首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 x 10 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH(3) was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by CO(2) evolution from [2-C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut x h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues.  相似文献   

2.
Anaerobic Degradation of Uric Acid by Gut Bacteria of Termites   总被引:3,自引:2,他引:1       下载免费PDF全文
A study was done of anaerobic degradation of uric acid (UA) by representative strains of uricolytic bacteria isolated from guts of Reticulitermes flavipes termites. Streptococcus strain UAD-1 degraded UA incompletely, secreting a fluorescent compound into the medium, unless formate (or a formicogenic compound) was present as a cosubstrate. Formate functioned as a reductant, and its oxidation to CO2 by formate dehydrogenase provided 2H+ + 2e needed to drive uricolysis to completion. Uricolysis by Streptococcus UAD-1 thus corresponded to the following equation: 1UA + 1formate → 4CO2 + 1acetate + 4NH3. Urea did not appear to be an intermediate in CO2 and NH3 formation during uricolysis by strain UAD-1. Formate dehydrogenase and uricolytic activities of strain UAD-1 were inducible by growth of cells on UA. Bacteroides termitidis strain UAD-50 degraded UA as follows: 1UA → 3.5 CO2 + 0.75acetate + 4NH3. Exogenous formate was neither required for nor stimulatory to uricolysis by strain UAD-50. Studies of UA catabolism by Citrobacter strains were limited, because only small amounts of UA were metabolized by cells in liquid medium. Uricolytic activity of such bacteria in situ could be important to the carbon, nitrogen, and energy economy of R. flavipes.  相似文献   

3.
Acetate dominated the extracellular pool of volatile fatty acids (VFAs) in the hindgut fluid of Reticulitermes flavipes, Zootermopsis angusticollis, and Incisitermes schwarzi, where it occurred at concentrations of 57.9 to 80.6 mM and accounted for 94 to 98 mol% of all VFAs. Small amounts of C3 to C5 VFAs were also observed. Acetate was also the major VFA in hindgut homogenates of Schedorhinotermes lamanianus, Prorhinotermes simplex, Coptotermes formosanus, and Nasutitermes corniger. Estimates of in situ acetogenesis by the hindgut microbiota of R. flavipes (20.2 to 43.3 nmol · termite−1 · h−1) revealed that this activity could support 77 to 100% of the respiratory requirements of the termite (51.6 to 63.6 nmol of O2 · termite−1 · h−1). This conclusion was buttressed by the demonstration of acetate in R. flavipes hemolymph (at 9.0 to 11.6 mM), but not in feces, and by the ability of termite tissues to readily oxidize acetate to CO2. About 85% of the acetate produced by the hindgut microbiota was derived from cellulose C; the remainder was derived from hemicellulose C. Selective removal of major groups of microbes from the hindgut of R. flavipes indicated that protozoa were primarily responsible for acetogenesis but that bacteria also functioned in this capacity. H2 and CH4 were evolved by R. flavipes (usually about 0.4 nmol · termite−1 · h−1), but these compounds represented a minor fate of electrons derived from wood dissimilation within R. flavipes. A working model is proposed for symbiotic wood polysaccharide degradation in R. flavipes, and the possible roles of individual gut microbes, including CO2-reducing acetogenic bacteria, are discussed.  相似文献   

4.
Acetate Synthesis from H2 plus CO2 by Termite Gut Microbes   总被引:8,自引:7,他引:1       下载免费PDF全文
Gut microbiota from Reticulitermes flavipes termites catalyzed an H2-dependent total synthesis of acetate from CO2. Rates of H2-CO2 acetogenesis in vitro were 1.11 ± 0.37 μmol of acetate g (fresh weight)−1 h−1 (equivalent to 4.44 ± 1.47 nmol termite−1 h−1) and could account for approximately 1/3 of all the acetate produced during the hindgut fermentation. Formate was also produced from H2 + CO2, as were small amounts of propionate, butyrate, and lactate-succinate. However, H2-CO2 formicogenesis seemed largely unrelated to acetogenesis and was believed not to be a significant reaction in situ. Little or no CH4 was formed from H2 + CO2 or from acetate. H2-CO2 acetogenesis was inhibited by O2, KCN, CHCl3, and iodopropane and could be abolished by prefeeding R. flavipes with antibacterial drugs. By contrast, prefeeding R. flavipes with starch resulted in almost complete defaunation but had little effect on H2-CO2 acetogenesis, suggesting that bacteria were the acetogenic agents in the gut. H2-CO2 acetogenesis was also observed with gut microbiota from Prorhinotermes simplex, Zootermopsis angusticollis, Nasutitermes costalis, and N. nigriceps; from the wood-eating cockroach Cryptocercus punctulatus; and from the American cockroach Periplaneta americana. Pure cultures of H2-CO2-acetogenic bacteria were isolated from N. nigriceps, and a preliminary account of their morphological and physiological properties is presented. Results indicate that in termites, CO2 reduction to acetate, rather than to CH4, represents the main electron sink reaction of the hindgut fermentation and can provide the insects with a significant fraction (ca. 1/3) of their principal oxidizable energy source, acetate.  相似文献   

5.
Biological nitrogen fixation by the microorganisms in the gut of termites is one of the singularly important symbiotic processes, since termites invariably thrive on nitrogen poor diet. Two isolates of free living aerobic and facultative anaerobic N fixing bacteria were obtained from the guts of fungus cultivating termite, Macrotermes sp. Among the total bacterial isolates from termite gut, the per cents of N fixing aerobes viz., Azotobacter and Beijerinckia spp were 49% and 37% from the salivary gland while facultative N fixing anaerobe viz., Klebsiella and Clostridium contributed (51% and 93%). The free living aerobic bacteria were identified as Azotobacter spp (19 x 104 CFU mL‐1) and Beijerinckia (13.2 x 104 CFU mL‐1) from the salivary gland of the termite; interestingly, foregut, mid gut and hind gut registered a low population of these bacteria. The isolates of Azotobacter were smooth, glistening, vicid in nature, rods, gram negative and cyst forming. Isolates of Beijerinckia sp. produced copious slime, tenacious, rods, gram negative with no cyst formations. Both the isolates emitted green fluorescence and produced acid. Facultative N fixing anaerobes were harbored in the hind gut. The isolates were identified as Klebsiella (20 x 104 CFU mL‐1) and Clostridium pasteurianum 39.1 x 104 CFU mL‐1. Klebsiella were straight rods arranged singly or in pairs, non‐motile, gram negative, whereas Clostridium pasteurianum was viscoid, motile with terminal spores. A positive correlation was observed between the extractable polysaccharides of these isolates and soil aggregation. The aggregates formed by the isolates increased soil aeration, porosity, water holding capacity and helped in better plant growth. Thus, the gut microflora of termite, apart from harnessing nitrogen from the atmosphere, also helps improving soil fertility.  相似文献   

6.
Mean pH values in pooled samples of foregut, midgut, and hindgut from adult Melanoplus sanguinipes, which had been raised in the laboratory on barley shoots and wheat bran, were 5.15, 6.39, and 5.98, respectively. Homogenates of midgut/hindgut sections and frass (feces) yielded colony counts of bacteria by the spread plate method of 5.7 to 5.9 and 5.3 to 5.5 log10 colonies per mg, respectively; there were no significant differences (P > 0.05) between counts obtained on several media or on media incubated aerobically or anaerobically. There was no evidence of significant populations of protozoa, fungi, or obligately anaerobic bacteria associated with the gut. A total of 168 pure strains of bacteria isolated from the gut sections were characterized and assigned to 11 taxonomic groups, including Enterococcus spp., Serratia liquefaciens, Pseudomonas spp., and Enterobacter spp. Numbers of Enterococcus spp. in the gut were 2 to 3 orders of magnitude higher than those of the other genera. Strains representing only four of the groups were recovered from bran fed to the grasshoppers; the barley shoots, which were raised in sterile soil, appeared virtually sterile. Examination of the gut wall by scanning electron microscopy revealed the presence of epimural bacteria in the foregut and hindgut but not in the midgut. The distribution of epimural cocci and bacilli differed with the gut section examined. Numerous spherical to ovoid structures up to 10 μm in diameter, which were not identified, were associated with the microvillous surface of the midgut epithelium. Acetate was present in gut, hemolymph, and frass, and it was shown that representative isolates of Enterococcus spp. and Enterobacter agglomerans produced acetate when incubated in an aqueous suspension of bran. The egestion time of solid digesta, as measured with methylene blue-stained barley shoots, was 3.0 to 5.7 h. The results show that M. sanguinipes supported extensive indigenous populations of luminal and epimural bacteria in the gut which were composed predominantly of facultatively anaerobic species; the relatively short egestion time, indicating rapid passage of digesta through the gut, was consistent with the microscopic appearance of digesta residues in frass and could account, at least in part, for the absence of a significant population of obligately anaerobic bacteria from the gut.  相似文献   

7.
Water hyacinth (Eichhornia crassipes), duckweed (Spirodela sp. andLemna sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 d to an average of 23 d and produced 0.14-0.22 m3 CH4/kg (dry weight) (2.3-3.6 ft3/lb) from mature filters for the 3 aquatic species. Kudzu required an average digestion time of 33 d and produced an average of 0.21 m3 CH4/kg (dry weight) (3.4 ft3/lb). The anaerobic filter provided a large surface area for the anaerobic bacteria to establish and maintain an optimal balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.  相似文献   

8.
The hindgut of the lower termites, Mastotermes darwiniensis and Coptotermes lacteus and the higher termite Nasutitermes exitiosus were made aerobic by exposure of the termites to pure oxygen, a procedure which killed their spirochaetes and their protozoa (lower termites only). The time taken for the hindgut to become anaerobic after the termites were restored to normal atmospheric conditions ranged from 2 to 4.5 hr. After oxygen treatment the number of gut bacteria increased some six- to ten-fold in all termite species, indicating that the bacteria are poised to use oxygen entering the gut. Removal of all the hindgut microbiota by feeding tetracycline caused the hindgut to become aerobic in M. darwiniensis and N. exitiosus. The transferring of M. darwiniensis to fresh wood, free of antibiotic, resulted in the return of the normal flora and the eventual establishment of anaerobic conditions in the hindgut. Thus the bacteria appear to be important in maintaining anaerobic conditions in the gut. Attempts to determine whether the protozoa (in the lower termites) played any part in maintaining the Eh of the hindgut were unsuccessful. Serratia marcescens failed to colonise the gut of normal C. lacteus and transiently colonized (for 5 days) the gut of normal N. exitiosus. Transient colonization by S. marcescens (from 6 to 10 days) occurred in N. exitiosus when its hindgut spirochaetes were killed and in C. lacteus when its spirochaetes and protozoa were killed, indicating a possible role for the spirochaetes and/or protozoa in influencing the bacteria allowed to reside in the hindgut. Exposure of normal termites to Serratia provoked an increase in the numbers of the normal gut bacteria.  相似文献   

9.
Streptococcus lactis and Bacteroides sp., isolated from hindguts of Reticulitermes flavipes termites, were grown anaerobically in monoculture and coculture. When grown in a glucose medium, S. lactis monoculture produced lactate as the major fermentation product, with small amounts of formate, acetate, ethanol, and CO2. In coculture, glucose was completely consumed during growth of S. lactis. Lactate, produced by S. lactis, then supported much of the growth of Bacteroides and was fermented to propionate, acetate, and CO2. Small amounts of succinate were formed during growth of Bacteroides in the coculture, but little change in the formate or ethanol concentration was observed. Monoculture growth of Bacteroides in a tryptone-yeast extract medium revealed that incorporation of 20 to 40 mM lactate increased cell yields and production of organic acids. However, initial lactate concentrations greater than 40 mM suppressed not only growth of Bacteroides but also acidic product formation. Results suggest that cross-feeding of lactate between streptococci and bacteroides constitutes one aspect of the overall hindgut fermentation in termites.  相似文献   

10.
11.
Fungus-growing termites rely on symbiotic microorganisms to help break down plant material and to obtain nutrients. Their fungal cultivar, Termitomyces, is the main plant degrader and food source for the termites, while gut bacteria complement Termitomyces in the degradation of foodstuffs, fixation of nitrogen, and metabolism of amino acids and sugars. Due to the community complexity and because these typically anaerobic bacteria can rarely be cultured, little is known about the physiological capabilities of individual bacterial members of the gut communities and their associations with the termite host. The bacterium Trabulsiella odontotermitis is associated with fungus-growing termites, but this genus is generally understudied, with only two described species. Taking diverse approaches, we obtained a solid phylogenetic placement of T. odontotermitis among the Enterobacteriaceae, investigated the physiology and enzymatic profiles of T. odontotermitis isolates, determined the localization of the bacterium in the termite gut, compared draft genomes of two T. odontotermitis isolates to those of their close relatives, and examined the expression of genes relevant to host colonization and putative symbiont functions. Our findings support the hypothesis that T. odontotermitis is a facultative symbiont mainly located in the paunch compartment of the gut, with possible roles in carbohydrate metabolism and aflatoxin degradation, while displaying adaptations to association with the termite host, such as expressing genes for a type VI secretion system which has been demonstrated to assist bacterial competition, colonization, and survival within hosts.  相似文献   

12.
Recently we discovered two novel, deeply branching lineages in the domain Bacteria from termite guts by PCR-based analyses of 16S rRNA (Y. Hongoh, P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn, and T. Kudo, Appl. Environ. Microbiol. 71:6590-6599, 2005). Here, we report on the specific detection of these bacteria, the candidate phylum TG3 (Termite Group 3) and a subphylum in the phylum Fibrobacteres, by fluorescence in situ hybridization in the guts of the wood-feeding termites Microcerotermes sp. and Nasutitermes takasagoensis. Both bacterial groups were detected almost exclusively from the luminal fluid of the dilated portion in the hindgut. Each accounted for approximately 10% of the total prokaryotic cells, constituting the second-most dominant groups in the whole-gut microbiota. The detected cells of both groups were in undulate or vibroid forms and apparently resembled small spirochetes. The cell sizes were 0.2 to 0.4 by 1.3 to 6.0 μm and 0.2 to 0.3 by 1.3 to 4.9 μm in the TG3 and Fibrobacteres, respectively. Using PCR screenings with specific primers, we found that both groups are distributed among various termites. The obtained clones formed monophyletic clusters that were delineated by the host genus rather than by the geographic distance, implying a robust association between these bacteria and host termites. TG3 clones were also obtained from a cockroach gut, lake sediment, rice paddy soil, and deep-sea sediments. Our results suggest that the TG3 and Fibrobacteres bacteria are autochthonous gut symbionts of various termites and that the TG3 members are also widely distributed among various other environments.  相似文献   

13.
The termite is a good model of symbiosis between microbes and hosts and possesses an effective cellulose digestive system. Oxygen-tolerant bacteria, such as Dyella sp., Chryseobacterium sp., and Bacillus sp., were isolated from Reticulitermes speratus gut. Notably, the endo-β-1,4-glucanase (EG) activity of all 16 strains of isolated bacteria was low. Due to the combined activity of EG from the termites and their symbiotic protozoa, the bacteria might not be compelled to express EG. This observation demonstrates how well intestinal bacteria have assimilated themselves into the efficient cellulose digestive systems of termites.  相似文献   

14.
A steep oxygen gradient and the presence of methane render the hindgut internal periphery of termites a potential habitat for aerobic methane-oxidizing bacteria. However, methane emissions of various termites increased, if at all, only slightly when termites were exposed to an anoxic (nitrogen) atmosphere, and 14CH4 added to the air headspace over live termites was not converted to 14CO2. Evidence for the absence of methane oxidation in living termites was corroborated by the failure to detect pmoA, the marker gene for particulate methane monooxygenase, in hindgut DNA extracts of all termites investigated. This adds robustness to our concept of the degradation network in the termite hindgut and eliminates the gut itself as a potential sink of this important greenhouse gas.  相似文献   

15.
Enrichment cultures that anaerobically degraded oxalate were obtained from lake sediment inocula. From these, 5 pure cultures of anaerobic oxalate-degrading bacteria were isolated and partially characterized. The isolates were Gram-negative, non-sporeforming, non-motile, obligate anaerobes. Oxalate was required for growth and was stoichiometrically converted to formate; 14CO2 was also recovered when 14C-oxalate was added. Maximal growth occurred when the oxalate concentration was 50 mM. Acetate stimulated growth in the presence of oxalate, however, 14C-experiments indicated that acetate was only utilized for cell carbon.The isolates were either spiral-shaped or rod-shaped organisms. The first morphotype grew much more slowly than the second and exhibited 13-fold lower cell yields. These isolates represent a new strain of oxalate-degrading bacteria. The second morphotype was similar to the anaerobic oxalate-degrading bacteria previously found in rumen. This report extends the known habitats in which anaerobic oxalate-degrading organisms have been found to include aquatic sediments.  相似文献   

16.
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of ‘termite gut treponemes’ from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse ‘termite cluster I', a deep-branching sister group of Treponemataceae (fam. ‘Termitinemataceae’) that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.  相似文献   

17.
Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively.  相似文献   

18.
Although homoacetogenic bacteria are generally considered to be obligate anaerobes, they colonize the intestinal tracts of termites and other environments that are not entirely anoxic in space or time. In this study, we investigated how homoacetogenic bacteria isolated from the hindguts of various termites respond to the presence of molecular oxygen. All strains investigated formed growth bands in oxygen gradient agar tubes under a headspace of H2-CO2. The position of the bands coincided with the oxic-anoxic interface and depended on the O2 partial pressure in the headspace; the position of the bands relative to the meniscus remained stable for more than 1 month. Experiments with dense cell suspensions, performed with Clark-type O2 and H2 electrodes, revealed a large capacity for H2-dependent oxygen reduction in Sporomusa termitida and Sporomusa sp. strain TmAO3 (149 and 826 nmol min−1 mg of protein−1, respectively). Both strains also reduced O2 with endogenous reductants, albeit at lower rates. Only in Acetonema longum did the basal rates exceed the H2-dependent rates considerably (181 versus 28 nmol min−1 mg of protein)−1). Addition of organic substrates did not stimulate O2 consumption in any of the strains. Nevertheless, reductive acetogenesis by cell suspensions of strain TmAO3 was inhibited even at the lowest O2 fluxes, and growth in nonreduced medium occurred only after the bacteria had rendered the medium anoxic. Similar results were obtained with Acetobacterium woodii, suggesting that the results are not unique to the strains isolated from termites. We concluded that because of their tolerance to temporary exposure to O2 at low partial pressures (up to 1.5 kPa in the case of strain TmAO3) and because of their large capacity for O2 reduction, homoacetogens can reestablish conditions favorable for growth by actively removing oxygen from their environment.  相似文献   

19.
We studied the colonization of the paunch wall of three lower termites, Reticulitermes flavipes, Incisitermes tabogae, and Incisitermes marginipennis, by light and electron microscopy. In addition to various prokaryotes, oxymonad flagellates were attached to the wall of the paunch in all three species. The prokaryotic layer found in R. flavipes is relatively thin, since most organisms are attached laterally. Large members of the flagellate genus Pyrsonympha protrude into the gut lumen. The prokaryotes are very abundant on the gut wall in I. tabogae and I. marginipennis, forming a thick carpet of mostly vertically attached rods and wavy spirochetes. The adhering oxymonads are relatively small and almost hidden in the thick bacterial biofilm. Three small morphotypes were seen in I. tabogae; two possessing a short rostellum and one amoeboid. The only oxymonad found in I. tabogae so far, Oxymonas clevelandi, is not identical to any of the present oxymonads. I. marginipennis contains a mid-sized oxymonad with ectobiotic spirochetes, probably identical to Oxymonas hubbardi, and a tiny unknown morphotype. The spatial organization of the pro- and eukaryotic microorganisms on the gut wall of the three termites is described and discussed concerning oxygen stress.  相似文献   

20.
The sulfate kinetics in an anaerobic, sulfate-reducing biofilm were investigated with an annular biofilm reactor. Biofilm growth, sulfide production, and kinetic constants (Km and Vmax) for the bacterial sulfate uptake within the biofilm were determined. These parameters were used to model the biofilm kinetics, and the experimental results were in good agreement with the model predictions. Typical zero-order volume rate constants for sulfate reduction in a biofilm without substrate limitation ranged from 56 to 93 μmol of SO24-cm−3 h−1 at 20°C. The temperature dependence (Q10) of sulfate reduction was equivalent to 3.4 at between 9 and 20°C. The measured rates of sulfate reduction could explain the relatively high sulfide levels found in sewers and wastewater treatment systems. Furthermore, it has been shown that sulfate reduction in biofilms just a few hundred micrometers thick is limited by sulfate diffusion into biofilm at concentrations below 0.5 mM. This observation might, in some cases, be an explanation for the relatively poor capacity of the sulfate-reducing bacteria to compete with the methanogenic bacteria in anaerobic wastewater treatment in submerged filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号