首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of calmodulin with melittin   总被引:1,自引:0,他引:1  
Studies utilizing the interaction of melittin with the 1-106 fragment of calmodulin, the protection of calmodulin from tryptic digestion by melittin, and the interaction of the carbocyanine dye Stains-all with the calmodulin-melittin complex have indicated that complex formation of calmodulin with melittin involves the alpha-helical connecting bridge joining the N- and C-terminal lobes of calmodulin.  相似文献   

2.
High-sensitivity differential scanning calorimetry has been used to examine the interaction of bee venom melittin with dipalmitoylphosphatidylcholine fused unilamellar vesicles. Experiments were performed under conditions for which melittin in solution is either monomeric (in low salt) or tetrameric (in high salt). It was found that under both sets of conditions melittin abolishes the pretransition at a relatively high lipid-to-protein molar incubation ratio, Ri (about 200) and that at intermediate values of Ri it broadens the main transition profile and reduces the transition enthalpy. This provides evidence which suggests that melittin is at least partially inserted into the apolar region of the bilayer. Evident at low values of Ri are two peaks in the lipid thermal transition profiles, which may arise from a heterogeneous population of lipid vesicles formed through fusion induced by melittin, or by lipid phase separation. For those profiles which exhibited only one peak, transition enthalpies, normalized to those of the lipid in the absence of the protein, are plotted vs. the bound protein-to-lipid molar ratios for the experiments performed under the conditions which give monomeric and tetrameric melittin in solution. These plots yield straight lines, the slopes of which give the number of lipid molecules each protein molecule excludes from participating in the phase transition. These were found to be 9.9 +/- 0.7 and 4.1 +/- 0.5 for monomeric and tetrameric melittin, respectively. The results are discussed in terms of possible models for the binding of melittin to phospholipid vesicles. For simple hexagonal packing of lipid molecules, incorporation as an aggregate is favored when melittin is tetrameric in solution, whereas incorporation as a monomer is favored when melittin is monomeric in solution. For low-salt solutions, evidence is obtained for the contribution of free melittin to lipid fusion, perhaps by the formation of protein bridges between apposed vesicles.  相似文献   

3.
The rotational diffusion of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine vesicles was measured by the technique of flash-induced transient dichroism. In the presence of melittin, a cell lysing peptide from honey bee (Apis mellifera) venom, dose-dependent loss of rotational mobility was observed. Chemically modified melittin derivatives, in which free amine groups were either acetylated or succinylated, were impaired in their ability to induce immobilisation of bacteriorhodopsin. Bacteriorhodopsin reconstitutions of differing lipid/protein ratio were tested and it was found that the bacteriorhodopsin immobilisation phenomena depended on the melittin/protein ratio, not the melittin/lipid ratio. This suggests that melittin produces its effect via direct interaction with bacteriorhodopsin. A mechanism is proposed in which the aggregation of bacteriorhodopsin is induced by electrostatic attraction between its anionic surface moieties and the highly cationic C-terminal segment of melittin.  相似文献   

4.
K Ramalingam  J Bello  S Aimoto 《FEBS letters》1991,295(1-3):200-202
Melittin and its Glu-(7,21,22,23,24) analog upon mixing in equimolar concentrations form a hybrid oligomer with significant helical structure, in conditions in which each peptide separately adopts a largely disordered structure. The hybrid exhibits both cold- and heat-induced denaturations similar to the phenomena exhibited by proteins. The hybrid also retains significant residual structure at higher temperature, similar to the 'molten globular state' that has been suggested for protein. Melittin, at concentrations in which it forms helical tetramers, also exhibits these phenomena and may be used as a model for protein-denaturation studies.  相似文献   

5.
We performed, using an all-atom force field, molecular dynamics computer simulations to study the binding of melittin to the POPC bilayer and its subsequent reorientation in this bilayer. The binding process involves a simultaneous folding and adsorption of the peptide to the bilayer, followed by the creation of a "U shaped" conformation. The reorientation of melittin from the parallel to the perpendicular conformation requires charged residues to cross the hydrophobic core of the bilayer. This is accomplished by a creation of defects in the bilayer that are filled out with water. The defects are caused by peptide charged residues dragging the lipid headgroup atoms along with them, as they reorient. With increased concentration of melittin water defects form stable pores; this makes it easier for the peptide N-terminus to reorient. Our results complement experimental and computational observations of the melittin/lipid bilayer interaction.  相似文献   

6.
Melittin has been found to interact with troponin C with high affinity in the presence of Ca2+. The association constant approaches in magnitude that for melittin and calmodulin. The interaction results in a shift to lower wavelengths of the emission band of Trp-19 of melittin and in an increased shielding of Trp-19 from quenching. A major increase occurs in the α-helical content of combined melittin. Formation of the complex inhibits tryptic hydrolysis of the connecting strand. The properties of fluorescent labels attached to Met-25 and to AEDANS-98 are altered as a result of the interaction. It is concluded that the combined melittin makes extensive contact with the connecting strand and adjacent portions of the N- and C-terminal lobes.  相似文献   

7.
The role of the surface polymer brush of nonionic surfactant vesicles (NSV) in inhibiting interactions with small membrane-perturbing molecules was investigated using the bee venom peptide melittin as a probe. The interaction between melittin and NSV was compared with that of distearoylphosphatidylcholine (DSPC) vesicles and sterically stabilised liposomes (SSL) containing 5 mol% pegylated distearoylphosphatidylethanolamine (DSPE.E44). The degree of melittin interaction with the various vesicles was determined by measuring peptide binding and folding, using intrinsic tryptophan fluorescence and circular dichroism respectively, in addition to monitoring the release of encapsulated carboxyfluorescein dye. NSV composed of 1,2-di-O-octadecyl-rac-glyceryl-3-(ω-dodecaethylene glycol) (2C18E12) showed a strong affinity for melittin, whilst exhibiting ~ 50% less bound peptide than SSL. 2C18E12:Chol vesicles showed reduced melittin interaction, in a manner consistent with Chol incorporation into DSPC vesicles. These results are discussed with respect to the effect of Chol on the in-plane order of 2C18E12 bilayers and consequent attenuation of hydrophobic interactions with the peptide. NSV formed from equimolar mixtures of polyoxyethylene-n-stearoyl ethers C18E2 and C18E20 showed a greater interaction with melittin than 2C18E12. However, replacing C18E20 with C18E10 was sufficient to achieve an attenuation of melittin interaction similar to that observed in 2C18E12:Chol vesicles. This indicates that the presence of surface polymer brush alone may confer resistance to melittin, provided hydrophobic interactions between the peptide and the vesicles can be minimised, through improved in-plane bilayer order.  相似文献   

8.
The small-angle neutron scattering (SANS) data of 12 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dispersions at low lipid concentration (1 mg per 100-mg heavy water) prepared by 5, 9 and 29 extrusions through filters of pores with 50, 100, 200 and 400 nm diameter are presented. They were analyzed within a theory that permits the determination of both structural and hydration parameters of the bilayers as well as the portions of multilamellar vesicles in dispersions with negligible long-range order between the vesicles. The scattering length density profile across the bilayers is approximated by assuming a central hydrocarbon core surrounded by a water-accessible coat. It is modeled by two different forms of functions. In the boat model, the scattering length density of the coat changes linearly from core to water, whereas in the strip model it is constant across the water-accessible coat. It was found that the boat model reflects the reality better than the strip model. The decrease of the multilamellar vesicle portions, either with increasing the number of extrusions at same filter size and with decreasing the filter size, was characterized quantitatively.  相似文献   

9.
Melittin (MLT), the 26-residue toxic peptide from the European honeybee Apis mellifera, is widely used for studying the principles of membrane permeabilization by antimicrobial and other host-defense peptides. A striking property of MLT is that its ability to permeabilize zwitterionic phospholipid vesicles is dramatically reduced upon the addition of anionic lipids. Because the mechanism of permeabilization may be fundamentally different for the two types of lipids, we examined MLT-induced release of entrapped fluorescent dextran markers of two different molecular masses (4 and 50 kDa) from anionic palmitoyloleoylphosphatidylglycerol (POPG) vesicles. Unlike release from palmitoyloleoylphosphatidylcholine (POPC) vesicles, which is highly selective for the 4 kDa marker, implying release through pores of about 25 A diameter [Ladokhin et al., Biophys. J. 72 (1997) 1762], release from POPG vesicles was found to be non-selective, i.e., 'detergent-like'. Oriented circular dichroism measurements of MLT in oriented POPG and POPC multilayers disclosed that alpha-helical MLT can be induced to adopt a transbilayer orientation in POPC multilayers, but not in POPG multilayers. The apparent inhibition of MLT permeabilization by anionic membranes may thus be due to suppression of translocation ability.  相似文献   

10.
The interaction of bee melittin with lipid bilayer membranes   总被引:8,自引:0,他引:8  
The influence of melittin and the related 8-26 peptide on the stability and electrical properties of bilayer lipid membranes is reported. Melittin, unlike the 8-26 peptide, has a dramatic influence on lipid membranes, causing rupture at dilute concentrations. The circular dichroism of melittin demonstrated that under physiological conditions, in water, melittin is in extended conformation, which is enhanced in aqueous ethanol. However in 'membrane-like' conditions it is essentially alpha-helical. Secondary structure predictions were used to locate possible alpha-helical nucleation centres and a model of melittin was built according to these predictions. It is postulated that melittin causes a wedge effect in membranes.  相似文献   

11.
12.
Melittin free of phospholipase A2 was prepared. In the absence of salt this highly pure protein starts to aggregate in solution at a protein concentration of Cp greater than 10(-3) M. In high salt solution (2 M) aggregation starts at Cp greater than 10(-6) M. This was determined from the blue shift of the intrinsic fluorescence of the protein. Reinvestigation of the quenching behaviour clearly shows that self-aggregation cannot be deduced from quenching experiments using nitrate or 2,2,6,6-tetramethylpiperidine-1-oxyl as quencher. The incorporation of melittin into phosphatidylcholine bilayer vesicles was studied by fluorescence quenching and by energy-transfer experiments using 2- and 6-anthroyloxypalmitic acid as acceptor and peptide tryptophan as donor. Incorporation of melittin into small unilamellar vesicles was found to be reduced below the lipid phase transition temperature, Tt, whereas it incorporates and distributes more randomly above Tt. Cooling the temperature below Tt after incubation at T greater than Tt leads to a deeper incorporation of the peptide into the lipid bilayer due to electrostatic interaction between the lipid phosphate groups and the positively charged amino acids. This stabilizing effect is lost above Tt and melittin is extruded to the polar phase. Quenching experiments support this finding. EPR measurements clearly demonstrate that even in the presence of high amounts of melittin up to 10 mol% with respect to the lipid broadening of the phase transition curves was only observed with fatty acid spin labels, where the doxyl group is localized near the bilayer surface. The order degree of the inner part of the bilayer remains almost unchanged even in the presence of high melittin content.  相似文献   

13.
Kinetics of melittin binding to phospholipid small unilamellar vesicles   总被引:2,自引:0,他引:2  
We have used the decrease in the fluorescence intensity of the single tryptophan residue of bee venom melittin at long emission wavelengths that accompanies binding of the peptide to phospholipid small unilamellar vesicles to determine the rate of binding through the use of stopped-flow fluorometry in the millisecond range. We have found the rate to depend on the degree of saturation of the lipid acyl chains as well as on the physical state of the bilayer, the net electric charge of the polar headgroups, and the lipid-to-melittin molar ratio R. For zwitterionic lipids (i) the binding process is found to exhibit negative cooperativity, and (ii) the rate-limiting step appears to be penetration of the protein into the hydrophobic region of the bilayer. For negatively charged lipids the results show that binding is a very fast process that seems to be electrostatic in nature.  相似文献   

14.
The fluorescence spectra of the single tryptophan residue of melittin in 0.15 M potassium phosphate solution and when bound to egg phosphatidylcholine bilayer liposomes practically coincide and exhibit a large blue shift relative to that in aqueous solution. The rotational correlation time of the protein increases substantially in the salt solution relative to that in aqueous solution. It is inferred that the protein binds to the phospholipid in an aggregated form, most probably as a tetramer.  相似文献   

15.
The interaction of melittin with calmodulin and its tryptic fragments   总被引:4,自引:0,他引:4  
Melittin has been found to interact with both the N- and C-terminal half-molecules of calmodulin, as well as the intact molecule, in the presence of Ca2+. The interaction results in a major change in the microenvironment of Trp-19, which is in a more nonpolar, solvent-shielded, and immobilized microenvironment in the complex. The properties of Tyr-99 and Tyr-138 of calmodulin are altered by complex formation. From measurements of the efficiencies of radiationless energy transfer from Trp-19 to the nitro derivatives of Tyr-99 and/or Tyr-138, it is concluded that Trp-19 is located in proximity to the C-terminal lobe of calmodulin in the complex.  相似文献   

16.
Melittin differentially slowed down the fast (M412f) and the slow (M412s) decay components of the photocyde intermediate M of trimeric bacteriorhodopsin in purple membrane while it accelerated the M412s of Triton X-100-solubilized bacteriorhodopsin monomers. Raising the bulk pH could enhance the effect of melittin on the M412s of bacteriorhodopsin in these two states. From pH 5.5 to 8.8, melittin slightly influenced the yield of intermediate M in purple membrane, whereas the yield of M412s decreased and subsequently reversed with the addition of melittin. Moreover, the monomeric bacteriorhodopsin bleached more readily in the presence of melittin and the higher pH made the bleaching effect of melittin more intensive as well. These results re-certify our former suggestions that there was electrostatic interaction between melittin and bacteriorhodopsin, and indicate that the biphasic M decay may not result from the well-known linear kinetic scheme (M→N →BR). At last the mechanisms underlying the interact  相似文献   

17.
The interaction of two types of vesicle systems was investigated: micrometer-sized, giant unilamellar vesicles (GUVs) formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and submicrometer-sized, large unilamellar vesicles (LUVs) formed from oleic acid and oleate, both in a buffered aqueous solution (pH 8.8). Individual POPC GUVs were transferred with a micropipette into a suspension of oleic acid/oleate LUVs, and the shape changes of the GUVs were monitored using optical microscopy. The behavior of POPC GUVs upon transfer into a 0.8 mM suspension of oleic acid, in which oleic acid/oleate forms vesicular bilayer structures, was qualitatively different from the behavior upon transfer into a 0.3 mM suspension of oleic acid/oleate, in which oleic acid/oleate is predominantly present in the form of monomers and possibly non-vesicular aggregates. In both cases, changes in vesicle morphology were observed within tens of seconds after the transfer. After an initial increase of the vesicle cross-section, the vesicle started to evaginate, spawning dozens of satellite vesicles connected to the mother vesicle with narrow necks or tethers. In 60% of the cases of transfer into a 0.8 mM oleic acid suspension, the evagination process reversed and proceeded to the point where the membrane formed invaginations. In some of these cases, several consecutive transitions between invaginated and evaginated shapes were observed. In the remaining 40% of the cases of transfer into the 0.8 mM oleic acid suspension and in all cases of vesicle transfer into the 0.3 mM oleic acid suspension, no invaginations nor subsequent evaginations were observed. An interpretation of the observed vesicle shape transformation on the basis of the bilayer-couple model is proposed, which takes into account uptake of oleic acid/oleate molecules by the POPC vesicles, oleic acid flip-flop processes and transient pore formation.  相似文献   

18.
The interaction between the pore-forming peptide melittin (MLT) and giant phospholipid vesicles was explored experimentally. Micromanipulation and direct optical observation of a vesicle (loaded with sucrose solution and suspended in isomolar glucose solution) enabled the monitoring of a single vesicle response to MLT. Time dependences of the vesicle size, shape and the composition of the inner solution were examined at each applied concentration of MLT (in the range from 1 to 60 μg/ml). The response varied with MLT concentration from slight perturbation of the membrane to disintegration of the vesicle. A model for MLT-vesicle interaction is proposed that explains the observed phenomena in the entire span of MLT concentrations and is consistent with deduced underlying mechanisms of MLT action: trans-membrane positioning and dimerization of MLT, the lipid flow from the outer to the inner membrane leaflet induced by MLT translocation, formation of pores and the consequent transport of small molecules through the membrane. The results of the theoretical analysis stress the role of dimers in the MLT-membrane interaction and demonstrate that the MLT-induced membrane permeability for sugar molecules in this experimental set-up depends on both MLT concentration and time.  相似文献   

19.
The interaction between the pore-forming peptide melittin (MLT) and giant phospholipid vesicles was explored experimentally. Micromanipulation and direct optical observation of a vesicle (loaded with sucrose solution and suspended in isomolar glucose solution) enabled the monitoring of a single vesicle response to MLT. Time dependences of the vesicle size, shape and the composition of the inner solution were examined at each applied concentration of MLT (in the range from 1 to 60 microg/ml). The response varied with MLT concentration from slight perturbation of the membrane to disintegration of the vesicle. A model for MLT-vesicle interaction is proposed that explains the observed phenomena in the entire span of MLT concentrations and is consistent with deduced underlying mechanisms of MLT action: trans-membrane positioning and dimerization of MLT, the lipid flow from the outer to the inner membrane leaflet induced by MLT translocation, formation of pores and the consequent transport of small molecules through the membrane. The results of the theoretical analysis stress the role of dimers in the MLT-membrane interaction and demonstrate that the MLT-induced membrane permeability for sugar molecules in this experimental set-up depends on both MLT concentration and time.  相似文献   

20.
Addition of an amphipathic bee venom peptide, melittin, to sarcoplasmic reticulum (SR) vesicles isolated from rabbit skeletal muscles resulted in a fast (<1 min) blue shift in the fluorescence maximum of the melittin--SR membrane complex. Over the following 45 min the position of the fluorescence maximum did not change, but the fluorescence intensity of the melittin--SR membrane complex decreased by approximately 35% with rate constant 0.14 min-1. Melittin rapidly quenched the isotropic signal in the EPR spectrum of spin-labeled stearic acid added to SR membranes. Further changes in the spectral parameters of the spin probe bound to SR membranes in the presence of melittin indicated an increase of the viscosity of the probe microenvironment (empiric parameter T/eta was decreased by approximately 35% with rate constant 0.11 min-1). The surface potential of SR membranes measured using a pH-sensitive dye, neutral red, decreased after melittin addition from -60 to -30 mV. It was demonstrated with the use of a cross-linking agent, cupric o-phenanthroline, that melittin induced slow aggregation of Ca-ATPase protein in SR membranes; the content of enzyme in the monomeric form decreased with rate constant 0.14 min-1. It is concluded that melittin binds rapidly to SR membranes, inducing slow changes in Ca-ATPase conformation and oligomeric state as well as structural transitions in the lipid bilayer of SR membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号