结瘤的因子主要分布在接种的nts382 F2 部分中。与这一现象相反, Nod 49 F2 和F4 抑制NR活性的作用在接种后更强, 且也抑制大豆nts 382 的结瘤, 其中Nod 49 F4 抑制结瘤的作用基本不能逆转。抑制结瘤因子主要分布在接过种的Nod 49 F4 部分中  相似文献   

10.
慢生根瘤菌属结瘤基因的进化及遗传分析   总被引:3,自引:0,他引:3  
侯卫国  连宾 《遗传》2007,29(1):118-126
根瘤菌中存在一系列控制固氮结瘤因子(lipo-chito-oligosaccharides)合成的结瘤基因(nodulation genes)。其中, nodA基因是合成结瘤因子所必需的, 该基因负责酰基转移酶的合成, 能将不饱和脂肪酸转移到结瘤因子寡聚糖骨架上; 基因nodZ, nolL和noeI为宿主专一性结瘤基因, 分别转录合成岩藻糖基转移酶, 岩藻糖乙酰化酶和岩藻糖甲基化酶。通过GenBank调取慢生根瘤菌属及其他根瘤菌属的结瘤基因nodA, nodZ, nolL和noeI, 构建系统发育树, 进行进化和遗传分析。结果表明, 慢生根瘤菌属各个菌株的nodA, nodZ, nolL和noeI具有很高的相关性, 但是与根据保守基因16S rDNA和dnaK分类情况不完全相符。这表明慢生根瘤菌属的结瘤基因主要是通过直系遗传的, 同时可能为适应宿主及环境条件, 结瘤基因有少量的平行转移。结果表明, 慢生根瘤菌属各个菌株的nodA, nodZ, nolL和noeI具有很高的同源性, 同时发现基于保守基因16S rDNA和dnaK对慢生根瘤菌的分类情况与慢生根瘤菌属各菌株在nodA, nodZ, nolL和noeI具有较高同源性的事实不完全相符。这表明慢生根瘤菌属的结瘤基因主要是通过直系遗传的, 同时可能为适应宿主及环境条件, 结瘤基因有少量的平行转移。  相似文献   

11.
Y Zhu  L S Pierson  rd    M C Hawes 《Plant physiology》1997,115(4):1691-1698
Reporter strains of soil-borne bacteria were used to test the hypothesis that chemicals released by root border cells can influence the expression of bacterial genes required for the establishment of plant-microbe associations. Promoters from genes known to be activated by plant factors included virE, required for Agrobacterium tumefaciens pathogenesis, and common nod genes from Rhizobium leguminosarum bv viciae and Rhizobium meliloti, required for nodulation of pea (Pisum sativum) and alfalfa (Medicago sativum), respectively. Also included was phzB, an autoinducible gene encoding the biosynthesis of antibiotics by Pseudomonas aureofaciens. The virE and nod genes were activated to different degrees, depending on the source of border cells, whereas phzB activity remained unaffected. The homologous interaction between R. leguminosarum bv viciae and its host, pea, was examined in detail. Nod gene induction by border cells was dosage dependent and responsive to environmental signals. The highest levels of gene induction by pea (but not alfalfa) border cells occurred at low temperatures, when little or no bacterial growth was detected. Detached border cells cultured in distilled water exhibited increased nod gene induction (ini) in response to signals from R. leguminosarum bv viciae.  相似文献   

12.
The nod kinesin-like protein is localized along the arms of meiotic chromosomes and is required to maintain the position of achiasmate chromosomes on the developing meiotic spindle. Here we show that the localization of ectopically expressed nod protein on mitotic chromosomes precisely parallels that observed for wild-type nod protein on meiotic chromosomes. Moreover, the carboxyl-terminal half of the nod protein also binds to chromosomes when overexpressed in mitotic cells, whereas the overexpressed amino-terminal motor domain binds only to microtubules. Chromosome localization of the carboxyl-terminal domain of nod depends upon an 82-amino acid region comprised of three copies of a sequence homologous to the DNA-binding domain of HMG 14/17 proteins. These data map the two primary functional domains of the nod protein in vivo and provide a molecular explanation for the directing of the nod protein to a specific subcellular component, the chromosome.  相似文献   

13.
We identified and sequenced the regulatory syrM and nodD3 genes of Rhizobium meliloti 41. Both genes were shown to contribute to optimal nodulation of alfalfa. In R. meliloti strains carrying syrM and nodD3 on plasmid, the nod genes are expressed constitutively, resulting in host-range extension to siratro. This is due to the presence of multiple syrM copies, suggesting that SyrM participates directly in nod gene activation. NodD3 activates nod genes in conjunction with flavonoids and enhances syrM expression, which is controlled also by its own product, NodD2, and two putative trans-acting factors. nodD3 is regulated by SyrM, NodD1, nodD3, the repressor NoIR, and two putative factors.  相似文献   

14.
Regulation of Syrm and Nodd3 in Rhizobium Meliloti   总被引:4,自引:0,他引:4       下载免费PDF全文
J. A. Swanson  J. T. Mulligan    S. R. Long 《Genetics》1993,134(2):435-444
The early steps of symbiotic nodule formation by Rhizobium on plants require coordinate expression of several nod gene operons, which is accomplished by the activating protein NodD. Three different NodD proteins are encoded by Sym plasmid genes in Rhizobium meliloti, the alfalfa symbiont. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to host plant inducers. The third, NodD3, is an inducer-independent activator of nod operons. We previously observed that nodD3 carried on a multicopy plasmid required another closely linked gene, syrM, for constitutive nod operon expression. Here, we show that syrM activates expression of the nodD3 gene, and that nodD3 activates expression of syrM. The two genes constitute a self-amplifying positive regulatory circuit in both cultured Rhizobium and cells within the symbiotic nodule. We find little effect of plant inducers on the circuit or on expression of nodD3 carried on pSyma. This regulatory circuit may be important for regulation of nod genes within the developing nodule.  相似文献   

15.
Regulation and function of rhizobial nodulation genes   总被引:12,自引:0,他引:12  
  相似文献   

16.
17.
18.
Rhizobium bacteria synthesize signal molecules called Nod factors that elicit responses in the legume root during nodulation. Nod factors, modified N-acylated beta-(1,4)-N-acetylglucosamine, are synthesized by the nodulation (nod) gene products. We tested the ability of three Sinorhizobium meliloti nod gene products to modify Nod factor analogs with thio linkages instead of O-glycosidic bonds in the oligosaccharide backbone.  相似文献   

19.
20.
Bradyrhizobium sp. strain ORS285 is a photosynthetic bacterium that forms nitrogen-fixing nodules on the roots and stems of tropical aquatic legumes of the Aeschynomene genus. The symbiotic interaction of Bradyrhizobium sp. strain ORS285 with certain Aeschynomene spp. depends on the presence of nodulation (nod) genes whereas the interaction with other species is nod gene independent. To study the nod gene-dependent molecular dialogue between Bradyrhizobium sp. strain ORS285 and Aeschynomene spp., we used a nodB-lacZ reporter strain to monitor the nod gene expression with various flavonoids. The flavanones liquiritigenin and naringenin were found to be the strongest inducers of nod gene expression. Chemical analysis of the culture supernatant of cells grown in the presence of naringenin showed that the major Nod factor produced by Bradyrhizobium sp. strain ORS285 is a modified chitin pentasaccharide molecule with a terminal N-C(18:1)-glucosamine and with a 2-O-methyl fucose linked to C-6 of the reducing glucosamine. In this respect, the Bradyrhizobium sp. strain ORS285 Nod factor is the same as the major Nod factor produced by the nonphotosynthetic Bradyrhizobium japonicum USDA110 that nodulates the roots of soybean. This suggests a classic nod gene-dependent molecular dialogue between Bradyrhizobium sp. strain ORS285 and certain Aeschynomene spp. This is supported by the fact that B. japonicum USDA110 is able to form N(2)-fixing nodules on both the roots and stems of Aeschynomene afraspera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号