首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTPase-activating protein (GAP) enhances the rate of GTP hydrolysis by cellular Ras proteins and is implicated in mitogenic signal transduction. GAP is phosphorylated on tyrosine in cells transformed by Rous sarcoma virus and serves as an in vitro substrate of the viral Src (v-Src) kinase. Our previous studies showed that GAP complexes stably with normal cellular Src (c-Src), although its association with v-Src is less stable. To further investigate the molecular basis for interactions between GAP and the Src kinases, we examined GAP association with and phosphorylation by a series of c-Src and v-Src mutants. Analysis of GAP association with c-Src/v-Src chimeric proteins demonstrates that GAP associates stably with Src proteins possessing low kinase activity and poorly with activated Src kinases, especially those that lack the carboxy-terminal segment of c-Src containing the regulatory amino acid Tyr-527. Phosphorylated Tyr-527 is a major determinant of c-Src association with GAP, as demonstrated by c-Src point mutants in which Tyr-527 is changed to Phe. While the isolated amino-terminal half of the c-Src protein is insufficient for stable GAP association, analysis of point substitutions of highly conserved amino acid residues in the c-Src SH2 region indicate that this region also influences Src-GAP complex formation. Therefore, our results suggest that both Tyr-527 phosphorylation and the SH2 region contribute to stable association of c-Src with GAP. Analysis of in vivo phosphorylation of GAP by v-Src mutants containing deletions encompassing the SH2, SH3, and unique regions suggests that the kinase domain of v-Src contains sufficient substrate specificity for GAP phosphorylation. Even though tyrosine phosphorylation of GAP correlates to certain extent with the transforming ability of various c-Src and v-Src mutants, our data suggest that other GAP-associated proteins may also have roles in Src-mediated oncogenic transformation. These findings provide additional evidence for the specificity of Src interactions with GAP and support the hypothesis that these interactions contribute to the biological functions of the Scr kinases.  相似文献   

2.
In the cells transformed by Rous sarcoma virus (RSV), two Src proteins are expressed: the ubiquitous tyrosine kinase c-Src and the v-Src, the product of the transforming gene of the virus. Using three synthetic peptide substrates widely used for testing Src kinase activity, we show that they are phosphorylated with different efficiencies by the v-Src and c-Src tyrosine kinases immunoprecipitated from the tumor cell line H19. The v-Src displays higher efficiency (Vmax/Km ratio) toward all three peptides used, but the Vmax of v-Src is much lower than Vmax of c-Src with two peptides out of three. This difference in substrate specificity, if ignored, may cause misestimation of the amounts of active c-Src and v-Src in RSV-transformed cells. On the other hand, the different peptide substrate specificities may also reflect different protein substrate specificities of the v-Src and c-Src kinases in vivo.  相似文献   

3.
GTPase-activating protein (GAP) is a key regulator of the cellular Ras protein, which is implicated in oncogenic signal transduction pathways downstream of the viral Src (v-Src) kinase. Previous studies demonstrated that v-Src induces tyrosine phosphorylation of GAP, suggesting that GAP may provide a biochemical link between v-Src and Ras signaling pathways. To determine the precise residues in GAP phosphorylated by Src kinases, we used a baculovirus/insect cell expression system for investigating in vitro phosphorylation of GAP. Phosphopeptide mapping analysis revealed that v-Src and normal cellular Src (c-Src) phosphorylate tyrosine residues in bovine GAP at one major site and one minor site in vitro. Significantly, the major site of GAP phosphorylation in vitro is also the major site of in vivo tyrosine phosphorylation of GAP in rat fibroblasts transformed by v-Src. Analyses of GAP deletion mutants and TrpE-GAP fusion proteins established that Tyr-457 of bovine GAP (and the corresponding residue of rat and human GAP) is the major site of tyrosine phosphorylation. Our results demonstrate that the v-Src kinase induces phosphorylation of the same tyrosine residue of GAP in vitro and in vivo, suggesting that GAP is a direct substrate of activated Src kinases in vivo. Because epidermal growth factor receptor phosphorylates the equivalent tyrosine residue in human GAP (Tyr-460), these findings are consistent with the hypothesis that specific phosphorylation of GAP at this site may have a physiologically important role in regulating mitogenic Ras signaling pathways.  相似文献   

4.
Ras GTPase-activating protein (GAP) has been implicated in mitogenic signal transduction downstream of oncogenic and receptor tyrosine kinases. Previous studies have suggested that GAP is phosphorylated by oncogenic viral Src (v-Src) and that GAP is associated with a complex containing normal cellular Src (c-Src) in vertebrate fibroblasts. To investigate molecular interactions between the Src kinases and GAP, we developed an in vitro system for reconstituting Src-GAP complexes. For this purpose, we constructed recombinant baculovirus vectors that direct expression of Rous sarcoma virus v-Src, chicken c-Src, and bovine GAP in infected Sf9 insect cells. In vitro reconstitution experiments using baculovirus-expressed proteins demonstrate that both v-Src and c-Src associate in complexes with GAP. In addition, in vitro and in vivo phosphorylation analyses indicate that GAP serves as a substrate for both the v-Src and c-Src tyrosine kinases. To determine which structural features of GAP are involved in interactions with the Src kinases, we constructed recombinant baculoviruses that encode deletion mutants of bovine GAP. Deletion of the GAP amino-terminal portion containing Src homology 2 regions, which are highly conserved structural motifs postulated to mediate interactions among proteins, diminishes GAP phosphorylation and association with Src. This reconstitution system should facilitate further studies of molecular interactions between the Src kinases and GAP.  相似文献   

5.
Integrins facilitate cell attachment to the extracellular matrix, and these interactions generate cell survival, proliferation, and motility signals. Integrin signals are relayed in part by focal adhesion kinase (FAK) activation and the formation of a transient signaling complex initiated by Src homology 2 (SH2)-dependent binding of Src family protein-tyrosine kinases to the FAK Tyr-397 autophosphorylation site. Here we show that in viral Src (v-Src)-transformed NIH3T3 fibroblasts, an adhesion-independent FAK-Src signaling complex occurs. Co-expression studies in human 293T cells showed that v-Src could associate with and phosphorylate a Phe-397 FAK mutant at Tyr-925 promoting Grb2 binding to FAK in suspended cells. In vitro, glutathione S-transferase fusion proteins of the v-Src SH3 but not c-Src SH3 domain bound to FAK in lysates of NIH3T3 fibroblasts. The v-Src SH3-binding sites were mapped to known proline-X-X-proline (PXXP) SH3-binding motifs in the FAK N- (residues 371-377) and C-terminal domains (residues 712-718 and 871-882) by in vitro pull-down assays, and these sites are composed of a PXXPXXPhi (where Phi is a hydrophobic residue) v-Src SH3 binding consensus. Sequence comparisons show that residues in the RT loop region of the c-Src and v-Src SH3 domains differ. Substitution of c-Src RT loop residues (Arg-97 and Thr-98) for those found in the v-Src SH3 domain (Trp-97 and Ile-98) enhanced the binding of distinct NIH3T3 cellular proteins to a glutathione S-transferase fusion protein of the c-Src (Trp-97 + Ile-98) SH3 domain. FAK was identified as a c-Src (Trp-97 + Ile-98) SH3 domain target in fibroblasts, and co-expression studies in 293T cells showed that full-length c-Src (Trp-97 + Ile-98) could associate in vivo with Phe-397 FAK in an SH2-independent manner. These studies establish a functional role for the v-Src SH3 domain in stabilizing an adhesion-independent signaling complex with FAK.  相似文献   

6.
《The Journal of cell biology》1996,135(6):1551-1564
We have isolated Swiss 3T3 subclones that are resistant to the mitogenic and morphological transforming effects of v-Src as a consequence of aberrant translocation of the oncoprotein under low serum conditions. In chicken embryo and NIH 3T3 fibroblasts under similar conditions, v-Src rapidly translocates from the perinuclear region to the focal adhesions upon activation of the tyrosine kinase, resulting in downstream activation of activator protein-1 and mitogen- activated protein kinase, which are required for the mitogenic and transforming activity of the oncoprotein. Since serum deprivation induces cytoskeletal disorganization in Swiss 3T3, we examined whether regulators of the cytoskeleton play a role in the translocation of v- Src, and also c-Src, in response to biological stimuli. Actin stress fibers and translocation of active v-Src to focal adhesions in quiescent Swiss 3T3 cells were restored by microinjection of activated Rho A and by serum. Double labeling with anti-Src and phalloidin demonstrated that v-Src localized along the reformed actin filaments in a pattern that would be consistent with trafficking in complexes along the stress fibers to focal adhesions. Furthermore, treatment with the actin-disrupting drug cytochalasin D, but not the microtubule- disrupting drug nocodazole, prevented v-Src translocation. In addition to v-Src, we observed that PDGF-induced, Rac-mediated membrane ruffling was accompanied by translocation of c-Src from the cytoplasm to the plasma membrane, an effect that was also blocked by cytochalasin D. Thus, we conclude that translocation of Src from its site of synthesis to its site of action at the cell membrane requires an intact cytoskeletal network and that the small G proteins of the Rho family may specify the peripheral localization in focal adhesions or along the membrane, mediated by their effects on the cytoskeleton.  相似文献   

7.
When c-Src and v-Src were immunoprecipitated together from hamster fibroblasts transformed by Rous sarcoma virus containing v-src oncogene, the total Src activity was almost threefold higher compared to c-Src activity in the control cells. The activity of v-Src immunoprecipitated separately, however, accounting for only 40% of the total Src activity, indicating that c-Src is activated upon transformation. An increased activity of Csk was also found in RSV-transformed cells. It decreased upon serum stimulation in parallel with an increase in Src kinase activity. In nontransformed cells, serum stimulation induced an enhanced Csk activity, but no changes in c-Src activity were observed. This may suggest that Csk may have more functions in hamster fibroblasts, in addition to its inhibitory effect on c-Src.  相似文献   

8.
Elevated expression and aberrant activation of the src oncogene are strongly associated with cancer initiation and progression, thereby making Src a promising molecular target for anti-cancer therapy. Through drug screening using a temperature-inducible v-Src-transformed epithelial cell line, we found that andrographolide could suppress v-Src-induced transformation and down-regulate v-Src protein expression. In addition, actin cable dissolution and E-cadherin down-regulation, features of transformed phenotype, are perturbed by andrographolide. Moreover, andrographolide promoted v-Src degradation via a ubiquitin-dependent manner. Although andrographolide treatment altered the tyrosine phosphorylation pattern in v-Src-expressing cells, it did not directly affect the kinase activity of v-Src. Both the Erk and phosphatidylinositol 3-kinase signaling pathways were strongly inhibited in andrographolide-treated v-Src cells. However, only MKK inhibitors (PD98059 and U0126) were able to cause a non-transformed morphology similar to that of andrographolide-treated v-Src cells. Moreover, overexpression of constitutively active MKK1 in v-Src cells blocked andrographolide-mediated morphological inhibition. Interestingly, andrographolide treatment could also reduce the protein level of the c-Src truncation mutant (Src531), an Src mutant originally identified from human colon cancer cells. In summary, we demonstrated that andrographolide antagonized v-Src action through promotion of v-Src protein degradation. Furthermore, attenuation of the Erk1/2 signaling pathway is essential for andrographolide-mediated inhibition of v-Src transformation. Our results demonstrate that andrographolide can act as a v-Src inhibitor and reveal a novel action mechanism of andrographolide.  相似文献   

9.
Active, wild-type v-Src and its kinase-dead double Y416F-K295N mutant were expressed in hamster fibroblasts. Expression of the active v-Src induced activation of endogenous c-Src and increased general protein-tyrosine phosphorylation in the infected cells. Expression of the kinase-dead mutant induced hypophosphorylation of Tyr416 of the endogenous c-Src. The inactivation of c-Src was reversible, as confirmed by in vitro kinase activity of c-Src immunoprecipitated from the kinase-dead v-Src-expressing cells. Both activation and inactivation of c-Src may be explained by direct interaction of the v-Src and c-Src that may either facilitate transphosphorylation of the regulatory Tyr416 in the activation loop, or prevent it by formation of transient dead-end complexes of the Y416F-K295N mutant with c-Src. The interaction was also indicated by co-localization of v- and c-Src proteins in immunofluorescent images of the infected cells. These results suggest that dimerization of Src plays an important role in the regulation of Src tyrosine kinase activity.  相似文献   

10.
The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.  相似文献   

11.
CSK is a predominantly cytosolic protein-tyrosine kinase (PTK) that negatively regulates Src family PTKs by phosphorylation of a conserved tyrosine near their C termini. Little is known about how CSK itself is regulated. On the basis of immunofluorescence studies, a model has been proposed that when c-Src is activated, it is redistributed to podosomes, in which substrates become phosphorylated, creating binding sites for CSK. CSK is recruited to these sites of c-Src activation via its SH2 and SH3 domains and is then in a position to downregulate c-Src activity (B. W. Howell and J. A. Cooper, Mol. Cell. Biol. 14:5402-5411, 1994). To identify phosphotyrosine (P.Tyr)-containing proteins that may mediate translocation of CSK due to c-Src activation, we have examined the whole spectrum of P.Tyr-containing proteins that associate with CSK in v-Src NIH 3T3 cells by anti-P.Tyr immunoblotting. Nine P.Tyr-containing proteins coimmunoprecipitated with CSK from v-Src NIH 3T3 cells. One of these, an approximately 62-kDa protein, also associated with CSK in NIH 3T3 cells treated with vanadate prior to lysis and in NIH 3T3 cells expressing an activated c-Src mutant. This 62-kDa protein was shown to be identical to the GTPase-activating protein (GAP)-associated p62 (GAP-A.p62) protein. The interaction between CSK and GAP-A.p62 could be reconstituted in vitro with glutathione S-transferase fusion proteins containing full-length CSK or the CSK SH2 domain. Furthermore, our data show that CSK interacts directly with GAP.A-p62 and that the complex between the two proteins is localized in subcellular membrane or cytoskeletal fractions. Our results suggest that GAP-A.p62 may function as a docking protein and may mediate translocation of proteins, including GAP and CSK, to membrane or cytoskeletal regions upon c-Src activation.  相似文献   

12.
It is important for the understanding of protein kinase action to differentiate between regulation at the enzyme and at the substrate levels. For example, the inhibitors dinitrophenol-tyrosine and tyrphostins act at the enzyme level to inhibit phosphorylation of all substrates by c-Src and v-Src kinases. In contrast, polylysine acts at the substrate level to stimulate Src-mediated phosphorylation of beta-casein but to inhibit phosphorylation of alpha-casein. Here we demonstrate novel enzyme-specific and substrate-specific modulations of Src kinase activity of potential physiological significance. At the enzyme level, we observed that c-Src kinase preferentially phosphorylates alpha-casein, while the v-Src kinase prefers beta-casein. At the substrate level we observed substrate-specific modulation by physiological factors including sphingosine, sphingosine derivatives and the ganglioside GM3. Galactosyl-sphingosine (psychosine) was more effective in stimulating phosphorylation of beta-casein and poly(E1A1Y1) than sphingosine. Glucosyl- and lactosyl-sphingosine were ineffective. Rat was extensively phosphorylated by c-Src in the presence of polylysine, and to a lesser extent in the sphingosine and galactosyl-sphingosine. These unexpected differences point out another potential mechanism for regulation of c-Src and v-Src kinase activities and may help to explain some of the pleotyptic manifestations of protein tyrosine kinase actions.  相似文献   

13.
Cancer cells are capable of serum- and anchorage-independent growth, and focus formation on monolayers of normal cells. Previously, we showed that RACK1 inhibits c-Src kinase activity and NIH3T3 cell growth. Here, we show that RACK1 partially inhibits v-Src kinase activity, and the serum- and anchorage-independent growth of v-Src transformed cells, but has no effect on focus formation. RACK1-overexpressing v-Src cells show disassembly of podosomes, which are actin-rich structures that are distinctive to fully transformed cells. Together, our results demonstrate that RACK1 overexpression in v-Src cells partially reverses the transformed phenotype of the cells. Our results identify an endogenous inhibitor of the oncogenic Src tyrosine kinase and of cell transformation.  相似文献   

14.
The relationship between tyrosine phosphorylation and activation of phospholipase D1 (PLD1) by v-Src was examined. Co-expression of v-Src and PLD1 in COS-7 cells resulted in increased activity and marked tyrosine phosphorylation of PLD1. PLD activity was increased in membranes or immunoprecipitates prepared from these cells. Dephosphorylation of the immunoprecipitated enzyme by tyrosine phosphatase or phosphorylation by c-Src produced no changes in its activity. Tyrosine phosphorylation induced by v-Src caused a shift of the enzyme from the Triton-soluble to the Triton-insoluble fraction. v-Src and PLD1 could be co-immunoprecipitated from cells co-expressing these and were co-localized in the perinuclear region as assessed by immunofluorescence. Mutation of the palmitoylation sites of PLD1 significantly reduced tyrosine phosphorylation by v-Src. It is concluded that tyrosine phosphorylation of PLD1 by v-Src does not per se alter its activity. It is proposed that activation of PLD1 by v-Src in vivo may involve association/colocalization of the two proteins.  相似文献   

15.
Synapsins are synaptic vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release. Synapsin I is the major binding protein for the SH3 domain of the kinase c-Src in synaptic vesicles. Its binding leads to stimulation of synaptic vesicle-associated c-Src activity. We investigated the mechanism and role of Src activation by synapsins on synaptic vesicles. We found that synapsin is tyrosine phosphorylated by c-Src in vitro and on intact synaptic vesicles independently of its phosphorylation state on serine. Mass spectrometry revealed a single major phosphorylation site at Tyr(301), which is highly conserved in all synapsin isoforms and orthologues. Synapsin tyrosine phosphorylation triggered its binding to the SH2 domains of Src or Fyn. However, synapsin selectively activated and was phosphorylated by Src, consistent with the specific enrichment of c-Src in synaptic vesicles over Fyn or n-Src. The activity of Src on synaptic vesicles was controlled by the amount of vesicle-associated synapsin, which is in turn dependent on synapsin serine phosphorylation. Synaptic vesicles depleted of synapsin in vitro or derived from synapsin null mice exhibited greatly reduced Src activity and tyrosine phosphorylation of other synaptic vesicle proteins. Disruption of the Src-synapsin interaction by internalization of either the Src SH3 or SH2 domains into synaptosomes decreased synapsin tyrosine phosphorylation and concomitantly increased neurotransmitter release in response to Ca(2+)-ionophores. We conclude that synapsin is an endogenous substrate and activator of synaptic vesicle-associated c-Src and that regulation of Src activity on synaptic vesicles participates in the regulation of neurotransmitter release by synapsin.  相似文献   

16.
The oncogenic potential of the viral tyrosine kinase v-Src is due to its constitutive activity. Unlike the highly homologous cellular c-Src kinase, a C-terminal deletion of the regulatory tail and numerous point mutations make the viral kinase uncontrollable. To determine the basis of these differences, we analysed the structure and stability of v-Src and c-Src in vitro. We show that the stability of v-Src against unfolding and irreversible aggregation is significantly lower than that of c-Src. Furthermore, in v-Src hydrophobic residues are more exposed already in the native state. In consequence, v-Src was found to be inactive close to physiological temperatures. We thus suggest that the ensemble of mutations that transform c-Src into the oncogenic variant cause a concomitant destabilisation of the kinase.  相似文献   

17.
Src, a non-receptor tyrosine kinase, is a key signal transduction partner of epidermal growth factor (EGF) receptor (EGFR). In human breast cancer, EGFR and Src are frequently over-expressed and/or over-activated. Although reciprocal activation is documented, mechanisms underlying Src:EGFR interactions are incompletely understood. We here exploited ts/v-Src thermo-activation in MDCK monolayers to test whether acute Src activation impacts on signalling and trafficking of non-liganded EGFR. We found that thermo-activation caused rapid Src recruitment to the plasma membrane, concomitant association with EGFR, and its phosphorylation at Y845 and Y1173 predominantly at the cell surface. Like low EGF concentrations, activated Src (i) decreased EGF surface binding without affecting the total EGFR pool; (ii) triggered EGFR endocytosis via clathrin-coated vesicles; (iii) and led to its sequestration in perinuclear/recycling endosomes with avoidance of multivesicular bodies and lysosomal degradation. Combined Src activation and EGF were synergistic for EGFR-Y845 and -Y1173 phosphorylation at some endosomes. We conclude that acute effects of Src in MDCK cells may mimic those of low EGF on EGFR activation and redistribution. Src:EGFR interactions may be sufficient to trigger EGFR activation and might contribute to its local signalling, without requiring either soluble extracellular signal or receptor over-expression.  相似文献   

18.
In viral Src (v-Src)-transformed cells, focal adhesion kinase (FAK) associates with v-Src by combined v-Src SH2 and gain-of-function v-Src SH3 domain binding to FAK. Here we assess the significance of the Arg-95 to Trp gain-of-function mutation in the v-Src SH3 domain through comparisons of Src-/- fibroblasts transformed with either Prague C v-Src or a point mutant (v-Src-RT) containing a normal (Arg-95) SH3 domain. Both v-Src isoforms exhibited equivalent kinase activity, enhanced Src-/- cell motility, and stimulated cell growth in both low serum and soft agar. The stability of a v-Src-RT.FAK signaling complex and FAK phosphorylation at Tyr-861 and Tyr-925 were reduced in v-Src-RT- compared with v-Src-transformed cells. v-Src but not v-Src-RT promoted Src-/- cell invasion through a reconstituted Matrigel basement membrane barrier and v-Src co-localized with FAK and beta(1) integrin at invadopodia. In contrast, v-Src-RT exhibited a partial perinuclear and focal contact distribution in Src-/- cells. Adenovirus-mediated FAK overexpression promoted v-Src-RT recruitment to invadopodia, the formation of a v-Src-RT.FAK signaling complex, and reversed the v-Src-RT invasion deficit. Adenovirus-mediated inhibition of FAK blocked v-Src-stimulated cell invasion. These studies establish that gain-of-function v-Src SH3 targeting interactions with FAK at beta(1) integrin-containing invadopodia act to stabilize a v-Src.FAK signaling complex promoting cell invasion.  相似文献   

19.
Src-family kinases that localize to the cytoplasmic side of cellular membranes through lipid modification play a role in signaling events including membrane trafficking. Macropinocytosis is an endocytic process for solute uptake by large vesicles called macropinosomes. Although macropinosomes can be visualized following uptake of fluorescent macromolecules, little is known about the dynamics of macropinosomes in living cells. Here, we show that constitutive c-Src expression generates macropinosomes in a kinase-dependent manner. Live-cell imaging of GFP-tagged c-Src (Src-GFP) reveals that c-Src associates with macropinosomes via its N-terminus continuously from their generation at membrane ruffles, through their centripetal trafficking, to fusion with late endosomes and lysosomes. Fluorescence recovery after photobleaching (FRAP) of Src-GFP shows that Src-GFP is rapidly recruited to macropinosomal membranes from the plasma membrane and intracellular organelles through vesicle transport even in the presence of a protein synthesis inhibitor. Furthermore, using a HeLa cell line overexpressing inducible c-Src, we show that following stimulation with epidermal growth factor (EGF), high levels of c-Src kinase activity promote formation of macropinosomes associated with the lysosomal compartment. Unlike c-Src, Lyn and Fyn, which are palmitoylated Src kinases, only minimally induce macropinosomes, although a Lyn mutant in which the palmitoylation site is mutated efficiently induces macropinocytosis. We conclude that kinase activity of nonpalmitoylated Src kinases including c-Src may play an important role in the biogenesis and trafficking of macropinosomes.  相似文献   

20.
Focal adhesion kinase (FAK) is a widely expressed nonreceptor protein-tyrosine kinase implicated in integrin-mediated signal transduction pathways and in the process of oncogenic transformation by v-Src. Elevation of FAK's phosphotyrosine content, following both cell adhesion to extracellular matrix substrata and cell transformation by Rous sarcoma virus, correlates directly with an increased kinase activity. To help elucidate the role of FAK phosphorylation in signal transduction events, we used a tryptic phosphopeptide mapping approach to identify tyrosine sites of phosphorylation responsive to both cell adhesion and Src transformation. We have identified four tyrosines, 397, 407, 576, and 577, which are phosphorylated in mouse BALB/3T3 fibroblasts in an adhesion-dependent manner. Tyrosine 397 has been previously recognized as the major site of FAK autophosphorylation. Phosphorylation of tyrosines 407, 576, and 577, which are previously unrecognized sites, is significantly elevated in the presence of c-Src in vitro and v-Src in vivo. Tyrosines 576 and 577 lie within catalytic subdomain VIII--a region recognized as a target for phosphorylation-mediated regulation of protein kinase activity. We found that maximal kinase activity of FAK immune complexes requires phosphorylation of both tyrosines 576 and 577. Our results indicate that phosphorylation of FAK by Src (or other Src family kinases) is an important step in the formation of an active signaling complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号