首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stokes  Alexia 《Plant and Soil》1999,217(1-2):17-27
Winching tests were carried out on 5- 13- and 17-year-old tap rooted Maritime pine (Pinus pinaster Ait.) in order to determine how the mode of anchorage failure changes throughout the life of a tree. As trees were pulled sideways, strain along the lateral roots was recorded using strain gauges attached to a strain indicator. Measurements of strain in the root system, taken during winching, provide information about root movement when loaded by wind. The mode of mechanical failure appeared to depend on tree age. The youngest trees bent over completely during winching, but did not break due to the plasticity of their trunks. The 13-year-old trees either broke at the base of the tree (due to the presence of grafting scar tissue) or at the base of the tap-root. The oldest trees broke at the base of the tap-root and sounds of roots breaking were also heard. Strain was twice as great in the trunk compared to the roots in the 5- and 13-year-old trees and was three times greater in the compression roots of 17-year–old trees compared to that in the trunk. In one 17-year-old tree, strain was found to increase at a distance of 35 cm in tension roots before decreasing again. Although the mode of failure changed with tree size, anchorage strength increased proportionally with the third power of trunk diameter, therefore another reason why failure differs with tree age must exist. In order to determine if different types of wood were being laid down in the lateral roots in response to wind loading, maturation strains, indicating the existence of mechanical stress in developing wood cells, were measured at different points along the roots. A high correlation was found between maturation strain and strain measured during winching, in roots that lay in the wind direction only. Therefore, trees appear to be able to respond to external loading stress, even at a local level within a root. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The mechanical development of the anchorage system of the taprooted tropical speciesMallotus wrayiKing (Euphorbiaceae) wasinvestigated by pulling over and examining trees with a diameterat breast height (dbh) of 4.2 cm to 14.3 cm. The mode of mechanicalfailure depended upon the size of the tree: thicker trees (dbhapprox.9 cm) failed in the ground with their tap roots pushing intothe soil on the winchward side; in smaller trees (dbhapprox.7 cm) the trunk snapped before anchorage failure; and in verysmall trees (of dbh<6 cm) neither type of failure occurredand the trees returned to their original upright position undamagedafter the test. The anchorage strength of the trees was correlatedwith the second power of trunk diameter rather than with thethird power that theory suggests is optimal because tap rootsdid not show an isometric increase in length or diameter. Thereforeas trees grow larger the ‘factor of safety’ againstanchorage failure falls, making them prone to fail in theirroots. These results suggest that only relatively small treespecies can rely solely on the tap root to prevent uprooting.It may be for this reason that most larger trees develop thicklateral roots.Copyright 1998 Annals of Botany Company Anchorage, tap roots, scaling,Mallotus wrayi, isometric growth, functional development, windthrow, root systems.  相似文献   

3.
The anchorage of deep rooted 16-year-old larch trees, Larixeuropea japonica, has been studied by combining winching testswith analyses of strain around the base of the trunk and rootsystem and mechanical tests on individual roots. These showedthat anchorage is provided by the laterals which emerge fromaround the stem base, sinker roots which emerge along theirlength, and tap roots positioned directly underneath the bole.During anchorage failure the leeward laterals are bent and eventuallybreak close to their base, whilst the windward laterals arepulled out of the ground, with their sinker roots intact. Afterinitially being confined by the soil and bending, the tap rootrotates in the soil. Anchorage failure is similar when the soilis dry as when it is wet, but failure occurs closer to the trunk.Strain measurements along the lateral roots revealed that thestresses were highest close to the trunk and that these regionsof the roots contribute most to tree stability. The two major components of anchorage were found to be the resistanceof leeward laterals to bending and the resistance of tap rootsand windward sinkers to uprooting. Bending tests on leewardlaterals revealed that they provide around 25% of tree anchorage.Almost 75% of the anchorage strength must, therefore, be providedby the windward sinkers and tap roots. Anchorage strength ofroots was positively correlated to their cross-sectional area.The vertical orientation of the sinkers makes the anchoragesystem of larch more efficient than the plate system formedby Sitka spruce on waterlogged soils and means that no root-soilplate is formed. Key words: Anchorage, root architecture, sinker roots, root bending strength, windthrow  相似文献   

4.
 In order to determine if different types of wood were being laid down in the root system of Maritime pine (Pinus pinaster Ait), in response to wind loading, longitudinal residual maturation strains (LRMS), indicating the existence of mechanical stress in developing wood cells, were measured in the trunk and lateral roots. Two age groups of trees (5- and 13-year- old) were compared. LRMS were greater in the trunk and roots of 13-year-old trees than in 5-year-old trees. This phenomenon may be due to increased competition between older trees. LRMS in leeward roots of both age-groups were positive i.e. the wood cells had developed under compression, as also occurs in reaction wood of gymnosperms. As leeward roots are placed under compression during tree sway, an abnormal type of wood may form in the roots in order to counteract the increased stress. In other roots, the strains were negative i.e. the cells had developed under tension, as occurs in normal wood. In the roots of younger trees, LRMS were also positive nearer the stem, thus indicating that wood formation may also be influenced by bending stresses experienced in this zone. In addition to LRMS measurements, radial growth in roots was examined in order to determine the influence of mechanical loading on secondary growth. In older trees, there was a significant increase of 34% in woody growth below the biological centre, compared to that above. This eccentricity is unlike that found in most other tree species, where secondary growth is usually greater on the upper side of the root. However, Maritime pine has a tap root, which will alter the pattern of stress within the root system. Under wind loading, a concentration of mechanical stress will develop at the bases of the stem, lateral roots and tap root. Received: 7 July 1997 / Accepted: 11 December 1997  相似文献   

5.
To understand the spatial structure of monospecific Tugai forests (Xinjiang Province, China) growing as gallery woods nourished by ground water, root suckering in Populus euphratica was studied by a combination of morphological and molecular analyses. Seedlings grow a deep tap root and keep this as adult trees, whereas root suckers never develop a tap root but utilize the horizontally stretching root of their parent trees. The resulting reverse “T” root architecture distinguishes reliably even adult root suckers from generatively grown trees. Due to assimilate input from the root sucker, the distal root (pointing away from the parent tree) becomes thicker soon than its proximal root, which allows determination of the direction of vegetative growth. One stand including 279 young trees germinated from seeds and 267 root suckers was mapped completely, and selected suckers were assigned to parent trees by genotyping with microsatellite DNA. Root suckers develop up to 40 m away from parent trees on horizontal “spacer” roots, usually originating not deeper than 20 cm below surface. Trees begin with root suckering between 10 and 15 years, shortly before reaching flowering age. Cutting experiments indicated reduced survival of young root suckers disconnected from the parent tree. Without a tap root and with a rooting point close to the surface, declining ground water levels should lower the fitness of root suckers even more than that of generatively grown trees.  相似文献   

6.
Dendrogeomorphological research was conducted along a volcanic caldera lake of Bolsena in central Italy, Latium region, in order to investigate the erosion process that affects its coastline. Most of the trees sampled were black poplars (Populus nigra L.) with root systems differently exposed. The cores taken from trunks show growth stress (suppression) at different times according to the distance of the tree from the shoreline. Results of the morphological analysis of the root systems were used as a qualitative estimate of the erosion process developing an erosion map of the lake's shoreline. The dating of suppressions was used to calculate the main horizontal erosion rate at different shoreline sectors. The most intense erosion was recorded on the southern and northern shore, affected by the strongest and long-lasting winds (mean erosion rate at southern coast=0.092 m/year, northern coast=0.064 m/year, eastern coast=0.049 m/year, western coast=0.028 m/year). The age of the living trees along the shore points out that the erosion started at least in the 1970s (one of the highest lake level episode) and it is still in progress.  相似文献   

7.
Is it possible to manipulate root anchorage in young trees?   总被引:1,自引:1,他引:0  
The optimal root system architecture for increased tree anchorage has not yet been determined and in particular, the role of the tap root remains elusive. In Maritime pine (Pinus pinaster Ait.), tap roots may play an important role in anchoring young trees, but in adult trees, their growth is often impeded by the presence of a hard pan layer in the soil and the tap root becomes a minor component of tree anchorage. To understand better the role of the tap root in young trees, we grew cuttings (no tap root present) and seedlings where the tap root had (?) or had not (+) been pruned, in the field for 7 years. The force (F) necessary to deflect the stem sideways was then measured and divided by stem cross-sectional area (CSA), giving a parameter analogous to stress during bending. Root systems were extracted and root architecture and wood mechanical properties (density and longitudinal modulus of elasticity, E L ) determined. In seedlings (?) tap roots, new roots had regenerated where the tap root had been pruned, whereas in cuttings, one or two lateral roots had grown downwards and acted as tap roots. Cuttings had significantly less lateral roots than the other treatments, but those near the soil surface were 14% and 23% thicker than plants (+) and (?) tap roots, respectively. Cuttings were smaller than seedlings, but were not relatively less resistant to stem deflection, probably because the thicker lateral roots compensated for their lower number. Apart from stem volume which was greater in trees (+) tap roots, no significant differences with regard to size or any root system variable were found in plants (?) or (+) tap roots. In all treatments, lateral roots were structurally reinforced through extra growth along the direction of the prevailing wind, which also improved tap root anchorage. Predictors of log F/CSA differed depending on treatment: in trees (?) tap roots, a combination of the predictors stem taper and %volume allocated to deep roots was highly regressed with log F/CSA (R 2 = 0.83), unlike plants (+) tap roots where the combined predictors of lateral root number and root depth were best regressed with log F/CSA (R 2 = 0.80). In cuttings, no clear relationships between log F/CSA and any parameter could be found. Wood density and E L did not differ between roots, but did diminish with increasing distance from the stem in lateral roots. E L was significantly lower in lateral roots from cuttings. Results showed that nursery techniques influence plant development but that the architectural pattern of Maritime pine root systems is stable, developing a sinker root system even when grown from cuttings. Anchorage is affected but the consequences for the long-term are still not known. Numerical modelling may be the only viable method to investigate the function that each root plays in adult tree anchorage.  相似文献   

8.
R. Mulia  C. Dupraz 《Plant and Soil》2006,281(1-2):71-85
The spatial distribution of fine roots of two deciduous tree species was investigated in contrasting growing conditions in southern France. Hybrid walnut trees (Juglans regia×nigra cv. NG23) and hybrid poplars (Populus euramericana cv. I214) were both cultivated with or without annual winter intercrops for 10 years on deep alluvial soils. Soil samples for measuring the fine root distribution of both trees and crops were obtained by soil coring down to 3-m depth at several distances and orientations from the tree trunk. The distribution of live fine roots from walnut and poplar trees was patchy and sometimes unexpected. In the tree-only stands, fine root profiles followed the expected pattern, as fine root density decreased with increasing depth and distance from the tree trunk. However, many fine root profiles under intercropped trees were uniform with depth, and some inverse profiles were observed. These distributions may result from a high degree of plasticity of tree root systems to sense and adapt to fluctuating and heterogeneous soil conditions. The distortion of the tree root system was more pronounced for the walnut trees that only partially explored the soil volume: in the tree-only stand, the walnut rooting pattern was very superficial, but in the intercropped stand walnut trees developed a deep and dense fine root network below the crop rooting zone. The larger poplars explored the whole available soil volume, but the intercrop significantly displaced the root density from the topsoil to layers below 1 m depth. Most tree root growth models assume a decreasing fine root density with depth and distance from the tree stem. These models would not predict correctly tree–tree and tree–understorey competition for water and nutrients in 3D heterogeneous soil conditions that prevail under low-density tree stands. To account for the integrated response of tree root systems to such transient gradients in soils, we need a dynamic model that would allow for both genotypic plasticity and transient environmental local soil conditions.  相似文献   

9.
A Dehesa is a structurally complex agro-silvo-pastoral system where at least two strata of vegetation, trees and herbaceous plants coexist. We studied the root distribution of trees (Quercus ilex L.) and herbaceous plants, in order to evaluate tree and crops competition and complementarity in Dehesas of Central Western Spain. 72 soil cores of 10 cm diameter (one to two metre deep) were taken out around 13 trees. Seven trees were intercropped with Avena sativa L. and six trees were in a grazed pasture dominated by native grasses. Soil coring was performed at four distances from the tree trunks, from 2.5 (beneath canopy) till 20 m (out of the canopy). Root length density (RLD) of herbaceous plants and trees was measured using the soil core-break method. Additionally, we mapped tree roots in 51 profiles of 7 recently opened road cuts, located between 4 and 26 m of distance from the nearest tree. The depth of the road cuts varied between 2.5 and 5.5 m. Herbaceous plant roots were located mostly in the upper 30 cm, above a clayey, dense soil layer. RLD of herbaceous plants decreased exponentially with depth until 100 cm depth. Holm-oak showed a much lower RLD than herbs (on average, 2.4 versus 23.7 km m−3, respectively, in the first 10 cm of the soil depth). Tree RLD was surprisingly almost uniform with depth and distance to trees. We estimated a 5.2 m maximum depth and a 33 m maximum horizontal extension for tree roots. The huge surface of soil explored by tree roots (even 7 times the projection of the canopy) could allow trees to meet their water needs during the dry Mediterranean summers. The limited vertical overlap of the two root profiles suggests that competition for soil resources between trees and the herbaceous understorey in the Dehesa is probably not as strong as usually assumed.  相似文献   

10.
Abstract Oribatid mites (Acari: Oribatida) are among the most diverse and abundant inhabitants of forest soil and litter, but also have species-rich assemblages on bark and in the canopies of trees. It is unclear whether the trunk of a tree acts simply as a 'highway' for movement of mites into and out of the canopy, or whether the trunk has a distinctive acarofauna. We compare oribatid assemblages from the trunk bark of hoop pine ( Araucaria cunninghamii ) with those from litter collected beneath the same trees. A 1.0 by 0.5 m area of bark was sampled from three trees at each of five sites using a knockdown insecticide. A 1-L sample of leaf litter was collected as close as possible to the base of each sampled tree. Mites were extracted using Tullgren funnels, identified to genus and morphospecies, and counted. Assemblages were almost 100% distinct, with only one oribatid morphospecies ( Pseudotocepheus sp.) collected from both litter and bark. Litter had a higher taxon richness than bark in total and per sample, but oribatids made up a greater percentage of the acarofauna in the bark samples. We had expected that the more consistent physical substrate of bark would be reflected in greater similarity of oribatid faunas on trunks than in litter; however, the opposite proved to be the case. We conclude that hoop-pine trunks are habitats rather than highways for oribatid mites. Based on the observed higher turnover among bark faunas, tree trunks may represent habitat islands whose colonisation by particular oribatid species is more stochastic than that of the more continuous 'sea' of litter.  相似文献   

11.
We examined the initial response of the quantity and distribution of fine roots to the creation of an experimental canopy gap with a diameter of 50 m in a mature managed Norway spruce forest. Under the canopy, the fine root length densities of trees, shrubs, and grasses and herbs were 3207, 707 and 2738 m m–2, respectively. The fine root biomass of trees, shrubs, and grasses and herbs were 182, 47 and 52 g m–2, respectively. Two growing seasons after gap creation hardly any fine tree roots were found in the middle part of the gap. The living tree roots in the gap edge zone were mainly located within a 5-m distance from the standing edge trees. The indices developed here to show the influence of trees on fine root lenght density clearly revealed the effect of the vicinity of living trees on fine root lenght density. The root densities of grasses, herbs and dwarf shrubs did not show a clear response to gap creation despite the increase of their foliage. Our results suggest that in boreal spruce forests a gap disturbance creates a distinct tree root gap and that the gap edge trees do not extend their root systems rapidly into the formed root gap.  相似文献   

12.
Root morphology of 5-year-old trees of Dacryodes edulis (G. Don) H. J. Lam of seed and two vegetative (cutting and marcot) origins were assessed in Cameroon. Roots of D. edulis trees of seed and vegetative origins were totally excavated and their root morphology described and quantified. Trees of seed origin were characterized by a tap root, reaching depths of about 1.2 m. Contrarily trees of cutting origin showed three strong vertical roots (d > 5 mm) with the longest reaching depths of 1.31 m. Trees of marcot origin were observed to have thick, relatively short prominent vertical roots, reaching depths of 1.15 m. At fixed lateral intra-row distances of 50 cm from tree bases, trees of seed and marcot origins recorded high root densities at soil depths of 0–20 cm; both differed significantly (p = 0.032) from those of trees of cutting origin. At soil depth of 60–100 cm, trees of cutting origin recorded the highest root density which however differ significantly (p = 0.016) from those of trees of both seed and marcot origins. D. edulis trees of seed origin had a tap root system, whereas trees of vegetative origin (cuttings and marcots) had developed prominent main adventitious roots growing vertically (sinker roots), into greater depths and a wider/deeper lateral root spread than seedlings. This could be a vital adaptation to the absence of a genetically determined tap roots in trees of vegetative origins so as not to compromise the acquisition of soil-based resources (water and dissolved ions) and anchorage.  相似文献   

13.
该文研究了黄土丘陵半干旱区密植枣( Ziziphus jujuba ‘Lizao’)林群体根系随树龄变化的空间分布特征。对1年生、4年生、8年生和11年生4种树龄的密植枣林采用剖面法, 获得0-1 m土壤剖面上直径>3 mm、1-3 mm及<1 mm的根系数量和空间位置信息。利用方差分析, 评价了山地密植枣林林分根系随树龄变化的水平和垂直分布特征。结果表明: 3种直径的根系数量均随着树龄的增长而增加, 直径< 1 mm的根系增长速度最快; 随着土层加深, 根系数量递减, 1年生枣林的根系主要聚集在0-40 cm土层中, 4年生及以上树龄的根系主要分布在0-60 cm土层中; 0-1 m土层内, 1年生枣林(株距1.2 m)及4年以上树龄(株距2 m), 同树龄枣林中直径<1 mm的根系水平分布无差异; 同一土层中(0-20 cm, 20-40 cm, 40-60 cm), 无论树龄大小及离树干的水平位置如何, 不同直径根系的数量都无差异。研究表明: 在有水肥管理措施的条件下, 枣林根系垂直方向形成浅层型的适应模式; 在密植环境下, 枣林细根形成根网型的适应模式。  相似文献   

14.
N. Soethe  J. Lehmann  C. Engels 《Plant and Soil》2006,279(1-2):173-185
Root architecture of tree species was investigated at two different altitudes in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow soils, while slope angles of both sites were comparable (20–50°). Three tree species typical for the montane forest at 1900 m (Graffenrieda emarginata (Ruiz & Pav.) Triana (Melastomataceae), Clethra revoluta (Ruiz & Pav.) Spreng. (Clethraceae), Vismia tomentosa Ruiz & Pav. (Clusiaceae)) and for the elfin forest at 3000 m (Weinmannia loxensis Harling (Cunoniaceae), Clusia spec. (Clusiacaea) Styrax foveolaria Perkins (Styraceae)) were examined. At 1900 m, 92% of the trees grew upright, in comparison to 52% at 3000 m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all trees with tap roots or with shoots connected by coarse rhizomes, 83% of the trees with stilt roots, and 50% of the trees in which stems or roots were supported by other trees grew upright, suggesting that these characteristics were relevant for tree stability. Root system morphology differed markedly between altitudes. In contrast to 1900 m, where 20% of structural roots originated in the deeper mineral soil, root origin at 3000 m was restricted to the forest floor. The mean ratio of root cross sectional area to tree height decreased significantly from 6.1 × 10−3 m2 m−1 at 1900 m to 3.2 × 10−3 m2 m−1 at 3000 m. The extent of root asymmetry increased significantly from 0.29 at 1900 m to 0.62 at 3000 m. This was accompanied by a significantly lower number of dominant roots at 3000 m (2.3 compared to 3.8 at 1900 m). In conclusion, native tree species growing in tropical montane and elfin forests show a variety of root traits that improve tree stability. Root system asymmetry is less important for tree stability where anchorage is provided by a deep and solid root–soil plate. When deep rooting is impeded, root traits improving the horizontal extension of the root–soil plate are more pronounced or occur more frequently. Furthermore, mutual mechanical support of roots and stems of neighboring trees seems to be an appropriate mechanism to provide anchorage in soils with low bulk density and in environments with high wind speeds.  相似文献   

15.
Olav  Hogstad 《Ibis》1976,118(1):41-50
Measurements of 48 males and 45 females of Three-toed Woodpeckers shot in Norway revealed that the mean lengths of wing, tail, bill and tarsus of males were significantly greater than those of females. Sexual dimorphism was most marked for the bill and tarsus.
Feeding observations of the species from spruce-dominated mixed forests during the October-March period indicated an intersexual partitioning of the foraging niche. The males exhibited a stereotyped foraging pattern of bark scaling low down on the main trunks of dead spruce, whilst females used a more differentiated feeding technique and utilized a greater variety of trunk and branch sizes of dead, decaying and living trees of several different species. Significant intersexual differences were found in tree height preference and in the diameter of trunks and branches. The males foraged almost exclusively on the trunks of trees over 10 m high and over 15 cm in diameter, whilst females often frequented dead spruce, under 5 m high, and foraged on thinner trunks and branches. Foraging height was significantly lower for males than for females.
The relationship between the sexual dimorphism, the intersexual partitioning of the feeding niche and their biological significance, is briefly discussed.  相似文献   

16.
Eugenia grandis (Wight) is grown in urban environments throughout Malaysia and root systems are often damaged through trenching for the laying down of roads and utilities. We investigated the effect of root cutting through trenching on the biomechanics of mature E. grandis. The force necessary to winch trees 0.2 m from the vertical was measured. Trenches were then dug at different distances (1.5, 1.0 and 0.5 m) from the trunk on the tension side of groups of trees. Each tree was winched sideways again and the uprooting force recorded. No trenches were made in a control group of trees which were winched until failure occurred. Critical turning moment (TMcrit) and tree anchorage rotational stiffness (TARS) before and after trenching were calculated. Root systems were extracted for architectural analysis and relationships between architectural parameters and TMcrit and TARS were investigated. No differences were found between TMcrit and trenching distance. However, in control trees and trees with roots cut at 1.5 m, significant relationships did exist between both TMcrit and TARS with stem dimensions, rooting depth and root plate size. TARS was significantly decreased when roots were cut at 0.5 m only. Surprisingly, no relationships existed between TMcrit and TARS with any root system parameter when trenching was carried out at 0.5 or 1.0 m. Our study showed that in terms of TARS and TMcrit, mechanical stability was not greatly affected by trenching, probably because rooting depth close to the trunk was a major component of anchorage.  相似文献   

17.
The continuity of the xylem water columns was studied on 17- to 23-m tall birch trees (trunk diameter about 23 cm; first branching above 10 m) all year round. Fifty-one trees were felled, and 5-cm thick slices or 2-m long boles were taken at regular, relatively short intervals over the entire height of the trees. The filling status of the vessels was determined by (i) xylem sap extraction from trunk and branch pieces (using the gas bubble-based jet-discharge method and centrifugation) and from trunk boles (using gravity discharge); (ii) 1H nuclear magnetic resonance imaging of slice pieces; (iii) infusion experiments (dye, 86Rb+, D2O) on intact trees and cut branches; and (iv) xylem pressure measurements. This broad array of techniques disclosed no evidence for continuous water-filled columns, as postulated by the Cohesion–Tension theory, for root to apex directed mass transport. Except in early spring (during the xylem refilling phase) and after extremely heavy rainfall during the vegetation period, cohesive/mobile water was found predominantly at intermediate heights of the trunks but not at the base or towards the top of the tree. Similar results were obtained for branches. Furthermore, upper branches generally contained more cohesive/mobile water than lower branches. The results suggest that water lifting occurs by short-distance (capillary, osmotic and/or transpiration-bound) tension gradients as well as by mobilisation of water in the parenchymatic tissues and the heartwood, and by moisture uptake through lenticels.  相似文献   

18.
Geophysical imaging of root-zone, trunk, and moisture heterogeneity   总被引:4,自引:0,他引:4  
The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.  相似文献   

19.
The phospholipid fatty acid (PLFA) profiles of soil microbial communities were determined in relation to the patterns of tree cover in a mature Norway spruce plantation. Replicate samples of the surface organic layers were taken close to the trunk, at 1 m and at 2 m (under the edge of the canopy) beneath five trees. Samples were analyzed for standard PLFAs to assess the initial composition of the microbial communities. Replicate samples were then incubated under constant or fluctuating moisture conditions for 30 d to test the hypothesis that the patterns of microbial community structure (or its physiological state) might be determined by biophysical conditions under the tree canopies. The PLFA profiles near the trunks and at 2 m were similar, but samples taken 1 m from the bases of the trees contained lower concentrations of polyunsaturated (fungal) and monounsaturated PLFAs, and higher concentrations of saturated PLFAs. These differences in PLFA profiles were maintained during laboratory incubation under a regime of drying and wetting cycles, but there was some evidence of convergence in community structure under constant moisture conditions resulting from significant increases and decreases in specific bacterial PLFA concentrations. There were no effects of either moisture treatment on fungal PLFA concentrations. It is concluded that variation in the soil biophysical environment beneath the tree canopies resulted in the differentiation of spatially defined bacterial communities that were tolerant of moisture stress. The anomaly that differences in community structure were largest at an intermediate position of 1 m between the trunk and below the canopy edge was not explained but may relate to tree root distribution.  相似文献   

20.
The root systems of apple trees from five orchards ranging in age from 1.5-y to 14-y were sampled to depths of between one and two metres using soil cores. Although trees came from orchards which differed in soil-type, tree spacings and management, consistent patterns were found in root systems. In orchards of 4-y and older, roots of adjacent trees met so that soil volumes within the planting grids (i.e, tree spacings of approximately 5 m inter-row×4 m intra-row distances) were completely explored, although not completely occupied by roots. Mean root-length densities declined with depth for these orchards. In the 1.5-y orchard, roots from adjacent trees did not meet and root-length densities declined with radial distance from the stem as well as with depth.Root-length densities in the top 1 m ranged from zero to about 1.0 cm.cm–3 in all orchards and were highly variable. The proportions of core samples having zero values for root-length density were used to subdivide the root zone into volumes in which all samples contained roots, and volumes in which some samples had no roots.Results suggest that roots in an average tree penetrate to at least one metre depth in all but very young orchards so that soil in this volume is fully explored. Volumes filled by roots and volumes occupied at any particular root-length density appear to reach a maximum at about 4 years. Volumes of soil occupied at any particular root-length density were equal in all orchards older than 4 years. This suggests that root growth was balanced by root death. In contrast woody roots continue to accumulate with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号