首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia   总被引:11,自引:0,他引:11  
Transforming growth factor-β (TGF-β) has diverse and multiple roles throughout the body. This review focuses on the evidence supporting its functions in the central nervous system, with a particular emphasis on its purported role in cerebral ischemia. Numerous studies have documented that TGF-β1 levels are enhanced in the brain following cerebral ischemia. As evidence that such an upregulation is beneficial, agonist studies have demonstrated that TGF-β1 reduces neuronal cell death and infarct size following middle cerebral artery occlusion (MCAO), while conversely, antagonist studies have shown increased neuronal cell death and infarct size after MCAO. These studies suggest that TGF-β1 has a neuroprotective role in cerebral ischemia. Recent work with adenoviral-mediated overexpression of TGF-β1 in vivo in mice has further implicated a neuroprotective role for TGF-β1 in cerebral ischemia, as evidenced by a reduction in neuronal cell death, infarct size, and neurological outcome. Additionally, numerous in vitro studies have documented the neuroprotective ability of TGF-β1 in neurons from a variety of species, including rats, mice, chicks, and humans. Of significant interest, TGF-β1 was shown to be protective against a wide variety of death-inducing agents/insults, including hypoxia/ischemia, glutamate excitotoxicity, β-amyloid, oxidative damage, and human immunodeficiency virus. The mechanism of TGF-β1-mediated neuroprotection remains to be resolved, but early evidence suggests that TGF-β1 regulates the expression and ratio of apoptotic (Bad) and antiapoptotic proteins (Bcl-2, Bcl-x1), creating an environment favorable for cell survival of death-inducing insults. Taken as a whole, these results suggest that TGF-β1 is an important neuroprotective factor that can reduce damage from a wide-array of death-inducing agents/insults in vitro, as well as exert protection of the brain during cerebral ischemia. The authors’ research is supported by research grants (HD-28964 and AG-17186 to DWB) from the National Institutes of Health, NICHD, and NIA.  相似文献   

3.
Smooth muscle cells respond to injury and the presence of serum factors by modulating from a quiescent contractile cell to a motile synthetic phenotype. To evaluate the biochemical response to serum exposure, we examined the proteins synthesized and secreted in response to serum. The most prominent effect of serum was the rapid production of a protein with an apparent molecular weight of 43 kDa. Removal of serum from the culture environment led to a cessation of 43 kDa protein production. The effect of exogenous heparin on 43 kDa protein production was also evaluated. Neither the 43 kDa protein nor a previously described 38 kDa protein was induced by heparin. Further, heparin treatment did not counteract the effects of serum. These studies demonstrate that an early response of vascular smooth muscle cells to serum is the production of this previously undescribed protein and that other modifications of the culture conditions did not affect its synthesis.  相似文献   

4.
A possible role for zinc deficiency in some cases of growth retardation in southern France was investigated. Control values for zinc for 160 children (age=12.5±2.4 yr) are 0.85±0.22 mg/L (mean ±2 SD). Twenty-five children with low serum zinc values (<0.63 mg/L) and 25 matched short children with normal serum zinc values (>0.63 mg/L) were studied. Children in the two groups did not differ significantly in age, pubertal development, stature, and weight. For the 25 children whose serum values were low, we found significantly lower values for bone age delay, growth velocity in mm/month, as well as the ratio between calculated growth velocity and theoretical growth velocity for the bone age (so that zincemia was correlated to these parameters in the whole sample of 50 subjects). Nevertheless, no significant difference could be found between the two groups for serum somatomedin C, serum osteocalcin values, and GH responses to the GH stimulatory tests (exercise test, overnight sampling, insulin-induced hypoglycemia, arginine test). Therefore, low serum zinc is associated with a retardation in both somatic growth and pubertal maturation.  相似文献   

5.
Polypeptide growth factors, which belong to different families (epidermal growth factors, insulin-like growth factors, fibroblast growth factors, transforming growth factors-beta, and some others), were characterized regarding their specific role in embryogenesis and tumor growth. Differences and parallels of the functioning of growth factors in these processes have been noted. Potential significance of the described characteristics of growth factors for directed modulation of embryogenesis and tumor growth is discussed.  相似文献   

6.
7.
8.
Neurotrophic factors and axonal growth   总被引:13,自引:0,他引:13  
Neuronal morphological differentiation is regulated by numerous polypeptide growth factors (neurotrophic factors). Recently, significant progress has been achieved in clarifying the roles of neurotrophins as well as glial cell line-derived neurotrophic factor family members in peripheral axon elongation during development. Additionally, advances have been made in defining the signal transduction mechanisms employed by these factors in mediating axon morphological responses. Several studies addressed the role of neurotrophic factors in regenerative axon growth and suggest that signaling mechanisms in addition to those triggered by receptor tyrosine kinases may be required for successful peripheral nervous system regeneration. Finally, recent investigations demonstrate that neurotrophic factors can enhance axon growth after spinal cord injuries.  相似文献   

9.
10.
Mononuclear cells from the peripheral blood of healthy test persons were cultivated in a methylcellulose medium with serum samples taken from 13 patients with chronic myeloid leukemia (CML) and with osteomyelosclerosis (OMS) as well as with serum samples of 6 healthy test persons. From evaluating the proliferation of granulopoietic cells quantitatively, conclusions were made concerning the concentrations of granulopoietic stimulating substances in these sera. In all cultures with the serum of patients the number of granulopoietic cell colonies was greater than that in cultures with the serum of normal persons. The stronger proliferation of granulopoietic precursor cells in cultures with serum of patients is seen to be due to an enhanced production of the granulocyte-macrophage colony stimulating factor (GM-CSF) by leukemic cells. The differential hemograms and curves indicating the course of leukocytes in patients are compared with the corresponding results of cultures. In patients with CML an increased output of GM-CSF will apparently influence the increase in size of the granulopoietic stem cell pool, which is evident in the steep increase of those curves indicating the course of leukocytes. In patients with OMS, however, there is a discrepancy between granulopoietic serum activity and proliferation in vivo. From these investigations the hypothesis is derived that an increased synthesis of GM-CSF in patients with CML may be one of the causes underlying hyperplastic granulopoiesis. A direct advantage of leukemic cells in proliferation cannot be derived from it.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Rat sciatic nerve Schwann cells in culture respond to a limited range of mitogens, including glial growth factor, transforming growth factors beta-1 and beta-2 (TGF-beta 1, TGF-beta 2), some cell membrane-associated factors, and to agents such as cholera toxin and forskolin which raise intracellular levels of cAMP. These responses require the presence of FCS, which exhibits little or no mitogenic activity in the absence of other factors. However, we recently found that forskolin greatly potentiates the mitogenic signal from TGFs-beta 1 and beta 2, raising the possibility that cAMP might couple other factors to mitogenesis. We have therefore screened a range of candidate mitogens using DNA synthesis assays. Other than TGFs-beta and glial growth factor, none of the factors tested were mitogenic in the presence of 10% serum alone. With the addition of forskolin, however, porcine PDGF, human PDGF, acidic and basic FGF were potent mitogens for rat Schwann cells, stimulating DNA synthesis and increasing cell number. Cholera toxin and dibutyrylcyclicAMP, but not 1,9-dideoxyforskolin, can substitute for forskolin indicating that the mitogenic effect is mediated via adenylyl cyclase activation. Porcine PDGF gave half-maximal stimulation at 15 pM, and human PGDF an equivalent response at 1 nM. Basic FGF was half maximal at 5 pM, acidic FGF at 1 nM. The recognition of PDGFs and FGFs as mitogens for Schwann cells has many implications for the study of Schwann cell proliferation in the development and regeneration of nerves, and in Schwann cell tumorigenesis.  相似文献   

12.
Fibroblast growth factors   总被引:1,自引:0,他引:1  
Ornitz DM  Itoh N 《Genome biology》2001,2(3):reviews3005.1-reviews300512
Fibroblast growth factors (FGFs) make up a large family of polypeptide growth factors that are found in organisms ranging from nematodes to humans. In vertebrates, the 22 members of the FGF family range in molecular mass from 17 to 34 kDa and share 13-71% amino acid identity. Between vertebrate species, FGFs are highly conserved in both gene structure and amino-acid sequence. FGFs have a high affinity for heparan sulfate proteoglycans and require heparan sulfate to activate one of four cell-surface FGF receptors. During embryonic development, FGFs have diverse roles in regulating cell proliferation, migration and differentiation. In the adult organism, FGFs are homeostatic factors and function in tissue repair and response to injury. When inappropriately expressed, some FGFs can contribute to the pathogenesis of cancer. A subset of the FGF family, expressed in adult tissue, is important for neuronal signal transduction in the central and peripheral nervous systems.  相似文献   

13.
Nerve growth factors   总被引:1,自引:0,他引:1  
  相似文献   

14.
Fibroblast growth factors   总被引:14,自引:0,他引:14  
K A Thomas 《FASEB journal》1987,1(6):434-440
Fibroblast growth factors (FGFs) are heparin-binding protein mitogens that induce division of most cultured cells derived from embryonic mesoderm and neuroectoderm. Terminally differentiated neurons also respond in vitro by eliciting outgrowth of neurites. In vivo, FGFs have been shown to induce DNA synthesis, cell migration, blood vessel growth, and dermal wound closure. The protein and nucleic acid sequences for two different FGFs, denoted acidic and basic FGF, have been determined and recognized to be homologous. Additional genes recently have been identified that extend this protein family.  相似文献   

15.
《Brain Cell Biology》1991,20(10):857-857
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号