首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the effects of different salinities on oxygen consumption, ammonia excretion, osmotic pressure, apparent heat increment, postprandial nitrogen excretion, and oxygen:nitrogen ratio in juvenile common snook Centropomus undecimalis. Oxygen consumption of fish fasting and fish feeding was statistically different in relation with salinity. Fish maintained at 0, 25, and 35 ppt invested more energy processing feed than fish maintained at 12 ppt. Fasting fish had lower ammonia excretion than feeding fish and excretion was reduced at high salinities. Snook can change the energetic substrate in function with salinity, from a mixture of protein and lipids and carbohydrates at 35 ppt to a more acute preference for proteins at lower salinities. This species changes osmotic plasma concentrations at extreme experimental salinities. The different salinities were the snook inhabits (0-36 ppt), have a direct effect on the physiology, inducing changes on the oxygen consumption, nitrogen excretion, changes on the energetic substrate and plasma osmotic pressure.  相似文献   

2.
Juvenile gray snapper (Lutjanus griseus) occupy a wide range of estuarine and nearshore habitats that differ in physico-chemical properties. To quantify the energetic cost of inhabiting these different habitats, routine metabolism of individual gray snapper was measured in the laboratory at 20 combinations of temperature (18, 23, 28, and 33 °C) and salinity (5, 15, 25, 35, and 45 psu). An open, flow-through respirometer was used, enabling trials to be run for long periods (∼16 h), while maintaining water quality (dissolved O2>70% saturation), and providing fish sufficient time to habituate to the chambers undisturbed. Video recordings of fish in the respirometer chambers were analyzed to quantify the spontaneous activity rate of individuals. Analysis of covariance, using fish weight and mean activity rate as covariates, indicated significant temperature and salinity effects on oxygen consumption. Oxygen consumption was significantly higher at high salinities, and the salinity effect was temperature dependent. A polynomial equation describing oxygen consumption as a function of temperature and salinity indicated the increase due to salinity from 5 to 45 psu at high temperatures (30-33 °C) was equivalent to a 3 °C increase in temperature. At intermediate temperatures (24-26 °C), the increase due to salinity from 5 to 45 psu was less dramatic, equivalent to a 2 °C increase in temperature. At the lowest temperatures (18 °C), salinity did not have a significant effect on oxygen consumption. The increased metabolic costs in high salinities (∼7% at the high temperature) represent a significant energy cost for juveniles, that would need to be balanced by lower predation risk or greater food availability to result in similar juvenile production compared to lower salinity environments.  相似文献   

3.
Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact.  相似文献   

4.
Teleost fish experience passive osmotic water influx in fresh water (FW) and water outflux in salt water, which is normally compensated by water flow driven by active ion transport mechanisms. Euryhaline fish may also minimize osmotic energy demand by "behavioral osmoregulation", seeking a medium isotonic with their body fluids. Our goal was to evaluate the energy requirement for osmoregulation by the euryhaline fish Fundulus heteroclitus, to determine whether it is of sufficient magnitude to favor behavioral osmoregulation. We have developed a method of weighing small fish repetitively for long periods without apparent damage, which was used to assess changes in water content following changes in external salinity. We found that cold (4 degrees C) inhibits osmoregulatory active transport mechanisms in fish acclimated to warmer temperatures, leading to a net passive water flux which is reversed by rewarming the fish. A sudden change of salinity at room temperature triggers a transient change in water content and the initial slope can be used to measure the minimum passive flux at that temperature. With some reasonable assumptions as to the stoichiometry of the ion transport and ATP-generating processes, we can calculate the amount of respiration required for ion transport and compare it to the oxygen uptake measured previously under the same conditions. We conclude that osmoregulation in sea water requires from 6% to 10% of the total energy budget in sea water, with smaller percentages in FW, and that this fraction is probably sufficient to be a significant selective driving force favoring behavioral osmoregulation under some circumstances.  相似文献   

5.
环境因子对卵形鲳鲹幼鱼耗氧率和排氨率的影响   总被引:3,自引:0,他引:3  
运用封闭流水式实验方法研究温度、盐度、pH和流速对卵形鲳鲹(Trachinotus ovatus)幼鱼耗氧率和排氨率的影响.实验结果表明,随着温度的升高,耗氧率和排氨率均是先增大后减小,当温度为27℃时,耗氧率和排氨率达最大值,温度对卵形鲳鲹幼鱼耗氧率和排氨率的影响显著(P<0.0l);耗氧率和排氨率随着盐度的升高均出...  相似文献   

6.
The oxygen consumption of a freshwater convict cichlid (Cichlasoma nigrofasciatum) was determined throughout the fish development from age 74 days to 403 days, covering the period before and after maturation. The specific oxygen consumption decreases with increasing age. The decrease in metabolic rate appears rather in distinct phases. A small increase in the average specific metabolic rate (mainly from the bigger fish) around age 200 days suggests an involvement of internal changes in the fish during a transition period from "young" state to "mature" state. The relationship between the specific oxygen consumption and body mass is determined by maturation and age. Before reaching maturation (before age 200 days) the correlation between specific oxygen consumption and body mass is negative for "young" fish of the same age. After age 200 days, no correlation between both parameters could be found. We suggest from this study that both factors "age" and "size" of the organism have to be considered for determining the metabolism, especially in fish. This study indicates that even in fish, which retain a continuous growing capability until they die, the decrease in the specific oxygen consumption is related to the aging process.  相似文献   

7.
不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应   总被引:1,自引:1,他引:0  
在(25±1)℃的条件下,测定瓦氏黄颡(Pelteobagrus vachelli Richardson)幼鱼体重(4.34±0.13)g的临界游泳速度(Ucrit),然后分别以临界游泳速度的不同百分比(20、40、60、80、100%Ucrit)将实验鱼分为5个速度处理组,另外设置静止对照组和高速力竭对照组。处理组实验鱼在不同游泳速度下分别游泳20min,在此过程中测定并计算运动代谢率(Activity metabolic rate,AMR),随后测定肌肉、血液和肝脏中的乳酸、糖原和葡萄糖含量。结果显示:实验鱼的绝对临界游泳速度为(48.28±1.02)cm/s,相对临界游泳速度为(6.78±0.16)BL/s;随着游泳速度的提高AMR显著增加(Pcrit时肌乳酸和血乳酸含量显著高于80%Ucrit的水平(P0.05);100%Ucrit时肝糖原含量显著低于40%Ucrit的水平(P0.05)。经计算瓦氏黄颡幼鱼到达临界游泳速度时的无氧代谢功率比例仅为11.0%,表明其游泳运动主要以有氧代谢供能;实验鱼的无氧代谢大约在80%Ucrit才开始启动,与其他鱼类比较启动时间较晚,说明其游泳运动对无氧代谢的依赖程度较低。研究提示瓦氏黄颡幼鱼是一种有氧运动能力较强的鱼类,这一能量代谢特征可能与提高其生存适合度有关。    相似文献   

8.
盐度对异育银鲫呼吸和氨氮排泄生理的影响   总被引:4,自引:1,他引:3  
研究了异育银鲫(Carassius auratus gibeliovar. E′erqisi)从淡水向盐度1.5‰、3‰、6‰、9‰、12‰突变与适应过程中的呼吸和氨氮排泄生理的变化规律。结果表明:盐度突变开始时,异育银鲫的耗氧率和排氨率随外界盐度的升高而增大,随盐度作用时间延长,耗氧率和排氨率升到最大值后又开始下降并最终维持在稳定水平,但开始下降的时间和下降的幅度以及最终的稳定水平与外界盐度有关。盐度1.5‰和3‰处理组在作用12h时耗氧率升到最大值,此后下降,于第3天后保持在比淡水对照组略低的稳定水平,但二者差异不显著(P0.05);盐度6‰和9‰处理组在作用到第3天后才开始缓慢下降,并分别于第10、15天时保持在显著高于淡水对照的稳定水平(P0.05);盐度12‰处理组也在第3天后下降,到第10天后保持在比淡水对照组略低的稳定水平,但二者差异不显著(P0.05)。各盐度处理组的排氨率均在盐度作用24h时达到最大值,其中盐度1.5‰处理组的变化不显著(P0.05),其他各组均显著升高(P0.05),并都于第10天时下降到稳定水平,其中盐度3‰处理组的稳定水平略低于对照组(P0.05),盐度6‰、9‰、12‰处理组的稳定水平显著高于对照组(P0.05)。  相似文献   

9.
Tunas are pelagic, continuous swimmers, with numerous specializations for achieving a high aerobic scope. Tunas must maintain a high rate of energy turnover, and therefore require elevated levels of aerobic performance in multiple physiological functions simultaneously. Based on a model of oxygen demand and delivery to the swimming musculature, the yellowfin's total oxygen consumption at the predicted maximum sustainable (aerobic) swimming velocity is well below estimates of its maximum oxygen consumption. This suggests that the high aerobic scope of tunas may be a specialization that permits continuous swimming in addition to supplying oxygen to other metabolic functions. Estimates of the metabolic costs of oxygen-debt repayment, growth, and specific dynamic action have been combined with this model of aerobic swimming performance to evaluate the total energy budget in relation to the aerobic scope of the yellowfin tuna. Repayment of the oxygen debt incurred during burst swimming is potentially a large component of tuna respiratory metabolism and the relatively high aerobic capacity of tuna white muscle may be a specialization for rapid lactate clearance.  相似文献   

10.
Until recently most studies have focussed on method development for metabolic rate assessment in adult and/or juvenile fish with less focus on measurement of oxygen consumption (ṀO2) during early life history stages, including fast-growing larval fish and even less focus on nonteleostean species. In the present study we evaluated measurement techniques for standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope in an Acipenseriform, the lake sturgeon Acipenser fulvescens, throughout the first year of life. Standardized forced exercise protocols to assess MMR were conducted for 5 or 15 min before or after measurement of SMR. We used different levels of oxygen decline during the measurement period of MMR post forced exercise to understand the influence these may have on the calculation of MMR. Opercular rate and tail beat frequencies were recorded by video as measures of behaviours and compared to metabolic rate recorded over a 24 h period. Results indicate that calculated values for aerobic scope were lower in younger fish. Neither exercise sequence nor exercise duration influenced metabolic rate measurements in the younger fish, but exercise duration did affect measurement of MMR in older fish. Finally, there was no strong correlation between metabolic rate and the measured behaviours in the lake sturgeon at either age. Based on the results, we recommend that a minimum of 6 h of acclimation to the respirometry chamber should be given prior to measuring SMR, a chasing protocol to elicit MMR should ideally be performed at the end of experiment, a short chasing time should be avoided to minimize variation and assessment of MMR should balance measurement limitations of the probes along with when and for how long oxygen consumption is measured.  相似文献   

11.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.  相似文献   

12.
The metabolic response of juvenile coho salmon Oncorhynchus kisutch to different salinities was examined, using whole-animal oxygen consumption rates and gill Na+, K+-ATPase activities as indicators of osmoregulatory energetics. Coho salmon smolts were acclimated to fresh water (FW), isosmotic salinity (ISO, 10‰) and sea water (SW, 28‰) and were sampled for up to 6 weeks for plasma levels of cortisol, glucose and ions (Na+, K+, Cl), gill Na+, K+-ATPase activity and oxygen consumption rates. Following an initial adjustment period, plasma constituents in SW fish returned to near-FW values, indicating that the fish were acclimated to SW by day 21. Gill Na+, K+-ATPase activities on days 21 and 42 were lowest in ISO, higher in FW and highest in SW. This result is consistent with the idea that less energy would be required to maintain ion balance in an isosmotic environment, where the ionic gradients between extracellular fluid and water would be minimal. Oxygen consumption rates of swimming fish (1 body length s−1), however, did not differ significantly between the three test salinities after 6 weeks. The results of this study suggest that the metabolic response of juvenile salmonids to changes in salinity is dependent on life-history stage (e.g. fry v . smolt), and that oxygen consumption rates do not necessarily reflect osmoregulatory costs.  相似文献   

13.
Apparent specific dynamic action (SDA) amplitude in young juvenile Atlantic cod Gadus morhua (1 to 8 g wet mass), fed a standardized meal and then exercised in a circular swimming respirometer at a constant swimming speed of 0·5 ± 0·3 body lengths s-1, occurred within l h after feeding in all juveniles. SDA amplitude were 1·4 to 1·8 times higher in fed fish compared to unfed fish, and rates of oxygen consumption decreased as body mass increased. SDA duration had a tendency to decrease with increasing body mass and was shortest, at 6 h, in the smallest fish (1–1·5 g), but increased to 10–11 h in the largest fish. Apparent SDA in fed fish ( R r) scaled with a mass exponent of 0·89, while maximum metabolic rate ( R max) determined by chasing fish to exhaustion and then measuring oxygen consumption for 12 h, and unfed routine metabolic rate (Rr) scaled with a mass exponent of 0·79 and 0·76 respectively. Relative aerobic scope ( R max– unfed R r) did not appear to vary over the 1 to 8 g increase in wet mass. These results show that as body mass increased in young juvenile Atlantic cod: (1) apparent SDA ( R f) increased more rapidly than R max, and (2) apparent SDA took up >98% of the relative aerobic scope and that young Atlantic cod allocated most of the energy to growth, and left little for other metabolic activities.  相似文献   

14.
通过探讨低盐(盐度为0、1.7、5、10、15和20)对菊黄东方鲀(Takifugu flavidus)幼鱼生长、存活、耗氧、鳃Na+/K+-ATP酶以及肝抗氧化酶的影响,研究了菊黄东方鲀幼鱼对低盐的适应性。结果显示,菊黄东方鲀幼鱼在盐度0组实验3周后全部死亡;盐度1.7组实验6周幼鱼大量死亡,最后成活率相当低,仅17.33%;盐度5、10、15和20组的幼鱼在整个实验中没有出现死亡现象。全长特定生长率在盐度1.7~20组之间没有显著差异。体重特定生长率,1.7盐度组比其他盐度组显著低(P0.05),5~20盐度组之间没有显著差异(P0.05)。最高的全长特定生长率和最高的体重特定生长率均出现在10盐度组。前6周的饵料系数在盐度1.7~20组之间没有显著差异,但最高(1.27)和最低(1.17)的饵料系数分别出现在1.7和10盐度组,总饵料系数在5~20盐度组之间没有显著差异。幼鱼的耗氧率在5~20盐度组之间没有显著差异,但最低的耗氧率出现在10盐度组。最低的鳃Na+/K+-ATP酶(NKA)活性出现在10盐度组,5~20盐度与NKA活性的关系可以用二次函数来拟合(y=0.083 2 x2﹣2.125 2 x+20.915,r2=0.977 9),由此得到理论上最低NKA活性值出现在盐度12.77。肝超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性在盐度1.7~20组之间均无显著差异,而10和15盐度组的过氧化氢酶(CAT)活性比1.7和20盐度组的显著低(P0.05),1.7~20盐度与CAT活性关系可以用二次函数来拟合(y=0.257 7 x2﹣5.807 6 x+87.357,r2=0.877 1),由此得到理论上最低CAT活性值出现在盐度11.27。研究结果表明,盐度1.7是菊黄东方鲀幼鱼的生存极限低盐,盐度5以上已经能适合其存活和生长,盐度10~15是的菊黄东方鲀幼鱼的最适宜盐度范围,适当降低盐度对菊黄东方鲀幼鱼的养殖生产是有利的。建议菊黄东方鲀幼鱼养殖盐度至少在5以上,最好在10~15范围。  相似文献   

15.
We present the first data on the effect of hypoxia on the specific dynamic action (SDA) in a teleost fish. Juvenile cod (Gadus morhua) were fed meals of 2.5% and 5% of their wet body mass (BM) in normoxia (19.8 kPa Po(2)) and 5% BM in hypoxia (6.3 kPa Po(2)). Reduced O(2) availability depressed the postprandial peaks of oxygen consumption, and to compensate for this, the total SDA duration lasted 212.0+/-20 h in hypoxia, compared with 95.1+/-25 h in normoxia. The percentage of energy associated with the meal digestion and assimilation (SDA coefficient) was equivalent between the different feeding rations but higher for fish exposed to hypoxia. Comparing peak oxygen consumption during the SDA course with maximum metabolic rates showed that food rations of 2.5% and 5% BM reduced the scope for activity by 40% and 55%, while ingestion of 5% BM in hypoxia occupied 69% of the aerobic scope, leaving little energy for other activities.  相似文献   

16.
Exposure of Carcinus to a reduction in salinity is accompanied by an increase in oxygen consumption. The highest rates of oxygen consumption are found during the first 2–3 h after a reduction in salinity, after which oxygen consumption then declines, but to a higher than ‘normal’ level which is maintained throughout the period of exposure to low salinity. This augmented rate of oxygen consumption persists even after 3–4 days in water of reduced salinity and indicates that the respiratory rate of Carcinus does not acclimate rapidly to reduced salinity. The increased oxygen consumption is associated with an increase in ventilation volume resulting from an increase in the rate of beating of the scaphognathites, while oxygen utilization remains at a low level. Since the oxygen-transporting properties of the blood of Carcinus show little change under conditions of reduced salinity, the increased oxygen demand of the tissues is met by a rise in cardiac output resulting mainly from an increase in heart rate.  相似文献   

17.
Oxygen uptake by plaice, Pleuronectes platessa L ., was measured using both 'closed' and 'flow-through' respirometers. Oxygen consumption was found to be influenced by oxygen concentrations below a critical level of 45–60 mmHg. Rates of oxygen uptake were also affected by fish size, temperature and nutritional status. The problems involved in using values of oxygen consumption, determined in the laboratory, for estimating energy requirements of wild fish are discussed.  相似文献   

18.
We have previously shown that the metabolism for most efficient cell growth can be realized by a combination of two types of elementary modes. One mode produces biomass while the second mode generates only energy. The identity of the four most efficient biomass and energy pathway pairs changes, depending on the degree of oxygen limitation. The identification of such pathway pairs for different growth conditions offers a pathway-based explanation of maintenance energy generation. For a given growth rate, experimental aerobic glucose consumption rates can be used to estimate the contribution of each pathway type to the overall metabolic flux pattern. All metabolic fluxes are then completely determined by the stoichiometries of involved pathways defining all nutrient consumption and metabolite secretion rates. We present here equations that permit computation of network fluxes on the basis of unique pathways for the case of optimal, glucose-limited Escherichia coli growth under varying levels of oxygen stress. Predicted glucose and oxygen uptake rates and some metabolite secretion rates are in remarkable agreement with experimental observations supporting the validity of the presented approach. The entire most efficient, steady-state, metabolic rate structure is explicitly defined by the developed equations without need for additional computer simulations. The approach should be generally useful for analyzing and interpreting genomic data by predicting concise, pathway-based metabolic rate structures.  相似文献   

19.
Three-spined sticklebacks (Gasterosteus aculeatus L.) living at the southern limit of the species distribution range could possess specific morphological and physiological traits that enable these fish to live at the threshold of their physiological capacities. Morphological analysis was carried out on samples of sticklebacks living in different saline habitats of the Camargue area (Rhone delta, northern Mediterranean coast) obtained from 1993 to 2017. Salinity acclimation capacities were also investigated using individuals from freshwater-low salinity drainage canals and from mesohaline–euryhaline lagoons. Fish were maintained in laboratory conditions at salinity values close to those of their respective habitats: low salinity (LS, 5‰) or seawater (SW, 30‰). Fish obtained from a mesohaline brackish water lagoon (BW, 15‰) were acclimated to SW or LS. Oxygen consumption rates and branchial Na+/K+-ATPase (NKA) activity (indicator of fish osmoregulatory capacity) were measured in these LS or SW control fish and in individuals subjected to abrupt SW or LS transfers. At all the studied locations, only the low-plated “leiurus” morphotype showed no spatial or temporal variations in their body morphology. Gill rakers were only longer and denser in fish sampled from the LS–freshwater (FW) drainage canals. All fish presented similar physiological capacities. Oxygen consumption rates were not influenced by salinity challenge except in SW fish transferred to LS immediately and 1 h after transfer. However, and as expected, gill NKA activity was salinity dependent. Sticklebacks of the Camargue area sampled from habitats with contrasted saline conditions are homogenously euryhaline, have low oxygen consumption rates and do not appear to experience significantly greater metabolic costs when challenged with salinity. However, an observed difference in gill raker length and density is most probably related to the nutritional condition of their habitat, indicating that individuals can rapidly acclimatize to different diets.  相似文献   

20.
Although on-line calorimetry has been widely used to detect transitions in global metabolic activity during the growth of microorganisms, the relationships between oxygen consumption flux and heat production are poorly documented. In this work, we developed a respirometric and calorimetric approach to determine the enthalpy efficiency of respiration-linked energy transformation of isolated yeast mitochondria and yeast cells under growing and resting conditions. On isolated mitochondria, the analysis of different phosphorylating and non-phosphorylating steady states clearly showed that the simultaneous measurements of heat production and oxygen consumption rates can lead to the determination of both the enthalpy efficiency and the ATP/O yield of oxidative phosphorylation. However, these determinations were made possible only when the net enthalpy change associated with the phosphorylating system was different from zero. On whole yeast cells, it is shown that the simultaneous steady state measurements of the heat production and oxygen consumption rates allow the enthalpy growth efficiency (i.e. the amount of energy conserved as biomass compared to the energy utilised for complete catabolism plus anabolism) to be assessed. This method is based on the comparison between the calorimetric-respirometric ratio (CR ratio) determined under growth versus resting conditions during a purely aerobic metabolism. Therefore, in contrast to the enthalpy balance approach, this method does not rely on the exhaustive and tedious determinations of the metabolites and elemental composition of biomass. Thus, experiments can be performed in the presence of non-limiting amounts of carbon substrate, an approach which has been successfully applied to slow growing cells such as yeast cells expressing wild-type or a mutant rat uncoupling protein-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号