首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several deciduous woody plant species produce anthocyanins during leaf development in spring and again during leaf senescence in autumn. The leaves of Betula pendula Roth (silver birch) commonly exhibit transient reddening in juvenile leaves under northern growing conditions, with the intensity of the red colour varying among individual trees. The objective of our study was to test the hypothesis that the accumulation of foliar anthocyanins during spring in leaves of B. pendula is an ecotypic response. Chlorophyll fluorescence ratio (Fv/Fm), leaf reflectance and anthocyanin concentrations were measured, in relation to phenology in spring, summer and autumn from birches used for landscaping with either red or green-emergent leaves. The results suggest that (1) the trees with green- or red-emergent juvenile leaves represent different populations, and (2) that the red-emergent leaves senesced earlier, indicating that (3) trees with red-emerging leaves belong to a more northern ecotype than the trees with green-emerging leaves. The role of anthocyanin synthesis in a northern radiation environment is discussed.  相似文献   

2.
We studied the effects of epiphytic and endophytic phyllosphere fungi and pathogenic birch rust fungus infection of mountain birch Betula pubescens ssp czerepanovit trees on the larval performance of leaf beetle Phratora potaris We assessed the effects of epiphytic fungi by growing larvae on leaves from trees with manipulated fungal densities We also monitored larval perfonnance and endophytic fungal densities among tree groups classified by herbivory or rust fungus densities The differences in expenmentally manipulated epiphytic fungal densities did not affect larval relative growth rates (RGR) of the species, instead we found significant tree effects Phratora polaris RGR was higher on trees with high level of herbivory than on trees with low herbivory, nevertheless, endophyte densities between these groupings did not differ In the rust fungus expenment, P polarts performance was lowest on trees with low infection compared to no and high infection trees We also did not find correlations among tree-specific endophyte densities and P polaris performance on high and low herbivory trees and trees classified by rust fungus infection Although antagonism among fungi and induction of tree defences cannot be excluded, we suggest that epiphytic and endophytic fungi of mountain birch have negligible effects on P polaris larval performance under natural conditions, probably due to mountain birch variability and a loose ecological connection between mountain birch and its epi- and endophytes Mountain birch and pathogenic birch rust have a more tightly linked relationship, which may also affect insect herbivores Still, leaf properties may play an important role and the effects will depend on the relative timing of the rust infection, herbivore development and changes in leaf quality  相似文献   

3.
Winter browsing by mammalian herbivores is known to induce a variety of morphological and physiological changes in plants. Browsing has been suggested to decrease the carbohydrate reserves in woody plants, which might lead to reduced tannin production in leaves during the following summer, and consequently, to increased herbivore damage on leaves. We conducted a clipping experiment with mature mountain birch trees and measured the effects of clipping on birch growth, leaf chemistry and toughness, as well as on the performance of insect herbivores. Leaves grew larger and heavier per unit area in the clipped ramets and had a higher content of proteins than leaves in the control trees. Clipping treatment did not affect the total content of sugars in the leaves (mg g?1), suggesting that a moderate level of clipping did not significantly reduce the carbohydrate pools of fully‐grown mountain birch trees. Furthermore, the contents of proanthocyanidins (condensed tannins) and gallotannins were slightly higher in the leaves of clipped ramets, contrary to the hypothesis of reduced tannin production. The effects of clipping treatment on leaf and shoot growth and on foliar chemistry were mainly restricted to the clipped ramets, without spreading to untreated ramets within the same tree individual. The effects of clipping on leaf characters varied during the growing season; for instance, leaf toughness in clipped ramets was higher than toughness in control trees and ramets only when leaves were mature. Accordingly, clipping had inconsistent effects on insect herbivores feeding at different times of the growing season. The generally small impact of clipping on herbivore performance suggests that the low intensity of natural browsing at the study area, simulated by our clipping treatment, does not have strong consequences for the population dynamics of insect herbivores on mountain birch via enhanced population growth caused by browsing‐induced changes in food quality.  相似文献   

4.
Seasonal trends in five traits of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula allegheniensis Britt.) leaves thought to influence feeding by herbivores were measured from 17 May through 19 September, 1979. Total nitrogen and water contents declined and toughness increased through the growth season. These seasonal changes were more pronounced in sugar maple than in yellow birch. Total polyphenol contents and tanning coefficients of leaf extracts from both species reached a season high by the end of May and changed very little after that date; these patterns differ from those reported by several other investigators. Sugar maple leaf extracts exhibited much higher tanning coefficients than did those of yellow birch, a finding which is consistent with current plant defense theory. Significant differences in total polyphenol content and tanning coefficients were found between individual trees in yellow birch, but not sugar maple. The relationship between successional status, leaf quality traits, and variability in these traits in forest trees is discussed.  相似文献   

5.
S. Hanhimäki  J. Senn 《Oecologia》1992,91(3):318-331
Summary Studies on rapidly inducible resistance in trees against insect herbivores show substantial variation in the strength of responses. Here we report the results of a study which examined causes of this variation. We bioassayed the quality of leaves of two developmental phases (young vs. mature) of the mountain birch Betula pubescens ssp. tortuosa by measuring the growth of two instars of Epirrita autumnata larvae. We used only short shoot leaves from trees of a natural stand, uniform in size and age. Damage was caused by larvae and artificial tearing of leaf lamina, varying the scale and time. We separated seasonal changes in plants from instar-dependent effects of the animals by testing experimental larvae in two subsequent growth trials. We found that only larval-made damage induced responses in leaves that made the leaves significantly poorer quality for the test larvae. Artificial damage induced only weak responses, and artificial canopy-wide damage even caused slight improvement of leaf quality. Cumulative leaf damage did not strengthen birch responses. Leaves that were in the expansion phase responded to damage while fully-expanded, mature leaves showed no response. The pattern of responses indicated that there might be physiological constraints: small-scale damage induced resistance against the larvae but largescale damage did not. Prevalent weather conditions might have modified these responses. Larvae of two instars and sexes, of low- and high-density populations responded to leaf damage similarly. However, prior experience of larvae with the host plant may have affected subsequent larval performance. Variation in rapidly inducible responses in birches was caused by plant characters rather than by test animals.  相似文献   

6.
《Biological Control》2001,20(1):16-22
Numbers of ants moving on trunks of oak trees and successive visits of workers of the forest ant Formica neogagates Emery to leaves of black birch trees were recorded in the forest. Ants were found to search systematically because they tended to move in the same direction on a twig before and after visiting a leaf. However, many leaves were skipped, and the probability of visiting an encountered leaf was about 0.5. Data were used to develop a computer model of ant foraging on leaves and twigs of trees. It was found that reasonable model outputs of numbers of leaves skipped between visits and the number of new leaves visited, as the total number of visits increased, could be obtained only if ants were assumed to partially avoid leaves that they had previously visited. Model results implied that 100 ants in a tree foraging for about 3 h should be able to visit about one quarter of the leaves in a tree.  相似文献   

7.
Within-tree variability in leaf characteristics of the mountain birch (Betula pubescens ssp. tortuosa) was bioassayed for the autumnal moth (Epirrita autumnata) by rearing larvae on birch leaves in a laboratory and measuring their growth, consumption rate, approximate digestibility, efficiency of conversion of ingested food and efficiency of conversion of digested food. Only short shoot leaves, i.e. leaves of the same age, were used. The highest hierarchical level, which included trees and ramets within trees, accounted for most of the total variance in almost all the measured traits. Short shoots (within branches) accounted for more of the variance than branches (within trees/ramets) in most of the traits. The results suggest that differences in leaf quality were reflected in larval growth mainly by differences in food utilization efficiencies (postingestive effects) and less by differences in consumption rate (preingestive effects). The observed within-tree variation is probably a consequence of the modular structure, sectoriality and partial functional independence of tree parts.  相似文献   

8.
In birch, Betula pubescens, herbivore-induced delayed induced resistance (DIR) of defoliated trees may cause a strong reduction in the potential fecundity of a geometrid folivore Epirrita autumnata. In this study, we examined the biochemical basis of DIR in birch leaves during a natural outbreak of E. autumnata. A set of experimental trees was defoliated at four sites by wild larvae in the peak year of the outbreak, whereas control trees were protected from defoliation by spraying with an insecticide. The biochemical composition of leaves was analysed in the following year and, although the DIR response was weak during this outbreak, causing less than a 20% reduction in the potential fecundity of E. autumnata, some consistent relationships between defoliation, biochemistry and pupal mass of E. autumnata suggested a general biochemical basis for the defoliation-induced responses in birch leaves. Total concentrations of nitrogen, sugars and acetone-insoluble residue (e.g. cell wall polysaccharides, cell-wall-bound phenolics, protein, starch, lignin and hemicellulose) were consistently lower, and total concentrations of phenolics, especially of gallotannins and soluble proanthocyanidins, were higher in the leaves of trees defoliated in the previous year than in those protected from defoliation. The capacity of tannins to precipitate proteins correlated with contents of gallotannins, and was highest in defoliated trees. The pupal mass of E. autumnata showed a strong, positive correlation with concentrations of nitrogen and sugars, and a negative correlation with the acetone-insoluble residue and gallotannins in foliage. Correlations with other measured biochemical traits were weak. The correlation coefficients between biochemical traits and pupal mass consistently had similar signs for both defoliated and insecticide–sprayed trees, suggesting that variation in leaf quality due to defoliation in the previous year was based on similar biochemical traits as variation for other reasons. We suggest that DIR is associated with reduced growth activity of leaves, and may be seen as a delay in the biochemical maturation of leaves in defoliated trees. This explains the high concentration of gallotannins in defoliated trees, a characteristic feature of young leaves. However, the lower content of nitrogen and the higher content of soluble proanthocyanidins in defoliated trees are traits usually characterising mature, not young, leaves, indicating defoliation-induced changes in chemistry in addition to modified leaf age. Our results emphasise the importance of understanding the natural changes in chemistry during leaf maturation when interpreting defoliation-induced changes in leaf biochemistry. Received: 26 January 1998 / Accepted: 10 April 1998  相似文献   

9.
In this study we tested the effects of rapid induced resistance of the silver birch, Betula pendula, on the performance and immune defense of the gypsy moth, Lymantria dispar. We also measured the effects of defoliation on the concentrations of plant secondary metabolites, particularly on phenolics and terpenoids. It was found that severe natural defoliation (by moth larvae) of silver birch led to an increase in lipophilic flavonoids on the leaf surface. The concentration of some simple phenolics and monoterpenes (linalool and geraniol) also increased, while that of several glycosides of quercetin decreased. The female pupal weights and survival rates of moths decreased, and larval development time increased, when the insects fed on defoliated trees. However, the feeding of caterpillars with the leaves of defoliated trees led to an increase in lysozyme-like activity in their hemolymph, with an increase in their ability to encapsulate potential parasites. Our data show that the silver birch deploys a rapid chemical defense against gypsy moth larvae. We suggest that lipophilic flavonoids are important compounds in the direct silver birch defense against L. dispar caterpillars. The increased strength of immune defense of insects exposed to trees that had deployed a rapid induced resistance may be an adaptation of the herbivores to resist the rising density of parasites when host population density is high.  相似文献   

10.
2006年5月于吉林省抚松县露水河林业局实验林场布设了人工模拟氮沉降控制试验,共设置3个氮(N)添加梯度,分别为对照(CK 0 g·N·m-2·a-1)、低N(LN 2.5 g·N·m-2·a-1)和高N(HN 5.0 g·N·m-2·a-1),旨在探讨N沉降对天然次生林先锋树种白桦(Betula platyphylla)和山杨(Populus davidiana)鲜叶、凋落叶化学计量特征、养分重吸收的影响,以及鲜叶光合特性的变化和各性状之间的相互关系。结果表明:(1)模拟N沉降处理下白桦、山杨鲜叶的C含量较对照均无显著影响,LN处理显著降低了山杨鲜叶N、P含量(P<0.05),显著增加了C:N、C:P和N:P(P<0.05);HN处理显著增加了白桦鲜叶N含量和N:P,显著降低了C:N(P<0.05)。(2)白桦、山杨鲜叶N、P重吸收率在两个梯度N添加下均显著下降(P<0.05),且均为负值。山杨鲜叶N重吸收率与P重吸收率呈显著正相关关系(P<0.05),与鲜叶C:N呈显著负相关关系(P<0.05)。(3)N添加可以提高2种树木叶片氮素光合利用效率(PNUE)(P<0.05)、净光合速率(Pn)(P<0.05)。白桦鲜叶N含量与Pn、PNUE呈显著正相关(P<0.05);白桦、山杨鲜叶比叶重(LMA)与N含量呈显著负相关(P<0.05);Pn与PNUE呈显著正相关(P<0.05)。本试验研究表明:在生长季,白桦、山杨鲜叶中N、P均表现为富集状态,土壤养分及外源N可供林木较快吸收并促进其生长,无需从凋落叶中吸收养分。N添加可以增强白桦、山杨鲜叶的光合性能,进而促进植物养分吸收和叶片发育。HN对长白山天然次生林的生长有促进作用。  相似文献   

11.
ELISA detected cherry leaf roll virus (CLRV) in infected birch leaf sap diluted 1/320 in buffer, in extracts of one infected leaf with nine healthy leaves and in leaf sap frozen for 2 wk. Similarly, ELISA detected CLRV in mixtures of one infected bud with four virus-free buds. Intensive bioassays and ELISA showed that in some trees CLRV was restricted to only a few branches whereas in others it occurred throughout the tree. The prevalence of CLRV in unmanaged birch populations in Britain was less (3%) than in Midlands street trees (17%). In CLRV-free birch trees that received pollen from infected ones, ELISA indicated that antigen was introduced into, and multiplied within, the embryos but not the seed coat or the pericarp/wings. In one instance, antigen was detected in a branch of an experimentally pollinated tree but not in those parts of the crown that had been exposed to open pollination. The proportion of seed germinating after crosses in which both parents were CLRV-free was greater than when either or both parents were infected but the largest difference occurred with infection in the female parent. Few embryos seemed to escape invasion with CLRV when the maternal tissue was naturally infected. Overall, seed transmission ranged between 0 and 38% (mean 17%) when only females in a cross were infected, and between 11 and 75% (mean 30%) when only the males were infected. Assuming no selective advantage that would help infected plants to achieve reproductive age, we found that CLRV would be lost from a birch population within two generations if transmitted only through seed. Embryos in seeds from CLRV-infected birch that received CLRV-free pollen differed from their healthy counterparts in being shrunken and suspended in a loosely fibrillar matrix that contained numerous virus-like particles in tubular inclusions. In two trees, CLRV-free pollen tended to fertilise a greater percentage of ovules than did CLRV-infected pollen. Seedlings derived from infected seed and cuttings from naturally-infected trees grew less rapidly than their healthy counterparts. In still air, most birch pollen liberated from a height of 3·5 m fell within 3 m of the drop zone and none was detected 10 m from the source. Field observations on the patterns of virus spread as measured by seedling infection were consistent; about 3% of seedlings from a tree 6·9 m away from the nearest source of inoculum were infected but no infected seedlings were detected in more distant trees, even though each was experimentally infectible with CLRV and pollen from the infected tree germinated on their stigmas.  相似文献   

12.
Due to rapidly changing physical and biochemical characteristics of growing leaves, correlations between traits of foliage biochemistry and the performance indices of flush feeding herbivores may vary considerably following relatively minor changes in experimental conditions. We examined the effects of the seasonal and inter-tree variation of a comprehensive array of biochemical compounds on the success of an early season geometrid, Epirrita autumnata, feeding on maturing foliage of mountain birch, Betula pubescens ssp. czerepanovii. We monitored the concentrations of individual phenolics, sugars, total nitrogen, nitrogen of proteins, and nitrogen of soluble compounds, water and acetone-insoluble residue. Simultaneously we recorded larval consumption, physiological performance, growth, and pupal mass of E. autumnata. We found significant phenological changes in almost all leaf traits measured. In bioassays with half-grown leaves, leaf gallotannin concentrations showed a nonlinear effect: in trees with high foliar gallotannin concentrations (over 10 mg g−1), physiological performance was strongly reduced by high gallotannin concentrations. In trees with lower gallotannin concentrations, on the other hand, larval growth was reduced by soluble proanthocyanidins, not gallotannins. Differences between high and low gallotannin trees largely depended on phenology, i.e., on the age of leaves. However, not all the differences in leaf traits between late (with high gallotannin concentrations at the time of the bioassay) and early flushing trees disappeared with leaf maturation, indicating that there is also phenology-independent variance in the tree population. In the full-grown leaves of all the study trees, low concentrations of water and of nitrogen of proteins (but not nitrogen of soluble compounds) were the main factors reducing pupal masses of E. autumnata, while neither gallotannin nor proanthocyanidins now played a significant role. The observed change in the factors underlying leaf quality (from gallotannins and proanthocyanidins to nitrogen and water) relate to the activity of the shikimate pathway and the formation of cell walls: gallotannins and proanthocyanidins are both produced in the pathway, and these tannins are assumed to contribute – via binding into cell walls – to tough and durable cell walls. Interestingly, low quality of leaves did not automatically translate into low foliar consumption (i.e., benefits to the tree). On the trees with young, high gallotannin leaves, larvae actually increased consumption on low quality foliage. In the group of trees with slightly more developed, low gallotannin leaves, the quality of leaves did not clearly modify amounts consumed. In full-grown leaves, low leaf quality strongly reduced leaf consumption. These results emphasize the strong influence of tree phenology on the relationships between biochemical compounds and the herbivore. Received: 30 November 1998 / Accepted: 1 March 1999  相似文献   

13.
Red autumn colouration of trees is the result of newly synthesized anthocyanin pigments in senescing autumn leaves. As anthocyanin accumulation is costly and the trait is not present in all species, anthocyanins must have an adaptive significance in autumn leaves. According to the coevolution hypothesis of autumn colours, red autumn leaves warn herbivorous insects – especially aphids that migrate to reproduce in trees in the autumn – that the tree will not be a suitable host for their offspring in spring due to a high level of chemical defence or lack of nutrients. The signalling allows trees to avoid herbivores and herbivores to choose better host trees. In this study the coevolution hypothesis was tested with four deciduous tree species that have red autumn leaf colouration – European aspen (Populus tremula L.) (Salicaceae), rowan (Sorbus aucuparia L.) (Rosaceae), mountain birch [Betula pubescens ssp. czerepanovii (NI Orlova) Hämet‐Ahti], and dwarf birch (Betula nana L.) (Betulaceae), and with two generalist herbivores, the autumnal moth [Epirrita autumnata (Borkhausen)] and the winter moth [Operophtera brumata (L.)] (both Lepidoptera: Geometridae). Anthocyanin concentrations of autumn leaves were determined from leaf samples and the growth performance parameters of the moth larvae on the study trees were measured in the spring. Trees with higher anthocyanin concentration in the autumn were predicted to be low‐quality food for the herbivores. Our results clearly showed that anthocyanin concentration was not correlated with the growth performance of the moths in any of the studied tree species. Thus, our study does not support the coevolution hypothesis of autumn colours.  相似文献   

14.
Summary At Holme Fen Nature Reserve, two sample trees were felled in each of nine, natural birch stands representing an age series of from 6 to 55 years. Data are given of the weights of leaves, branches, boles and in some cases of roots for the sample trees and the growing stock. Estimates of the gross production of dry matter by birch are given after allowing for the death of suppressed trees and leaf falletc. Attention is drawn to the fundamental differences between the productive capacities of natural birch stands and plantations of evergreen conifers such asPinus sylvestris.  相似文献   

15.
16.
Herbivory can influence ecosystem productivity, but recent evidence suggests that damage by herbivores modulates potential productivity specific to damage type. Because productivity is linked to photosynthesis at the leaf level, which in turn is influenced by atmospheric CO(2) concentrations, we investigated how different herbivore damage types alter component processes of photosynthesis under ambient and elevated atmospheric CO(2). We examined spatial patterns in chlorophyll fluorescence and the temperature of leaves damaged by leaf-chewing, gall-forming, and leaf-folding insects in aspen trees as well as by leaf-chewing insects in birch trees under ambient and elevated CO(2) at the aspen free-air CO(2) enrichment (FACE) site in Wisconsin. Both defoliation and gall damage suppressed the operating efficiency of photosystem II (ΦPSII) in remaining leaf tissue, and the distance that damage propagated into visibly undamaged tissue was marginally attenuated under elevated CO(2). Elevated CO(2) increased leaf temperatures, which reduced the cooling effect of gall formation and freshly chewed leaf tissue. These results provide mechanistic insight into how different damage types influence the remaining, visibly undamaged leaf tissue, and suggest that elevated CO(2) may reduce the effects of herbivory on the primary photochemistry controlling photosynthesis.  相似文献   

17.
Effect of strong (75%) and complete (100%) artificial defoliation of weeping birch Betula pendula Roth on the dynamics of soluble sugars and phenols—flavonols, catechins, and tannins in leaves of damaged plants was investigated. Within the first 15 days after strong defoliation of birch, no changes were found in leaf contents of flavonol, catechin, and tannin. The concentration of sugars first increased but, on the 10th day after defoliation, it returned to the normal level. One year after strong defoliation, the lead concentrations of catechins and tannins in damaged trees increased, while the concentrations of flavonols and sugars did not differ from that in leaves of control trees. In two years after strong damage, the increased concentration of tannins was retained, while catechins and sugars remained at the control level. One year after complete (100%) artificial defoliation, the leaf concentrations of flavonols and sugars in damaged plants did not differ from that in control plants, while the leaf concentrations of catechins and tannins exceeded those in control plants. Two years after complete damage, the leaves contained an increased amount of tannins, whereas the amounts of catechins, flavonols, and sugars did not differ from the control levels.  相似文献   

18.
Accelerated leaf senescence is one of the harmful effects of elevated tropospheric ozone concentrations ([O(3)]) on plants. The number of studies dealing with mature forest trees is scarce however. Therefore, five 66-year-old beech trees (Fagus sylvatica L.) have been exposed to twice-ambient (2xambient) [O(3)] levels by means of a free-air canopy O(3) exposure system. During the sixth year of exposure, the hypothesis of accelerated leaf senescence in 2xambient [O(3)] compared with ambient [O(3)] trees was tested for both sun and shade leaves. Chlorophyll (chl) fluorescence was used to assess the photosynthetic quantum yield, and chl fluorescence images were processed to compare functional leaf homogeneity and the proportion of O(3)-injured leaf area (stipples) under ambient and 2xambient [O(3)] regimes. Based on the analysis of chl fluorescence images, sun leaves of both ambient and 2xambient [O(3)] trees had apparently developed typical necrotic O(3) stipples during high O(3) episodes in summer, while accelerated senescence was only observed with sun leaves of 2xambient [O(3)] trees. This latter effect was indicated along with a faster decrease of photosynthetic quantum yield, but without evidence of changes in non-photochemical quenching. Overall, treatment effects were small and varied among trees. Therefore, compared with ambient [O(3)], the consequence of the observed O(3)-induced accelerated leaf senescence for the carbon budget is likely limited.  相似文献   

19.
A non-native invasive sawfly, the amber-marked birch leaf miner Profenusa thomsoni (Konow), was first detected in south-central Alaska in 1996 and is now widely distributed throughout urban and wild birch trees in Alaska. Impacts have been considered primarily aesthetic because leaf miners cause leaves of birch trees (Betula spp.) to senesce prematurely, but the leaf miners likely also reduce birch vigour and thereby increase susceptibility to diseases and other insects. We tested the ability of commercially available biological control agents to control P. thomsoni. The entomopathogenic fungus Beauveria bassiana (Bals.-Criv.) Vuillemin GHA strain and the entomopathogenic nematode Steinernema carpocapsae (Weiser) were applied in aqueous suspension to the soil/litter surface beneath infested birch trees in Alaska at one site in 2007 and 2008 and two sites in 2010. There was no evidence the fungus or nematode controlled P. thomsoni. Instead, there was evidence the fungus increased the density of this pest insect at two sites, likely by reducing its predators. As tested, B. bassiana and S. carpocapsae do not appear effective as biological controls of P. thomsoni.  相似文献   

20.
The phenological window of opportunity for early-season birch sawflies   总被引:1,自引:0,他引:1  
Abstract 1. The phenological window of opportunity hypothesis posits that an insect herbivore cannot survive outside a specific leaf age interval of its host plant.
2. Previous studies have shown that mountain birch displays extensive seasonal changes in leaf biochemical characteristics. Young, expanding leaves are full of water and amino acids but they also contain large amounts of protein-precipitating gallotannins as well as flavonoid-glycosides. Concentrations of these compounds decline during leaf growth whereas concentrations of sugars and proanthocyanidins and leaf toughness increase.
3. Adult birch sawflies hatch in early summer and oviposit on growing leaves, which compels larvae to feed on leaves that are already well developed. The purpose of this study was to test whether leaves that were younger and biochemically different from the leaves available under natural conditions are within the phenological window of opportunity for the larvae of two early-season birch sawfly species, Amauronematus amplus Konow and Pristiphora alpestris (Konow).
4. Amauronematus amplus larvae survived better and developed faster, and P. alpestris larvae developed faster and became bigger, on atypically young leaves compared with larvae reared on leaves encountered normally. Therefore, these species can exploit the putative nutritional superiority of very young leaves, which probably outweighs the potential impact of the new set of secondary metabolites offered to them. In conclusion, young leaves that are consumed rarely by sawfly larvae are within their phenological window of opportunity, even though the timing of sawfly life cycles constrains their utilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号