首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin-coated vesicles (CCVs) sort proteins at the plasma membrane, endosomes and trans Golgi network for multiple membrane traffic pathways. Clathrin recruitment to membranes and its self-assembly into a polyhedral coat depends on adaptor molecules, which interact with membrane-associated vesicle cargo. To determine how adaptors induce clathrin recruitment and assembly, we mapped novel interaction sites between these coat components. A site in the ankle domain of the clathrin triskelion leg was identified that binds a common site on the appendages of tetrameric [AP1 and AP2] and monomeric (GGA1) adaptors. Mutagenesis and modeling studies suggested that the clathrin-GGA1 appendage interface is nonlinear, unlike other peptide-appendage interactions, but overlaps with a sandwich domain binding site for accessory protein peptides, allowing for competitive regulation of coated vesicle formation. A novel clathrin box in the GGA1 hinge region was also identified and shown to mediate membrane recruitment of clathrin, while disruption of the clathrin-GGA1 appendage interaction did not affect recruitment. Thus, the distinct sites for clathrin-adaptor interactions perform distinct functions, revealing new aspects to regulation of CCV formation.  相似文献   

2.
Energetics of clathrin basket assembly   总被引:2,自引:0,他引:2  
A minimal thermodynamic model is used to study the in vitro equilibrium assembly of reconstituted clathrin baskets. The model contains parameters accounting for i) the combined bending and flexing rigidities of triskelion legs and hubs, ii) the intrinsic curvature of an isolated triskelion, and iii) the free energy changes associated with interactions between legs of neighboring triskelions. Analytical expressions for basket size distributions are derived, and published size distribution data (Zaremba S, Keen JH. J Cell Biol 1983;97: 1339–1347) are then used to provide estimates for net total basket assembly energies. Results suggest that energies involved in adding triskelions to partially formed clathrin lattices are small (of the order of kBT), in accord with the notion that lattice remodeling during basket formation occurs as a result of thermodynamic fluctuations. In addition, analysis of data showing the effects of assembly proteins (APs) on basket size indicates that the binding of APs increases the intrinsic curvature of an elemental triskelial subunit, the stabilizing energy of leg interactions, and the effective leg/hub rigidity. Values of effective triskelial rigidity determined in this investigation are similar to those estimated by previous analysis of shape fluctuations of isolated triskelia.  相似文献   

3.
Disruption of the coat of coated vesicles is accompanied by the release of clathrin and other proteins in soluble form. The ability of solubilized coated vesicle proteins to reassemble into empty coats is influenced by Mg2+, Tris ion concentration, pH, and ionic strength. The proteins solubilized by 2 M urea spontaneously reassemble into empty coats following dialysis into isolation buffer (0.1 M MES–1 mM EGTA–1 mM MgCl2–0.02% NaN3, pH 6.8). Such reassembled coats have sedimentation properties similar to untreated coated vesicles. Clathrin is the predominant protein of reassembled coats; most of the other proteins present in native coated vesicles are absent. We have found that Mg2+ is important in the coat assembly reaction. At pH 8 in 0.01 M or 0.1 M Tris, coats dissociate; however, 10 mM MgCl2 prevents dissociation. If the coats are first dissociated at pH 8 and then the MgCl2 raised to 10 mM, reassembly occurs. These results suggest that Mg2+ stabilizes the coat lattice and promotes reassembly. This hypothesis is supported by our observations that increasing Mg2+ (10 μM–10 mM) increases reassembly whereas chelation of Mg2+ by (EGTA) inhibits reassembly. Coats reassembled in low-Tris (0.01 M, pH 8) supernatants containing 10 mM MgCl2 do not sediment, but upon dialysis into isolation buffer (pH 6.8), these coats become sedimentable. Nonsedimentable coats are noted also either when partially purified clathrin (peak I from Sepharose CL4B columns) is dialyzed into low-ionic-strength buffer or when peaks I and II are dialyzed into isolation buffer. Such nonsedimentable coats may represent intermediates in the assembly reaction which have normal morphology but lack some of the physical properties of native coats. We present a model suggesting that tightly intertwined antiparallel clathrin dimers form the edges of the coat lattice.  相似文献   

4.
Clathrin-coated vesicles (CCVs) are involved in selective protein transport in eukaryotes. AP-1 and AP-2 are protein complexes found in the CCVs of the Golgi apparatus and the plasma membrane respectively. AP19 is the smallest polypeptide chain components of AP-1. We have identified a cDNA clone (CAP19) encoding a putative homologue for the assembly protein AP19 from the Chinese medicinal tree, Camptotheca acuminata. The deduced polypeptide contains 161 amino acids and has a predicted M r of 18 820. DNA blot analysis suggests that the AP19s of C. acuminata are encoded by a small gene family. CAP19 was expressed ubiquitously throughout the plant suggesting that it may be involved in general Golgi-mediated secretion.  相似文献   

5.
6.
The use of yeast mutants to study the function and dynamics of clathrin-coated membranes has offered new insights into clathrin's role in the secretory pathway and has raised additional questions. Most strains of yeast can incur a disruption of clathrin heavy or light chain genes and remain viable. However, in rare cases, alleles of genes other than clathrin affect the viability of clathrin-deficient cells. The relationship of the products of these genes to clathrin awaits clarification. Phenotypic characterization of clathrin-deficient yeast mutants suggests that clathrin is not essential for the generation of secretory pathway transport vesicles at the ER or the Golgi complex but is required for the intracellular retention of a Golgi membrane protein, Kex2p. With this genetic evidence for clathrin's function in vivo, biochemical and genetic experiments can be designed to address the mechanism by which clathrin effects retention of Kex2p. Clathrin-deficient yeast carry out protein secretion, receptor-mediated endocytosis of mating pheromone, and efficient targeting of newly synthesized vacuolar proteins. These observations challenge aspects of clathrin's proposed involvement in protein transport through the secretory pathway and to lysosomes in mammalian cells. However, the differences are beginning to recede in the face of additional experiments; the formation of clathrin coated vesicles is no longer commonly thought to be obligately coupled to transport through the secretory pathway in mammalian cells (Rothman 1986; Brodsky, 1988), and the role of clathrin in retaining a Golgi membrane protein in yeast may have its precedents in receptor-mediated endocytosis by mammalian cells or in secretory granule formation in endocrine cells. A unified theory of clathrin function is emerging (Brodsky, 1988) which suggests that the clathrin coat assemblage (clathrin heavy and light chains and the associated proteins) acts as a facilitator of intracellular protein transport by sorting and concentrating cargo molecules. The results from studies of clathrin-deficient yeast support this theory. Future experiments will determine whether clathrin provides its functions at different transport stages in different organisms or whether all eukaryotic cells employ clathrin at the same stages of intracellular protein transport.  相似文献   

7.
We have previously identified a fraction containing several assembly polypeptides (AP) that promotes reassembly of clathrin into vesicle-free coat structures [Zaremba S, Keen JH: J Cell Biol 97:1339, 1983]. The AP are prepared from purified bovine brain-coated vesicles by extraction with 0.5 M TRIS-HCl followed by Sepharose CL-4B column chromatography. Centrifugation in sucrose gradients under nonassembly conditions supports earlier observations suggesting that four active polypeptides in the AP preparation, of Mr approximately 110,000, 100,000, 50,000, and 16,500 are present in a discrete complex that is incorporated as a unit into reassembled coats. The 16,500-dalton polypeptide does not coelectrophorese with authentic bovine brain calmodulin and does not exhibit calmodulin's Ca2+-induced shift in electrophoretic mobility. When the partially purified AP fraction was digested with elastase, the Mr approximately 110,000 and 100,000 polypeptides were rapidly degraded with little or no effect on the Mr approximately 50,000 and 16,500 bands. This treatment abolished the in vitro coat-forming ability of the AP fraction and the loss of activity closely parallels the loss of the Mr approximately 100,000 band. Disappearance of the Mr approximately 110,000 and 100,000 bands is accompanied by the generation of new bands at Mr approximately 76,000 and 65,000. When the elastase-treated AP is examined by sucrose gradient sedimentation in nonassembly buffers, the new bands continue to cosediment with the Mr approximately 50,000 and 16,500 polypeptides. This indicates that the elastase digestion has cleaved off a fragment of the Mr approximately 110,000 and 100,000 bands, leaving behind a truncated, inactive AP complex. A protein kinase activity has been detected in coated vesicle preparations that utilizes the 50,000-dalton AP as its preferred substrate [Keen JH, Zaremba S: J Cell Biol 97:174a, 1983]. Elastase treatment does not abolish this activity, indicating that the kinase by itself is not sufficient for maintaining reassembly activity.  相似文献   

8.
While clathrin heavy chains from different species are highly conserved in amino acid sequence, clathrin light chains are much more divergent. Thus clathrin light chain may have different functions in different organisms. To investigate clathrin light chain function, we cloned the clathrin light chain, clcA, from Dictyostelium and examined clathrin function in clcA– mutants. Phenotypic deficiencies in development, cytokinesis, and osmoregulation showed that light chain was critical for clathrin function in Dictyostelium . In contrast with budding yeast, we found the light chain did not influence steady-state levels of clathrin, triskelion formation, or contribute to clathrin over-assembly on intracellular membranes. Imaging GFP-CHC in clcA– mutants showed that the heavy chain formed dynamic punctate structures that were remarkably similar to those found in wild-type cells. However, clathrin light chain knockouts showed a decreased association of clathrin with intracellular membranes. Unlike wild-type cells, half of the clathrin in clcA– mutants was cytosolic, suggesting that the absence of light chain compromised the assembly of triskelions onto intracellular membranes. Taken together, these results suggest a role for the Dictyostelium clathrin light chain in regulating the self-assembly of triskelions onto intracellular membranes, and demonstrate a crucial contribution of the light chain to clathrin function in vivo .  相似文献   

9.
Summary

This report demonstrates for the first time the isolation of coated vesicles from insect oocytes. Coated vesicles were purified from oocytes of Locusta migratoria by differential centrifugation and sucrose density centrifugation. The coated vesicles were characterized by electron microscopy, SDS-PAGE and scanning densitometry. Like coated vesicles isolated from pig brain and chicken oocytes, the coated vesicles from locust oocytes contained clathrin as the major protein component. Apart from clathrin, another major protein characteristic of coated vesicles had a molecular weight of about 115,000, and in addition, several minor unidentified bands were identified.  相似文献   

10.
D A Brodie 《Tissue & cell》1982,14(2):253-262
Addition of tannic acid to the primary glutaraldehyde fixative and the viewing of thin sections by stereo electron microscopy greatly simplifies the detection of vertebrate cell Golgi complex beads which are otherwise difficult to see since they do not stain with bismuth. These results confirm the generality of conclusions from experiments on arthropod beads which are easily observed because of their bismuth affinity. In vertebrate and arthropod cells, bead rings encircle the base of forming transition vesicles below the growing portion of the vesicle that is covered with a clathrin coat. Their unique position at such a sharp functional and structural boundary in intercompartmental transport suggests that the bead rings may specify a select region of rough endoplasmic reticulum devoid of ribosomes where clathrin coats can induce transition vesicle formation and prevent intermixing of the elements of a returning transition vesicle.  相似文献   

11.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

12.
The nature of reactions catalysed by yeast phosphatidylinositol synthase expressed in E. coli has been investigated. The single enzyme is shown to carry both CDP-diacylglycerol-dependent incorporation of inositol into phosphatidylinositol (Km for inositol of 0.090 mM) and a CDP-diacylglycerol-independent exchange reaction between phosphatidylinositol and inositol (Km for inositol of 0.066 mM). The exchange reaction and reversal of phosphatidylinositol synthase were both stimulated by CMP, but had different optimum pH and requirements for substrates. These results suggest that CMP-stimulated exchange and CMP-dependent reverse reactions are distinct processes catalysed by the same enzyme. phosphatidylinositol synthase.  相似文献   

13.
The mouse mutants mocha and pearl are deficient in the AP-3 delta and beta3A subunits, respectively. We have used cells from these mice to investigate both the assembly of AP-3 complexes and AP-3 function. In mocha cells, the beta3 and mu3 subunits coassemble into a heterodimer, whereas the sigma3 subunit remains monomeric. In pearl cells, the delta and sigma3 subunits coassemble into a heterodimer, whereas mu3 gets destroyed. The yeast two hybrid system was used to confirm these interactions, and also to demonstrate that the A (ubiquitous) and B (neuronal-specific) isoforms of beta3 and mu3 can interact with each other. Pearl cell lines were generated that express beta3A, beta3B, a beta3Abeta2 chimera, two beta3A deletion mutants, and a beta3A point mutant lacking a functional clathrin binding site. All six constructs assembled into complexes and were recruited onto membranes. However, only beta3A, beta3B, and the point mutant gave full functional rescue, as assayed by LAMP-1 sorting. The beta3Abeta2 chimera and the beta3A short deletion mutant gave partial functional rescue, whereas the beta3A truncation mutant gave no functional rescue. These results indicate that the hinge and/or ear domains of beta3 are important for function, but the clathrin binding site is not needed.  相似文献   

14.
Abstract Murine monoclonal antibodies (mAbs) were selected against a cell wall glycoprotein of Saccharomyces cerevisiae . One of the mAbs (92-276/018) specifically identified S. cerevisiae and the sibling species S. paradoxus, S. pastorianus and S. bayanus in immunofluorescence studies and immunoblot analyses, while no other yeast genera except Saccharomyces were recognized. Further analysis indicated that the mAb 92-276/018 reacts with an epitope in the carbohydrate chain of the cell wall glycoproteins.  相似文献   

15.
Insulin receptor mutation studies that the receptor tyrosine kinase activity is necessary for receptor endocytosis, and several insulin receptor-containing tissues have a plasma membrane-associated protein (Mr 180,000, p180) whose tyrosine phosphorylation is receptor catalysed. Since clathrin heavy chain (Mr 180,000 in dodecyl sulphate gel electrophoresis) is a major component of coated vesicles, the latter functioning in receptor endocytosis, we investigated whether insulin receptors can catalyse clathrin phosphorylation and whether p180 is clathrin. Bovine brain triskelion or coated vesicles and 32P-ATP were added to prephosphorylated insulin receptor preparations (wheat ferm agglutinin-purified human placenta membrane proteins). Antiphosphotyrosine immunoprecipitated a phosphorylated 180,000 molecular weight protein. Insulin (10−7M) increased the rate of phosphorylation. Monoclonal anti-clathrin antibody immunoprecipitated the phosphorylated 180,000 molecular weight protein, whereas monoclonal anti-insulin receptor antibodies (-IR1, MA10) immunoprecipitated both insulin receptors and the phosphorylated 180,000 molecular weight protein. In the absence of added clathrin, anticlathrin immunoprecipitated no proteins, and -IR1 imunoprecipitated only the insulin receptor. Density gradient (glycerol 7.5–30%, w/v) centrifugation separated human placenta microsomal membrane proteins into endosomal, plasma membrane, cytoplasmic and coated vesicle fractions. Antiphosphotyrosine immunoprecipitated phosphorylated-microsomal proteins that centrifugated into endosomal and plasma membrane fractions. Addition of glycerol gradient fractions to a prephosphorylated insulin receptor preparation, however, gave a tyrosine-phosphorylated 180,000 molecular weight protein when cytoplasmic and coated vesicle fractions were added. Taken together these results suggest: (1) that, in vitro, human placenta insulin receptors can phosphorylate bovine brain and human placenta clathrin heavy chain; (2) that both assembled and unassembled clathrin can be phosphorylated; and (3) that p180, the plasma membrane-associated insulin receptor substrate, is not clathrin heavy chain.  相似文献   

16.
17.
The chaperone Hsc70 drives the clathrin assembly–disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J‐domain containing co‐chaperone, auxilin, associates with a freshly budded clathrin‐coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy‐chain‐binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 Å resolution, the structure of a clathrin coat (in the D6‐barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C‐terminus of the heavy chain, with a stoichiometry of about one per three‐fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J‐domain, splits ATP, it clamps firmly onto its heavy‐chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly.  相似文献   

18.
在芽殖酵母(Saccharomycescerevisiae)细胞中,G1期的三种cyclins和S、M期的五种cyclins之周期性的合成和分解调节着Cdc28的活性,驱动细胞周期的正常运转。除了CDK的磷酸化作用外,蛋白质的泛肽化降解作用间接或直接调控细胞周期:CDC34泛肽化途径通过降解Cdc28的专一抑制子而起始DNA复制;APC泛肽化途径通过降解M期后期的抑制子和M期cyclins,使姐妹染色体分离和M期终止。  相似文献   

19.
Abstract In Saccharomyces cerevisiae heat-shock induces an increase in proteinase activity. The induction is probably due to newly synthesized enzyme molecules, since the increase in proteinase activity can be inhibited by cycloheximide. Degradation of endogenous proteins is enhanced by EDTA, while the azocasein assay is not affected by MnCl2, MgCl2, or EDTA. The proteinase has a pH optimum of 8, and phenylmethylsulfonyl fluoride (PMSF) as well as chymostatin are strong inhibitors. We infer that the induced proteinase is probably identical with proteinase B of yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号