首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potato chips industry wastewater was collected and analyzed for biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and total carbohydrates. Two Aspergillus species, A. foetidus and A. niger, were evaluated for their ability to grow and produce biomass and reduce the organic load of the wastewater. A. foetidus MTCC 508 and A. niger ITCC 2012 were able to reduce COD by about 60% and produce biomass 2.4 and 2.85 gl(-1), respectively. Co-inoculation of both Aspergillus strains resulted in increased fungal biomass production and higher COD reduction than in individual culture at different culture pH. pH 6 was optimum for biomass production and COD reduction. Amendment of the wastewater with different N and P sources, increased the biomass production and COD reduction substantially. Under standardized conditions of pH 6 and amendment of wastewater with 0.1% KH2PO4 and 0.1% (NH4)2 SO4, a mixed culture gave 90% reduction in COD within 60 h of incubation.  相似文献   

2.
We investigated bacterial and archaeal community structures and population dynamics in two anaerobic bioreactors processing a carbohydrate- and sulfate-rich synthetic wastewater. A five-compartment anaerobic migrating blanket reactor (AMBR) was designed to promote biomass and substrate staging, which partially separates the processes of methanogenesis and sulfidogenesis in the middle and outer compartment(s) respectively. The second reactor was a conventional, single-compartment upflow anaerobic sludge blanket (UASB) reactor. Both reactors, which were seeded with the same inoculum, performed well when the influent chemical oxygen demand (COD)/SO(4) (2-) mass ratio was 24.4. The AMBR performed worse than the UASB reactor when the influent COD/SO(4) (2-) mass ratio was decreased to 5.0 by raising the sulfate load. Terminal restriction fragment length polymorphism analyses of bacterial 16S rRNA genes showed that the increase in sulfate load had a greater impact on bacterial diversity and community structure for the five AMBR compartments than for the UASB reactor. Moreover, bacterial community profiles across AMBR compartments became more similar through time, indicating a converging, rather than a staged community. While similar populations were abundant in both reactors at the beginning of the experiment, fermenting bacteria (clostridia, streptococci), and sulfate-reducing bacteria became more abundant in the AMBR, after shifting to a higher sulfate load, while a novel Thermotogales-like population eventually became predominant in the UASB reactor. A similar shift in the community structure of the hydrogenotrophic methanogens in the AMBR occurred: representatives of the Methanobacteriaceae out-competed the Methanospirillaceae after increasing the sulfate load in the AMBR, while the archaeal community structure was maintained in the UASB.  相似文献   

3.
A kinetic model for the anaerobic filter (AF) that takes into account the mass fractions of sulfate-reducing bacteria (SRB) (f(SRB)) and methanogenic bacteria (MB) (f(MB)) and an inhibiting effect of H(2)S on bacterial groups is proposed. When the acetate-fed AFs were maintained at the low organic loading rate of 2.5kg COD/m(3)d, variations of the influent COD/SO(4)(2-) ratio (0.5-3.0) does not materially affect the acetate removal efficiency (all varying between 98.1% and 99.7%). With an increase in influent COD/SO(4)(2-) ratio, both the biofilm thickness and the specific substrate utilization rate decreased slightly but f(SRB) decreased markedly. The estimated results of f(SRB) and f(MB) showed that SRB out-competed MB for bacterial growth if the influent COD/SO(4)(2-) ratio was maintained at less than 1.3, whereas MB out-competed SRB for bacterial growth if the influent COD/SO(4)(2-) ratio was maintained at greater than 2.0. The specific substrate utilization rate of SRB (0.19-0.24mg acetate/mg VSSd) was lower than that of MB (0.31-0.59mg acetate/mg VSSd). The estimated kinetic parameters disclosed that the affinity of acetate to MB was higher and unionized H(2)S imposed a greater inhibiting effect on MB. The model simulation results (acetate and sulfate removal) agreed well with the experimental results.  相似文献   

4.
A start-up experiment was performed in a laboratory-scale, upflow anaerobic sludge blanket (UASB) reactor using seed sludge from a domestic waste treatment plant at 3.8-33.3gCODl(-1)day(-1) loading rates. Analysis over the height of the reactor with time showed that the VSS in the reactor was initially differentiated into active and non-active biomass at increasing gas production and upflow velocities, and specific update rates of the volatile fatty acids (VFA) components were pronounced at the bottom 10% of the reactor. During start-up, specific methanogenic activity and chemical oxygen demand (COD) uptake rate increased from 0.075 to 0.75gCOD-CH(4)(gVSS)(-1)day(-1) and from 0.08 to 0.875gCOD removed (gVSS)(-1)day(-1), respectively. When seed sludge from a distillery waste treatment plant was used, improved performance due to a predominance of active biomass was evident when the loading rate was increased from 9.4 to 28.7gCODl(-1)day(-1). The proposed start-up evaluation is an effective tool to successfully monitor performance of UASB reactors.  相似文献   

5.
A laboratory study has been conducted to obtained preliminary process information of a suspended growth Predenitrification (SGPDN)system. System performance was evaluated, in terms of chemical oxygen demand (COD) removal, NH(3)-N removal, system biomass yield and inventory, and effluent qualities, at different solids retention times (SRTs) and recycle ratios. Chemical oxygen demand removal in an SGPDN system occurs mainly in the anoxic reactor, which accounts for 94% of total COD removal. The overall COD removal rate is independent of recycle ratio (ranging from 2-5) used in this study; however, effluent COD increase with increasing recycle ratio. The observed anoxic and aerobic COD removal rates decrease with increasing SRT. The NH(3)-N removal in an SGPDN system is induced by two mechanisms: assimilatory NH(3)-N requirement for biomass production in the anoxic reactor and nitrification in the aerobic reactor. The observed anoxic NH(3)-N removal rate relates directly to the anoxic COD removal rate and agrees fairly well with the assimilatory NH(3)-N requirement theoretically predicted. The overall NH(3)-N removal rate is independent of SRTs and recycle ratios used in this study. Biomass yield in an SGPDN system occurs mainly in the anoxic reactor. However, uniform distribution of biomass throughout the entire system is obtained because of the high recycle rate used. The observed biomass yield (Y(O)) decreases with increasing STR. Tertiary treatment efficiency can be achieved in an SGPDN system. More than 90% reduction in feed COD., feed NH(3)-N, and NO(2) + NO(3)-N is obtained at all SRTs and recycle ratios used in this study. Higher MLVSS loading rates can be applied to a final clarifier without impairing its separation efficiency because of the excellent settleability of the Predenitrification activated sludge.  相似文献   

6.
This study describes the feasibility of anaerobic treatment of synthetic coal wastewater using four identical 13.5L (effective volume) bench scale hybrid up flow anaerobic sludge blanket (HUASB) reactors (R1, R2, R3 and R4) under mesophilic (27+/-5 degrees C) conditions. Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg/L and phenolics concentration of 752 mg/L was used as substrate. Effluent recirculation was employed at four different effluent to feed recirculation ratios (R/F) of 0.5, 1.0, 1.5 and 2.0 for 100 days to study the effect of recirculation on the performance of the reactors. Phenolics and COD removal was found to improve with increase in effluent recirculation. An effluent to feed recycle ratio of 1.0 resulted in maximum removal of phenolics and COD. Phenolics and COD removal improved from 88% and 92% to 95% each, respectively. The concentration of volatile fatty acids in the effluent was lower than the influent when effluent to feed recirculation was employed. Effect of shock loading on the reactors revealed that phenolics shock load up to 2.5 times increase in the normal input phenolics concentration in the form of continuous shock load for 4days did not affect the reactors performance irreversibly.  相似文献   

7.
The effects of COD/N ratio (3-6) and salt concentration (0.5-2%) on organics and nitrogen removal efficiencies in three bench top sequencing batch reactors (SBRs) with synthetic wastewater and one SBR with fish market wastewater were investigated under different operating schedules. The solids retention time (SRT, 20-100 days) and aeration time (4-10h) was also varied to monitor the performance. For synthetic wastewater, chemical oxygen demand (COD) removal efficiencies were consistently greater than 95%, irrespective of changes in COD/N ratio, aeration time and salt concentrations. Increasing the salt concentrations decreased the nitrification efficiency, while high COD/N ratio's favored better nitrogen removal (>90%). The treatment of real saline wastewater ( approximately 3.2%) from a fish market showed high COD (>80%) and nitrogen (>40%) removal efficiencies despite high loading rate and COD/N fluctuations, which is due to the acclimatization of the biomass within the SBR.  相似文献   

8.
The relationship between biomass concentration to nutrient and chemical oxygen demand (COD) removal in mixed liquor supplemented with sodium acetate was investigated, using three protozoan isolates and three different initial biomass concentrations (10(1), 10(2) and 10(3) cells/mL). The study was carried out in a shaking flask environment at a shaking speed of 100 rpm for 96 h at 25 degrees C. Aliquot samples were taken periodically for the determination of phosphate, nitrate, COD and dissolved oxygen, using standard methods. The results revealed remarkable phosphate removal of 82-95% at biomass concentration of 10(3)cells/mL. A high nitrate removal of over 87% was observed at all initial biomass concentration in mixed liquor. There was an observed COD increase of over 50% in mixed liquor in at the end of 96-h incubation and this was irrespective of initial biomass concentration used for inoculation. The study shows the trend in nutrient and COD removal at different biomass concentrations of the test isolates in mixed liquor.  相似文献   

9.
Aluminum ions are highly soluble in acidic environments. Toxicity of aluminum ions for heterotrophic, facultatively and obligately chemolithoautotrophic acidophilic bacteria was examined. Acidiphilium cryptum grew in glucose-mineral medium, pH 3, containing 300 mM aluminum sulfate [Al(2)(SO(4))(3)] after a lag phase of about 120 h with a doubling time of 7.6 h, as compared to 5.2 h of growth without aluminum. Precultivation with 1 mM Al(2)(SO(4))(3) and transfer to a medium with 300 mM Al(2)(SO(4))(3) reduced the lag phase from 120 to 60 h, and immediate growth was observed when A. cryptum was precultivated with 50 mM Al(2)(SO(4))(3), suggesting an aluminum-induced resistance. Aluminum resistance was not induced by Fe(3+) ions and divalent cations. Upon exposure of A. cryptum to 300 mM Al(2)(SO(4))(3), the protein profile changed significantly as determined by SDS-PAGE. When other acidophiles were cultivated with 50-200 mM aluminum sulfate, no lag phase was observed while the growth rates and the cellular yields were significantly reduced. This growth response was observed with Acidobacterium capsulatum, Acidiphilium acidophilum, Acidithiobacillus ferrooxidans, and Acidithiobacillus thiooxidans. Precultivation of these strains with aluminum ions did not alter the growth response caused by aluminum. The content of A. cryptum cultivated with 300 mM Al(2)(SO(4))(3)was 0.44 microg Al/mg cell dry weight, while that of the other strains cultivated with 50 mM Al(2)(SO(4))(3) ranged from 0.30 to 3.47 microg Al/mg cell dry weight.  相似文献   

10.
Eels are unique in that they maintain lower plasma SO(4)(2-) concentration in SO(4)(2-)-rich (~30 mM) seawater (SW) than in SO(4)(2-)-poor (<0.3 mM) freshwater (FW), showing drastic changes in SO(4)(2-) regulation between FW and SW. We previously showed that the expression of renal SO(4)(2-) transporter genes, FW-specific Slc13a1 and SW-specific Slc26a6a, changes profoundly after transfer of FW eels to SW, which results in the decrease in plasma SO(4)(2-) concentration after 3 days in SW. In this study, we attempted to identify the environmental factor(s) that trigger the switching of SO(4)(2-) regulation using changes in plasma and urine SO(4)(2-) concentrations and expression of the transporter genes as markers. Transfer of FW eels to 30 mM SO(4)(2-) or transfer of SW eels to SO(4)(2-)-free SW did not change the SO(4)(2-) regulation. Major divalent cations in SW, Mg(2+) (50 mM) and Ca(2+) (10 mM), were also ineffective, but 50 mM NaCl was effective for switching the SO(4)(2-) regulation. Further analyses using choline-Cl and Na-gluconate showed that Cl(-) is a primary factor and Na(+) is permissive for the Cl(-) effect. Since plasma SO(4)(2-) and Cl(-) concentrations were inversely correlated, we injected various solutions into the blood and found that Cl(-) alone triggered the switching from FW to SW-type regulation. Furthermore, the inhibitor of Na-Cl cotransporter (NCC) added to media significantly impaired the expression of SW-specific Slc26a6a in 150 mM NaCl. In summary, it appears that Cl(-) ions in SW are taken up into the circulation via the NCC together with Na(+), and the resultant increase in plasma Cl(-) concentration enhances SO(4)(2-) excretion by the kidney through downregulation of absorptive Slc13a1 and upregulation of excretory Slc26a6a, resulting in low plasma SO(4)(2-) concentration in SW.  相似文献   

11.
《Biomass》1990,21(3):207-218
The anaerobic treatment of baker's yeast wastewater was studied using an anaerobic biological contact reactor (AnRBC) and a fixed-film reactor. The AnRBC had an active biomass developed within the reactor before this study commenced; however, the fixed-film reactor was started without attached biomass in a support structure. The gas production rates obtained for the AnRBC were between 0·55 and 0·61 litre methane per litre reactor per day. However, a gas production rate of only 0·46 litre methane per litre reactor per day was achieved after a four-month operating period for the fixed-film reactor. Higher chemical oxygen demand reduction was also found in the AnRBC. The results indicated that the presence of high sulfate concentration in baker's yeast wastewater affected teh start-up process. The reactor with fully developed active biomass was less susceptible to sulfate inhibition and showed improved anaerobic digestion. Results indicate that the reactor should be innoculated by feeding nutrient-balanced substrate before it was subjected to the digestion of baker's yeast wastewater. The fixed-film reactor was also fed with the substrate contianing sodium molybdate, an inhibitor of sulfate-reducing bacteria. The results indicated that both methanogenic and sulfate-reducing bacteria were inhibited.  相似文献   

12.
Microbial sulfate reduction with acetate as carbon source and electron donor was investigated at salinity levels between 0.53 and 1.48%. The experiment was carried out in a 2.3-1 upflow anaerobic sludge blanket reactor inoculated with granular methanogenic sludge. A pH of 8.3, a temperature of 32 +/- 1 degrees C and a chemical oxygen demand (COD)/SO4(2-)-S ratio of 2 were maintained in the reactor throughout the experiment. Sulfate reduction and the composition of the dominant bacterial communities in the reactor were monitored. The results showed that a maximal conversion rate for SO4(2-)-S of 14 g l(-1) day(-1) and a conversion efficiency of more than 90% were obtained at a salinity level of 1.26-1.39%. A further increase in the salinity level led to reactor instability. Denaturant gradient gel electrophoresis of 16S rDNA fragments amplified by PCR from total bacterial DNA extracted from the inoculum and reactor sludge showed that salinity level had an impact on the composition of the bacterial communities in the reactor. However, no clear relationship was found between reactor performance and the composition of the dominant bacterial communities in the reactor.  相似文献   

13.
In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0+/-0.7mgO(2)l(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO(4)(2-) ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO(4)(2-) ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%.  相似文献   

14.
During the anaerobic biodegradation of effluent from a dimethyl terephthalate (DMT) manufacturing plant, reduction in chemical oxygen demand (COD) degradation and biogas formation was observed after the waste-water concentration exceeded 25% of added feed COD. This condition reverted back to normal after 25–30 days when the DMT waste-water concentration in the feed was brought down to a non-toxic level. However, the above effects were observed only after the concentration of DMT waste-water reached more than 75% of added feed COD when biomass support particles (BSP) were augmented to the system. In the BSP system, a biomass concentration of up to 7000 mg/l was retained and the sludge retention time increased to > 200 days compared to 2200 mg/l and 8–10 days, respectively, in the system without BSP (control). Formaldehyde in the waste-water was found to be responsible for the observed toxicity. The BSP system was found to resist formaldehyde toxicity of up to 375 mg/l as against 125 mg/l in the control system. Moreover, the BSP system recovered from the toxicity much faster (15 days) than the control (25–30 days). The advantages of the BSP system in anaerobic treatment of DMT waste-water are discussed. Correspondence to: C. Ramakrishna  相似文献   

15.
The use of a down-flow fluidized bed (DFFB) reactor for the treatment of a sulfate-rich synthetic wastewater was investigated to obtain insight into the outcome of sulfate reduction in a biofilm attached to a plastic support under a down-flow regime. Fine low-density polyethylene particles were used as support for developing a biofilm within the reactor. The reactor treated a volatile fatty acids mixture of acetate or lactate, propionate, and butyrate at different chemical oxygen demand (COD) to sulfate ratios ranging from 1.67 to 0.67 (g/g). Organic loading rate changed from 2.5 to 5 g COD/L x day and sulfate loading rate increased from 1.5 to 7.3 g SO(4) (2-)/L x day. At the beginning of continuous operation, methanogenesis was the predominant process; however, after 187 days, sulfate reduction became the main ongoing biological process. After 369 days, a COD removal of 93% and a sulfate removal of 75% were reached. Total sulfide concentrations in the reactor ranged from 105, when the reactor was mainly methanogenic, to around 1,215 mg/L at the end of the experiment. The high sulfide concentrations did not affect the performance of the reactor. Results demonstrated that the configuration of the DFFB reactor was suitable for the anaerobic treatment of sulfate-rich wastewater.  相似文献   

16.
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO(4)(2-)(i)/SO(4)(2-)(o) exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO(4)(2-)(i)/Cl(-)(o) exchange). Whereas wild-type AE1 mediates 1:1 H(+)/SO(4)(2-) cotransport in exchange for either Cl(-) or for the H(+)/SO(4)(2-) ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO(4)(2-) transport, both SO(4)(2-)(i)/Cl(-)(o) exchange and SO(4)(2-)(i)/SO(4)(2-)(o) exchange mediated by mutant Ae1 E699Q are inhibited by acidic pH(o) and activated by alkaline pH(o). hAE1 E681OH displays a similarly altered pH(o) dependence of SO(4)(2-)(i)/Cl(-)(o) exchange. Elevated [SO(4)(2-)](i) increases the K(1/2) of Ae1 E699Q for both extracellular Cl(-) and SO(4)(2-), while reducing inhibition of both exchange mechanisms by acid pH(o). The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO(4)(2-). Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters.  相似文献   

17.
A 30-l anaerobic bioreactor with biomass recycling was used to provide a continuous reduction in sulphate and a continuous COD removal from wastewater, which consisted of the effluent from an industrial pig fattening farm, enriched with technical FeSO(4) x 7H(2)O, a waste product from ferrous metallurgy. The concentrations of sulphate and COD in the wastewater amounted to 2.73 g l(-1) and 3.15 g l(-1), respectively. The HRT (hydraulic retention time) of 10-1.7d produced an extent of sulphate and COD reduction which totalled 98% and 88%, respectively. When the HRT was further shortened, the efficiency of reduction in sulphate and COD decreased. The maximum removal rate constants for both the pollutants, calculated by means of a modified Stover-Kincannon model, were 80.9 g COD l(-1)d(-1) and 41.8 g SO(4)(2-)l(-1)d(-1), the values of the saturation constants being 91.582 g COD l(-1)d(-1) and 42.398 g SO(4)(2-)l(-1)d(-1).  相似文献   

18.
AIMS: Rhodovulum sulfidophilum was grown in sardine processing wastewater to assess growth characteristics for the production of bacterial biomass with simultaneous reduction of chemical oxygen demand. METHODS AND RESULTS: Growth characteristics were compared in diluted and undiluted, settled and non-settled wastewater growing in anaerobic light and aerobic dark conditions; and also at different agitation speeds. The highest biomass (8.75 g l(-1)) and a reduction in chemical oxygen demand of 71% were obtained in unsettled, undiluted wastewater after 120 h culture with 15% inoculum. In settled wastewater, highest biomass (7.64 g l(-1)) and a COD reduction of 77% was also obtained after 120 h. Total biomass was higher (4.34 g l(-1)) after 120 h culture in anaerobic light compared to (3.23 g l(-1)) in aerobic dark growth. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Better performance, mean of total biomass (6.97 g l(-1) after 96 h), total carotenoids (4.24 mg g(-1) dry cell from 24 h) and soluble protein (431 microg ml(-1) after 96 h) were obtained from aerobic dark culture at 300 rev min(-1). The COD reduction, however, was lower (69%) after 96 h culture. Thus, the benefits in the production of bacterial biomass in non-sterilized sardine processing wastewater with the reduction of chemical oxygen demand could be achieved.  相似文献   

19.
Summary The fermentation of olive mill waste-waters (OMW) by Aspergillus niger was studied. On the basis of factorial design experiments, suspended solids and concentration of OMW, nitrogen source, sulphate and size of inocula were all found to be significant by affecting mycelium growth and chemical oxygen demand (COD) removal. Neither the absence of yeast extract, magnesium, sodium, potassium nor of calcium limited the growth of A. niger. With media lacking additional nitrogen and sulphate, the growth was limited. The optimal inoculum obtained was between 106 and 107 spores/g COD. The highest biomass and the greatest COD removal were obtained with removed COD to N:SO inf4 sup¨- ratios averaging 100 to 3:1.5. Offprint requests to: M. Hamdi  相似文献   

20.
Anaerobic digestion of cheese whey wastewaters (CW) was investigated in a system consisting of an ecological pretreatment followed by upflow anaerobic filter (UAF). The pretreatment was conducted to solve the inhibition problems during anaerobic treatment of CW caused by the amounts of fats, proteins and carbohydrates and to avoid the major problems of clogging in the reactor. The optimized ecological pretreatment of diluted CW induce removal yields of 50% of chemical oxygen demand (COD) and 60% of total suspended solids (TSS) after acidification by Lactobacillus paracasei at 32 degrees C during 20 h and neutralization with lime. The pretreated CW was used to feed UAF (35 degrees C). The effects of organic loading rate (OLR) and hydraulic retention time (HRT) on the pretreated CW anaerobic degradation were examined. The average total COD removals achieved was 80-90%. The performance of the reactor was depressed by increasing the COD concentration to 20 g/l (OLR = 4 gCOD/ld) and the COD removal efficiency was reduced to 72%. Significant methane yield (280 l/kg COD removal) was obtained at an HRT of 2 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号