首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many organisms live in aggregations. For marine organisms attached to the substratum, the presence of neighbors may reduce both the water flow and light encountered by an individual within a group. We used the marine macroalga Turbinaria ornata to investigate how water velocity and photon flux density were affected by aggregations under natural flow and light conditions in the field, and to explore how the ability to stand upright due to buoyancy impacted light interception by individuals in aggregations. We found that the flow experienced by thalli in the middle of a group in a backreef habitat was only about half the speed of the water flow they encountered after their neighbors were removed. This suggests that aggregated algae are subjected to lower hydrodynamic forces than are solitary thalli, but may also experience reduced rates of transport of dissolved nutrients and gases. Light sensors placed along the length of thalli positioned within and outside of clumps of T. ornata showed that the tops of buoyant upright thalli experienced similar light levels to solitary thalli, but that neighbors shaded the lower portions of thalli in aggregations. Individuals that were rendered non-buoyant (by filling their airbladders with water) could not support their own weight and those in aggregations experienced lower light at all points along their lengths than did upright buoyant individuals. Using in situ determinations of the rate of photosynthesis of T. ornata as a function of irradiance, we converted our field measurements of light interception to mg carbon fixed over the course of a day for whole fronds. Such estimates indicated that carbon fixation was higher for solitary buoyant and non-buoyant T. ornata than for buoyant individuals in aggregations, all of which were greater than for non-buoyant thalli in those clumps. Our results indicate that living in aggregations reduces the productivity of T. ornata, but this effect is mitigated by the buoyancy of thalli.  相似文献   

2.
Among the hydrodynamic forces experienced by intertidal organisms, drag and the impingement force are thought to have the greatest effect on macroalgae. These forces are modified by biotic factors such as algal morphology, reconfiguration, and the presence of a canopy. However, much of what is known about the hydrodynamics of macroalgae has been garnered from low-velocity laboratory flume studies. Few field studies have measured drag and none have directly measured the effects of the canopy on force. To examine in situ hydrodynamic forces imposed on the turf forming macroalga Chondrus crispus, compact digital force sensors were developed that measure and record the 3-dimensional force imposed on a macroalga without disturbing the surrounding canopy. Sensors were positioned within natural Chondrus beds and the effects of the canopy, algal morphology, and sea state on in situ hydrodynamic force were examined. Additionally, the predictions of a new model for drag on flexible macroalgae were tested by simultaneously measuring force and water velocity. Digital force recordings indicated that Chondrus only experience drag; lift and impingement force were negligible in all combinations of factors. Canopies significantly reduced drag by 15-65%. Morphology and size also influenced drag, such that lower forces were imposed on small planar algae than large arborescent individuals. Further, planar algae experienced low drag in all combinations of sea and canopy state, indicating that these individuals may not be as susceptible to wave disturbance as arborescent individuals. Overall, these data indicate that the ability for Chondrus to grow large, arborescent individuals is dependent on the drag reducing properties of the canopy, while more hydrodynamically harsh habitats may be accessible to planar morphologies. Additionally, these data suggest that drag models for canopy forming macroalgae must incorporate the effects of the canopy to predict drag accurately in situ.  相似文献   

3.
The present work analyses the morphology, anatomy, water relationsand chlorophyll content of thalli of the lichenRamalina capitatavar.protectafromtwo different populations exposed to contrasting microclimaticconditions due to differences in the orientation of the rocksurface. The population on the north-facing rock surface (NFS)was exposed to lower photosynthetic photon flux densities (PPFD),remained at high relative humidities for longer periods of timeand was exposed to lower temperatures than the population onthe south-facing surface (SFS). We proposed the hypothesis thatthe shadier the habitat the greater the ecological advantagefor enhanced light harvesting. Thalli from the SFS had shorterand wider lacinia, thicker thalli, mostly due to increased medullathickness, a higher water-retention capacity, a higher percentageof thallus volume occupied by the algal cells and a higher chlorophyllcontent than thalli from NFS. The phenotypic plastic responseof the traits studied inR. capitatavar.protectawas not directlyrelated to differences in the light availability, at least forthe range of PPFD experienced by the two populations studied,since the population exposed to higher PPFD exhibited largeramounts of light harvesting pigments. Both populations exhibitedthe same intrathalline distribution of algal cells and chlorophylls,which were more abundant in the apical than in the basal zonesof all thalli studied. Periods of water-induced metabolic activitywere shorter in the SFS than in the NFS, and structural andchlorophyll data indicated that thalli from the SFS were betterprepared for the photosynthetic exploitation of these brieferperiods and for maintaining thallus hydration into dry periods.These results suggest that differences in selective pressurebetween the two populations ofR. capitatavar.protectastudiedinvolved maximization of the photosynthetic exploitation ofthe periods of metabolic activity when they are brief, as hasbeen described for certain vascular plants from xeric environments. Ramalina capitatavar.protecta; algal cells; chlorophylls; water relations; microclimate; morphology; intrathalline variation; lichen; phenotypic plasticity  相似文献   

4.
Intertidal macroalgae often experience greater risk of dislodgment with increasing size because of underscaling of breaking force of their stipes relative to drag on their thalli. This ratio (breaking force/drag) indicates safety from breakage at a given flow speed, with values greater than one indicating safety from breakage and values lower than one indicating danger of breakage. We examined this force ratio for the largest thalli of two species of co-dominant, red algae, Chondrus crispus Stackhouse and Mastocarpus stellatus Stack. In With. (Guiry), in four seasons at two wave exposures. During fall and winter, the largest thalli in both populations were dislodged resulting in a decrease in mass of the largest thalli found. This decrease was greater for Chondrus than for Mastocarpus, but their mass-specific force ratios (at 0.55 m s−1) were equal indicating similar size-specific risk of dislodgment. The equality of force ratios was underlain by two similarities: (1) breaking force was independent of mass and not different between species; (2) mass-specific drag was not different between species. These similarities were underlain by dissimilar causes: (i) similarity in breaking force (the product of cross-sectional area and material strength) occurred because greater material strength of Mastocarpus compensated for greater mass-specific cross-sectional area of Chondrus; (ii) similarity in mass-specific drag (a function of planform area and the coefficient of drag) occurred because greater drag coefficients for Mastocarpus compensated for greater mass-specific planform areas of Chondrus. The similarity in force ratio, if it held at season- and site-relevant flow speeds, would suggest that during seasons of minimal growth and high wave exposure, the mass of the largest thalli of both species should be the same. Chondrus, however, had a greater mass at both sites in all seasons. Chondrus experienced greater decreases in mass probably because it grew larger and larger thalli are less safe. Extrapolation of a site-relevant force ratio for Chondrus in the fall revealed (1) that the site-relevant force ratio did not differ between exposures even though the mass-specific force ratio was greater at the protected site, and (2) a paradoxical result that all Chondrus thalli studied ought to have dislodged, but had not. This paradox may be resolved by consideration of the protection conferred by canopies of Chondrus: a canopy may effectively raise its site-relevant force ratio. Perhaps differences in protection conferred by different canopies explain why larger Chondrus persist with Mastocarpus even given a similarity in mass-specific force ratio.  相似文献   

5.
Large Fucales are abundant on coastal coral reefs of the Great Barrier Reef, but are often limited by the availability of inorganic nutrients. Particle loads in these reef waters are high, which is generally perceived as detrimental for aquatic plants due to a reduction of light. Here, I provide evidence that several abundant Sargassum species supplement their nutrient supply with nutrients derived from the layer of particulate matter (PM) deposited on their thalli. In experiments involving removal or addition of PM, growth rates of Sargassum spp. were up to 180% higher when particles were present on the thalli. Tissue nitrogen and phosphorus levels of thalli with a surface PM layer were 10%–30% higher than those of thalli without PM. The amount of PM deposited in situ on thalli of five species of brown algae ranged from 0.6 to 0.9 g Corg·g−1 dry weight alga, depending on the species' morphology. I suggest that a nutrient-rich diffusive boundary layer is created on the thallus surface by an epiphytic microbial community that remineralizes the particulate nutrients. When algal growth is nutrient limited, the use of particle-derived nutrients as a source alternative to nutrients in the water column may outweigh any potential adverse effects of the thallus particle layer.  相似文献   

6.
Coral reefs are shifting from coral to algal-dominated ecosystems worldwide. Recently, Turbinaria ornata, a marine alga native to coral reefs of the South Pacific, has spread in both range and habitat usage. Given dense stands of T. ornata can function as an alternative stable state on coral reefs, it is imperative to understand the factors that underlie its success. We tested the hypothesis that T. ornata demonstrates ontogenetic variation in allocation to anti-herbivore defense, specifically that blade toughness varied nonlinearly with thallus size. We quantified the relationship between T. ornata blade toughness and thallus size for individual thalli within algal stands (N = 345) on seven fringing reefs along the north shore of Moorea, French Polynesia. We found that blade toughness was greatest at intermediate sizes that typically form canopies, with overall reduced toughness in both smaller individuals that refuge within the understory and older reproductive individuals that ultimately detach and form floating rafts. We posit this variation in blade toughness reduces herbivory on the thalli that are most exposed to herbivores and may facilitate reproduction in dispersing stages, both of which may aid the proliferation of T. ornata.  相似文献   

7.
The vegetative cycle of the foliicolous lichen Phyllophiale, from propagule germination to propagule production, was studied by light microscope observation of thalli colonizing plastic cover slips placed within a lowland tropical forest. Discoid propagules germinated by growth of radially arranged fungal cells and developed directly into lichen thalli. The young lichen comprised a single disc of closely branched, radiating filaments of the algal symbiont Phycopeltis, covered by a network of fungal hyphae extending onto the substrate as a prothallus. The prothallic hyphae incorporated additional Phycopeltis thalli encountered on the substrate. The phycobiont formed a single layer, with individual algal thalli clearly distinguishable within the lichen. Radial growth ceased at points of contact between adjacent phycobiont thalli. The visible shape of the crustose lichen thallus corresponded to the perimeter of the phycobiont thalli within. Propagules were initiated at points corresponding to the margins of the phycobiont thalli, by vertical reorientation of horizontal algal filaments surrounded by fungal hyphae. The lichenized alga produced intercalary gametangia. Degeneration of propagules unsuccessful in lichen establishment sometimes resulted in free growth of the phycobiont. The alga generally maintained its shape, growth pattern, and reproductive independence within the lichen, while also participating in the formation of unique symbiotic propagules.  相似文献   

8.
1. In dense populations of the saxicolous lichen Lasallia pustulata the margins of adjacent thalli overlap each other in intraspecific competition for space and light.
2. In situ non-destructive monitoring of hydration-dependent potential photosynthetic activity by modulated fluorescence systems in different parts of the thallus shows that the activity is structured by a centre-to-margin gradient, with the centre of the thallus remaining active for substantially longer periods than the margins when the thalli dry up after being activated by wetting. The pattern reflects the water status of different parts of the thallus; the margins which are thin and exposed dry up first.
3. The activity pattern within individual lichen thalli suggests that marginal overlapping between neighbours may have a less detrimental effect on the shadowed individuals than expected from a pure consideration of the amount of area shadowed. Because the centre of the lichen thallus is active for longer periods, shadowing of this region may possibly be more harmful per area unit than an overlap at the less active margins.
4. Larger thalli are active for substantially longer periods than small ones. Even the margins of larger thalli tend to be active for a longer period than the centre of small thalli.  相似文献   

9.
Usnea longissimawas sampled in SE Norway on six main branches of onePicea abies, comprising its full vertical canopy range. Nearly all specimens (n=781) were unattached and fragmented, in contrast with associated lichens. A combination of weak axes and lack of holdfasts resulted in a population of repeatedly displaced thalli, a similar situation as in ground-dwelling vagant lichens. Comparisons with a litterfall population indicated that thalli, regardless of size, had a similar probability to end as litter on the ground. Specimens were frequently sorediate, but only 12 small thalli with a basal holdfast had been directly recruited through soredial establishment. Its patchy distribution within apparently homogenous forest stands is probably a consequence of a rare successful long-range dispersal through soredia coupled with an abundant local dispersal of coarse thallus fragments. Old forests with ample, diffuse skylight at lower and humid canopy levels are probably essential to maintain a vagant epiphytic life form with a predominantly downward dispersal of thallus fragments.  相似文献   

10.
Velocity gradients and turbulence around macrophyte stands in streams   总被引:5,自引:0,他引:5  
1. Submerged macrophytes strongly modify water flow in small lowland streams. The present study investigated turbulence and vertical velocity gradients using small hot-wire anemometers in the vicinity and within the canopies of four macrophyte species with the objective of evaluating: (a) how plant canopies influence velocity gradients and shear force on the surfaces of the plants and the stream bed; and (b) how the presence and morphology of plants influence the intensity of turbulence. 2. Water velocity was often relatively constant with water depth both outside and inside the plant canopies, but the velocity declined steeply immediately above the unvegetated stream bed. Steep vertical velocity profiles were also observed in the transition to the surface of the macrophyte canopy of three of the plant species forming a dense shielding structure of high biomass. Less steep vertical profiles were observed at the open canopy surface of the fourth plant species, growing from a basal meristem and having the biomass more homogeneously distributed with depth. The complex distribution of hydraulic roughness between the stream bed, the banks and the plants resulted in velocity profiles which often fitted better to a linear than to a logarithmic function of distance above the sediment and canopy surfaces. 3. Turbulence increased in proportion to the mean flow velocity, but the slope of the relationships differed in a predictable manner among positions outside and inside the canopies of the different species, suggesting that their morphology and movements influenced the intensity of turbulence. Turbulence was maintained in the attenuated flow inside the plant canopies, despite estimates of low Reynolds numbers, demonstrating that reliable evaluation of flow patterns requires direct measurements. The mean velocity inside plant canopies mostly exceeded 2 cm s??1 and turbulence intensity remained above 0.2 cm s??1, which should be sufficient to prevent carbon limitation of photosynthesis in CO2-rich streams, while plant growth may benefit from the reduced physical disturbance and the retention of nutrient-rich sediment particles. 4. Flow patterns were highly reproducible within canopies of the individual species despite differences in stand size and location among streams. We propose that individual plant stands are suitable functional units for analysing the influence of submerged macrophytes on flow patterns, retention of particles and biological communities in lowland streams.  相似文献   

11.
Tuckermannopsis pinastri is a lichen species found commonly on rocks and tree branches in boreal and alpine habitats in the northern United States. Members of this species produce three yellow-pigmented phenolic compounds: usnic, pinastric, and vulpinic acids. The objective of our study was to quantify the variation in concentration of the latter two of these compounds in relation to substrate factors, chlorophyll content, and thallus size. Using high-performance liquid chromatography, we analyzed 120 thalli of T. pinastri collected randomly from a single large population located at Spruce Knob, West Virginia. Although individuals were sampled from both tree and rock substrates that differed markedly in light intensity, these environmental factors were not correlated with observed variations in vulpinic or pinastric acid concentrations. Instead, compound concentrations were correlated most closely with thallus size, with small rather than large thalli having the highest concentrations of the two compounds. Small thalli did not have higher concentrations of chlorophylls than large thalli, however, which suggests that the rate of production of secondary compounds by the fungus in T. pinastri is independent of algal biomass. Inasmuch as lichen secondary compounds serve a defensive role against microorganisms and herbivores, our results suggest that small, juvenile thalli are better defended than more mature thalli.  相似文献   

12.
O. L. Lange  H. Pfanz  E. Kilian  A. Meyer 《Planta》1990,182(3):467-472
Earlier experiments (T.D. Brock 1975, Planta124, 13–23) addressed the question whether the fungus of the lichen thallus might enable the algal component to function when moisture stress is such that the algal component would be unable to function under free-living conditions. It was concluded that the liberated phycobiont in ground lichen thalli could not photosynthesize at water potentials as low as those at which the same alga could when it was present within the thallus. However, our experience with lichen photosynthesis has not substantiated this finding. Using instrumentation developed since the mid-1970's to measure photosynthesis and control humidity, we repeated Brock's experiments. When applying “matric” water stress (equilibrium with air of constant relative humidity) we were unable to confirm the earlier results for three lichen species including one of the species,Letharia vulpina, had also been used by Brock. We found no difference between the effects of low water potential on intact lichens and their liberated algal components (ground thallus material and isolated algae) and no indication that the fungal component of the lichen symbiosis protects the phycobiont from the adverse effects of desiccation once equilibrium conditions are reached. The photosynthetic apparatus of the phycobiont alone proved to be highly adapted to water stress as it possesses not only the capability of functioning under extremely low degrees of hydration but also of becoming reactivated solely by water vapor uptake.  相似文献   

13.
The influence on uptake and water loss of the structural changes experienced by Parmelia acetabulum during thallus development were investigated. Small specimens were characterized by flat lobes and a thin thallus and cortex. Large specimens appeared strongly rugose, imbricate and irregularly folded, and had a significantly thicker cortex and medulla than small thalli. Maximum water storage capacity did not differ between large and small thalli, although water retention was much higher in large thalli, presumably due to the interaction of structural characteristics and a higher boundary layer resistance. This translated into a longer duration of the period of thallus hydration in large thalli compared to small thalli. Incubation of thalli in water-vapour-saturated atmospheres induced full recovery of photosynthetic electron transport to the values before desiccation in small thalli but only induced a partial recovery in large thalli. The close correlation between photosynthetic electron transport and net photosynthesis during desiccation found in this species suggested that carbon-fixation activity could be regained to a larger extent by incubation of thalli in water vapour in small compared to large thalli. The higher ability for water vapour uptake of small thalli might allow them to efficiently use small amounts of intermittently available water or periods of high relative humidity. The significance of this differential ability to utilize water is discussed with regard to the known ecological preferences of the species.  相似文献   

14.
Porphyra yezoensis Ueda is an important marine aquaculture crop with single‐layered gametophytic thalli. In this work, the influences of thallus dehydration level, cold‐preservation (freezing) time, and thawing temperature on the photosynthetic recovery of young P. yezoensis thalli were investigated employing an imaging pulse‐amplitude‐modulation (PAM) fluorometer. The results showed that after 40 d of frozen storage when performing thallus thawing under 10°C, the water content of the thalli showed obvious effects on the photosynthetic recovery of the frozen thalli. The thalli with absolute water content (AWC) of 10%–40% manifested obvious superiority compared to the thalli with other AWCs, while the thalli thawed at 20°C showed very high survival rate (93.10%) and no obvious correlation between thallus AWCs and thallus viabilities. These results indicated that inappropriate thallus water content contributed to the cell damage during the freeze‐thaw cycle and that proper thawing temperature is very crucial. Therefore, AWC between 10% and 40% is the suitable thallus water content range for frozen storage, and the thawing process should be as short as possible. However, it is also shown that for short‐term cold storage the Porphyra thallus water content also showed no obvious effect on the photosynthetic recovery of the thalli, and the survival rate was extremely high (100%). These results indicated that freezing time is also a paramount contributor of the cell damage during the freeze‐thaw cycle. Therefore, the frozen nets should be used as soon as time permits.  相似文献   

15.
Few field studies have investigated how changes at one trophic level can affect the invasibility of other trophic levels. We examined the hypothesis that the spread of an introduced alga in disturbed seagrass beds with degraded canopies depends on the depletion of large consumers. We mimicked the degradation of seagrass canopies by clipping shoot density and reducing leaf length, simulating natural and anthropogenic stressors such as fish overgrazing and water quality. Caulerpa racemosa was transplanted into each plot and large consumers were excluded from half of them using cages. Potential cage artifacts were assessed by measuring irradiance, scouring by leaf movement, water flow, and sedimentation. Algal invasion of the seagrass bed differed based on the size of consumers. The alga had higher cover and size under the cages, where the seagrass was characterized by reduced shoot density and canopy height. Furthermore, canopy height had a significant effect depending on canopy density. The alteration of seagrass canopies increased the spread of C. racemosa only when large consumers were absent. Our results suggest that protecting declining habitats and/or restoring fish populations will limit the expansion of C. racemosa. Because MPAs also enhance the abundance and size of fish consuming seagrass they can indirectly promote algal invasion. The effects of MPAs on invasive species are context dependent and require balancing opposing forces, such as the conservation of seagrass canopy structure and the protection of fish grazing the seagrass.  相似文献   

16.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

17.
Photosynthesis–irradiance relationships of macroalgal communities and thalli of dominant species in shallow coastal Danish waters were measured over a full year to test how well community production can be predicted from environmental (incident irradiance and temperature) and community variables (canopy absorptance, species number and thallus metabolism). Detached thalli of dominant species performed optimally at different times of the year, but showed no general seasonal changes in photosynthetic features. Production capacity of communities at high light varied only 1.8-fold over the year and was unrelated to incident irradiance, temperature and mean thallus photosynthesis, while community absorptance was a highly significant predictor. Actual rates of community photosynthesis were closely related to incident and absorbed irradiance alone. Community absorptance in turn was correlated to canopy height and species richness. The close relationship of community photosynthesis to irradiance is due to the fact that (1) large differences in thallus photosynthesis of individual species are averaged out in communities composed of several species, (2) seasonal replacement of species keeps communities metabolically active, and (3) maximum possible absorptance at 100% constrains the total photosynthesis of all species. Our results imply that the photosynthetic production of macroalgal communities is more predictable than their complex and dynamic nature suggest and that predictions are possible over wide spatial scales in coastal waters by measurements of vegetation cover, incoming irradiance and canopy absorptance.  相似文献   

18.
Sargassum muticum (Phaeophyceae, Fucales) has recently been introduced to Limfjorden (Denmark) where its closest relative is the indigenous Halidrys siliquosa. Previous studies have demonstrated large quantitative (canopy biomass) and qualitative (canopy persistence) differences in the habitat available to epibiota within the canopies of these two macroalgae. We therefore hypothesised that these algae would support different epibiota communities and tested this by sampling the epibiota of S. muticum and H. siliquosa on seven occasions throughout 1997 by enclosing entire thalli in mesh bags. We found 53 epibiota taxa and, with only one exception, they were all recorded on both host species. Species richness and abundance of epibiota exhibited clear seasonal variation on both host species, although epibiota biomass was seasonally constant on H. siliquosa but not on S. muticum. These patterns were consistent with the different life histories of the host species. There was a weakly negative correlation between thallus size and epibiota biomass for both host species. When taking species-specific seasonal variation in thallus size into consideration, S. muticum and H. siliquosa were found to support significantly different epibiota biomasses. Multivariate analyses showed that epibiota community structure was different, although highly overlapping, between the two species, whereas there was an almost parallel temporal development in epibiota community structure. We conclude that it is unlikely that the introduction of S. muticum to Limfjorden has caused major changes in local epibiota community structure. However, the standing stock of epibiota is likely to have increased.Communicated by H.-D. Franke  相似文献   

19.
Field observations have revealed that when water flow is consistently from one direction, seagrass shoots align in rows perpendicular to the primary axis of flow direction. In this study, live Zostera marina shoots were arranged either randomly or in rows perpendicular to the flow direction and tested in a seawater flume under unidirectional flow and waves to determine if shoot arrangement: a) influenced flow-induced force on individual shoots, b) differentially altered water flow through the canopy, and c) influenced light interception by the canopy. In addition, blade breaking strength was compared with flow-induced force to determine if changes in shoot arrangement might reduce the potential for damage to shoots.

Under unidirectional flow, both current velocity in the canopy and force on shoots were significantly decreased when shoots were arranged in rows as compared to randomly. However, force on shoots was nearly constant with downstream distance, arising from the trade-off of shoot bending and in-canopy flow reduction. The coefficient of drag was higher for randomly-arranged shoots at low velocities (< 30 cm s− 1) but converged rapidly among the two shoot arrangements at higher velocities. Shoots arranged in rows tended to intercept slightly more light than those arranged randomly. Effects of shoot arrangement under waves were less clear, potentially because we did not achieve the proper plant size–row spacing ratio. At this point, we may only suggest that water motion, as opposed to light capture, is the dominant physical mechanism responsible for these shoot arrangements. Following a computation of the Environmental Stress Factor, we concluded that even photosynthetically active blades may be damaged or broken under frequently encountered storm conditions, irrespective of shoot arrangement.

We hypothesize that when flow is generally from one direction, seagrass bed patterns over multiple scales of consideration may arise as a cumulative effect of individual shoot self-organization driven by reduced force and drag on the shoots and somewhat improved light capture.  相似文献   


20.
The aim of this study was to isolate and cultivate the protoplasts of the green alga Monostroma latissimum Wittrock and subsequently induce them to form algal filaments to act as an algal "seed" stock. Protoplasts of the alga were isolated enzymatically with 4% cellulase Onozuka R-10 and 2% Macerozyme R-10. The highest number of protoplasts was obtained on a 50-rpm shaker with 1.2 M of sorbitol after 6 h of incubation, with a yield of 9 × 106 protoplasts·g−1 of fresh thallus (including holdfast). Protoplasts from both holdfasts and erect thalli usually began to form new cell walls within 5 h after isolation and began to divide from day 6 to day 9 in PES medium; cell clusters, filaments, and/or tubular thalli were formed from day 14 to day 18. For algae collected in March, about 60% of protoplasts isolated from vegetative thalli regenerated to form tubular thalli, and about 45% of protoplasts isolated from holdfasts regenerated to form filaments. However, for algae collected in May, about 1% of protoplasts isolated from vegetative thalli developed directly to form tubular thalli, and 59% of protoplasts regenerated to form cell clusters without the ability to differentiate, whereas protoplasts isolated from holdfasts failed to develop. Regenerated filaments were kept in an incubator for more than 3 years at 24° C under the low irradiance of 66μmol photons·m−2·s−1. After this time, they retained the ability to develop to form tubular thalli under irradiance of 166 and 300 μmol photons·m−2·s−1 at 18°–30° C. Subsequently, these tubular thalli can develop to form leafy thalli after being cultivated at high irradiance of 300 μmol photons·m−2·s−1 and at 18°–22° C. Therefore, the filaments could serve as"seed" stock for algal mass culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号