首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The observation of homolytic S---CH3 bond cleavage in (Ph2P(o-C6H4)SCH3)2Ni0 under photochemical conditions has prompted further investigation of nickel(0) complexes and their stability. Tetradentate P2S′2 donor ligands (S′ = thioether type S donor) with aromatic rings incorporated into the P to S links, Ph2P(o-C6H4)S(CH2)3S(o-C6H4)PPh2 (arom-PSSP), or the S to S links, Ph2P(CH2)2SCH2(o-C6H4)CH2S(CH2)2PPh2 (PS-xy-SP), have been used to form four-coordinate, square planar nickel(II) complexes, [(arom-PSSP)Ni](BF4)2 (2) and [(PS-xy-SP)Ni](BF4)2 (3). The bidentate and tetradentate ligands, Ph2P(o-C6H4)SCH2CH3 (arom-PSEt) and Ph2P(CH2)2S(CH2)3S(CH2)2PPh2 (PSSP), give similar complexes, [(arom-PSEt)2Ni](BF4)2 (1) and [(PSSP)Ni](BF4)2 (4), respectively. Cyclic voltammograms of the Ni11 complexes in CH3CN show two reversible redox events assigned to and . The one-electron reduction product produced by stoichiometric amounts of Cp2Co can be characterized by EPR. At 100 K rhombic signals show hyperfine coupling to two phosphorus atoms. Complete bulk chemical reduction of complexes 1, 2, 3 and 4 with Na/Hg amalgam provided the corresponding nickel(0) complexes 1R, 2R, 3R and 4R which were isolated as red solutions or solids characterized by magnetic resonance properties and reaction products. Photolysis of these nickel(0) complexes leads to S-dealkylation to produce alkyl radicals and dithiolate nickel(II) complexes. Complex 3 crystallized in the monoclinic space group P2t/c with a=20.740(5), B=9.879(3), C=17.801(4) åA, ß=92.59(2)°, V=3644(2) Å3 and Z=4; complex 4: P21/c with A=13.815(4), B=13.815(4), C=15.457(5) åA, V=3365.4(14) Å3 and Z=4.  相似文献   

2.
The reaction of dilithiated o-carborane (closo-1,2-Li2-1,2-C2B10H10) with CuCl2 gives 1,1′-bis(o-carborane) (1), 1,3′-bis(o-carborane) (2) and 1,4′-bis(o-carborane) (3). Compound 2 (C4B20H22) crystallizes in the monoclinic space group P21/n with A = 6.9275(6), B = 9.7655(8), C = 12.356(1) Å, β = 90.028(2)° and Z = 2. The structure was solved by direct methods and refined to R = 0.048 and Rw = 0.074. Compound 3 (C4B20H22) crystallizes in the orthorhombic space group P212121 with A = 6.8854(5), B = 12.523(1), C = 19.847(1) Å and Z = 4. The structure was solved by direct methods and refined to R = 0.078 and Rw = 0.091. The coupling reaction of dilithiated m-carborane (closo-1,7-Li2-1,7-C2B10H10) with CuCl2 results in the formation of 1,1′-bis(m-carborane) (4) and tetra(m-carborane) (5).  相似文献   

3.
The amino-functionalized metallocene (C5H4CH(Me)NMe2)2ZrCl2, [(CpN)2ZrCl2] was synthesized by salt metathesis of ZrCl4 and 2 equiv. of C5H4CH(Me)NMe2Li. The metallocene was obtained in good yield as a mixture of rac and meso diastereomers as established by NMR spectroscopy. The addition of 2 equiv. of n-BuLi to the metallocene (CpN)2ZrCl2 produced a co-catalyst system which was active, at a 1.0 mol% loading, in the dehydropolymerization of PhSiH3 to poly(phenylsilane), PPSi. The PPSi was obtained as a 9:1 linear–cyclic mixture (Mw=3850, Mn=2300) as established by GPC analysis; 29Si{1H} NMR spectroscopy revealed an atactic polymer microstructure.  相似文献   

4.
Reactions of dilithiated diols [HO(CH2CH2O)n+1H, n = 1, 2 and 3] with 3,5-bis(N,N-dimethylamino)-1,1-dichlorodicarbaphosphazene (1) in THF have been carried out to afford the first examples of lariat ether type cyclocarbaphosphazene derivatives (C4H8O3PN)(Me2NCN)2 (2), (C6H12O4PN)(Me2NCN)2 (3) and (C8H16O5PN)(Me2NCN)2 (4). Reaction of the tetrasodium salt of pentaerythritol with 1 and bis(morpholino)dichlorodicarbaphosphazene (1a) yielded the first examples of pentaerythritoxy-bridged cyclodicarbaphosphatriazenes [(Me2NCN)2PN(OCH2)2]2C (5) and [(OC4H8NCN)2PN(OCH2)2]2C (6). The spectral and structural properties of these compounds are determined and compared with spirocyclic 1,3-propanedioxy derivative of 1 (7) and analogous compounds of cyclophosphazenes. The crystal structures of the compounds 4, 5 and 7 are reported. In addition, complexation studies of compounds 3 and 4 with NaI, KI, AgI and CuII ions were carried out by conductance measurements. The studies indicate mostly 1:1 complex formation between the metal ions and lariat ether type cyclocarbaphosphazene derivatives.  相似文献   

5.
The triazenide complex of Pt(II) trans-(o-Tol)Pt(PEt3)2N3Ar2(1) (Ar = p-FC6H4) was synthesized by reaction of (o-Tol)Pt(PEt3)2BF4 with Ar2N3Na. The 1H, 19F and 31P NMR spectra of this complex in toluene-d8 were studied at different temperatures. Two kinds of dynamic processes were observed. The first one is the intramolecular N,N′ migration of the (o-Tol)Pt(PEt3)2 group, detected by 19F NMR. The second process, revealed by 1H, 19P NMR, is the rotation around the partially double N(2)–N(3) bond. Thermodynamic parameters for these processes were calculated from dynamic NMR spectra.  相似文献   

6.
Tricarbonyl(η6-1-oxobenzocyclobutene)chromium(0) (1) can be transformed to tricarbonyl(η6-1-endo-hydroxybenzocyclobutene) chromium(0) derivatives with substituents R (R=CH3, CH=CH2, (CH2)4CH=CH2, (CH2)4OSi(Me)2tBu) at Cl on the exo face of the complex. The relative configuration is proven by an X-ray crystal structure analysis of the trimethylsilyl ether 8 (C16H18CrO4Si: a=8.693(1), b=9.490(1), c=11.063(1) Å, =97.51(1), β=110.32(1), γ=95.38(1)°, triclinic, space group P (No.2), R=0.037, Rw=0.052 for 4609 observed reflections. Attempts directed at an intramolecular cycloaddition of the ortho-quinodimethane complex derived from 17 by anion promoted ring opening unexpectedly resulted in the formation of 12 as the product of an opening of the proximal bond of the anellated ring located between the hydroxy group and the coordinated aromatic ring in 16. The fact that the intermolecular cycloaddition reaction for 16 is possible in the presence of a dienophile is taken as evidence for an equilibrium between the alcoholate 17 and the two ring opened products 16 and 18. The proximal ring opening of 6 is not observed when the free organic ligand 21 is used as the educt. Ketone complexes 1 and 25 undergo proximal ring opening reaction when treated with alcoholate or primary amines.  相似文献   

7.
The reaction of [Re(NMe)Cl3(PPh3)2] with the pentadentate [N3S2] ligand pyN2H2S2---H2 [2,6-bis(2-mercaptophenylamino)dimethylpyridine] (1) in the presence of triethylamine did not yield the anticipated six-coordinate complex [Re(NMe)(η5-pyN2HS2)] (2), but rather resulted in cleavage of the Re(V)=NMe bond. A novel six-coordinate Re(IV) [N3S]/[NS] complex [Re(η4-SC6H4---2-NCH2---C5H3N---C=NC6H4---2-S)(η2-NHC6H4---2-S)] (4) was thus obtained with the simultaneous coordination of 2-aminothiophenol, a dianionic bidentate [NS] donor resulting from the decomposition of the parent ligand and ligand 3, a dianionic tetradentate [N3S] donor formed by partial self-condensation and subsequent oxidation of the parent ligand 1. Crystal data for 4: C25H18N4S3Re·CH2Cl2, monoclinic, space group P21/n, a=9.255(2) Å, b=11.181(2) Å, c=25.316(4) Å, β=97.434(3)°, V=2587.8(7) Å3 and Z=4.  相似文献   

8.
The thermal and photochemical reactions of CpRe(PPh3)2H4 and CpRe(PPh3)H4 (Cp = η5-C5H5) with PMe3, P(p-tolyl)3, PMe2Ph, DMPE, DPPE, DPPM, CO, 2,6-xylylisocyanide and ethylene have been examined. While CpRe(PPh3)2H2 is thermally inert, it will undergo photochemical substitution of one or two PPh3 ligands. With ethylene, substitution is followed by insertion of the olefin into the C-H bond of benzene, giving ethylbenzene. CpRe(PPh3)H4 undergoes thermal loss of PPh3, which leads to substituted products of the type CpRe(L) H4. Photochemically, reductive elimination of dihydrogen occurs preferentially. The complex trans-CpRe(DMPE)H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 6.249(6), b = 16.671(8), c = 13.867(7) Å, β = 92.11(6)°, V = 1443.7(2.9) Å and Z = 4. The complex trans-CpRe(PMe2Ph)2H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 7.467(3), b = 23.874(14), c = 11.798(6) Å, β = 100.16(4)°, V = 2070.2(3.4) Å3 and Z = 4.  相似文献   

9.
The reactivity, towards nucleophiles and electrophiles, of dimolybdenum allenylidene complexes of the type [Cp2Mo2(CO)4(μ,η2(4e)-C=C=CR1R2)] (Cp=η5-C5H5) has been investigated. The nucleophilic attacks occur at the Cγ carbon atom, while electrophiles affec the C atom. Variable temperature solution 1H NMR studies show a dynamic behavior of these complexes consisting of an equilibrium between two enantiomers with a symmetrical [Cp2Mo2(CO)4(μ-σ,σ(2e)-C=C=CR1R2)] transition state. Extended Hückel MO calculations have been carried out on the model [Cp2Mo2(CO)4(μ,η2-C=C=CH2]. The calculated charges of the allenylidene carbon atoms suggest that the electrophilic attacks are under charge control, while the nucleophilic attacks are rather under orbital control.  相似文献   

10.
Cp#2Yb (Cp#=C5H4(CH2)2NMe2) has been obtained by reaction of YbI2(THF)2 with 2 equiv. of C5H4(CH2CH2NMe2)K in THF. The X-ray structure analysis shows a bent structure with intramolecular coordination of both nitrogen atoms to ytterbium. The reaction of C60-fullerene with Cp#2Yb leads to the formation of the fullerenide derivative [Cp#2Yb]2C60, which shows an ESR signal in the solid state and in THF solution at room temperature (solid: ΔH = 50 G, G = 1.9992; solution: ΔH = 10 G, G = 2.0001) and a magnetic moment of 3.6 BM. The lutetium fullerenides CpLu(C60)(DME) (3) and Cp*Lu(C60)(DME)(C6H5CH3) (4), (Cp = η5−C5H5, Cp* = η5−C5Me5), were obtained by reaction of C60 with CpLu(C10H8) (DME) and Cp*Lu(C10H8) (DME) in toluene. Both complexes are paramagnetic (μeff = 1.4 and 0.9 BM) and exhibit temperature-dependent ESR signals (293 K: g = 1.992 and 2.0002 respectively).  相似文献   

11.
Lithiation of [p-But-calix[4]-(OMe)2(OH)2] (1), followed by reaction with TiCl3(thf)3 or TiCl4(thf)2, led to the corresponding titanium-calix[4]arene complexes [p-But-calix[4]-(OMe)2(O)2]TiCl] (2) and [p-But-calix[4]-(OMe)2(O)2]TiCl2] (3), respectively. Reaction of 1 with TiCl4(thf)2 results in demethylation of the calix[4]arene and the obtention of [p-But-calix[4]-(OMe)2(O)3]TiCl] (4), whose hydrolysis led to [p-But-calix[4]-(OMe)(OH)3] (6). The preparation of 6 can be carried out as a one-pot synthesis. Both 2 and 4 undergo alkylation reactions using conventional procedures, thus forming surprisingly stable organometallic species, namely [p-But-calix[4]-(OMe)2(O)2Ti(R)] (R = Me (7); CH2Ph (8), p-MeC6H4 (9) and [p-But-calix[4]-(OMe)(O)3Ti(R)] (R = Me (10); CH2Ph (11); p-MeC6H4 (12)). Complexes 7 and 9 undergo a thermal oxidative conversion into 10 and 12, occurring with the demethylation of one of the methoxy groups. A solid state structural property of 9 and 12 has been revealed by X-ray analysis showing a self-assembly of the monomeric units into a columnar polymer, where the p-tolyl substituent at the metal functions as a guest group for an adjacent titanium-calixarene. Reductive alkylation of 3 with Mg(CH2Ph)2 gave 8 instead of forming the corresponding dialkyl derivative. Two synthetic routes have been devised for the synthesis of the Ti(III)-Ti(III) dimer [p-But-calix[4]-(OMe)(O)3Ti]2] (13): the reduction of 4 and the reaction of TiCl3(thf)3 with the lithiated form of 6. A very strong antiferromagnetic coupling is responsible for the peculiar magnetic behavior of 13. The proposed structures have been supported by the X-ray analyses of 4, 9, 12 and 13.  相似文献   

12.
1,10-Phenanthroline-5,6-dione (C12H6N2O2 (1)) reacts with V(η6-mesitylene)2 and Ti(η6-toluene)2 affording coordination compounds of general formula M(O,O′---C12H6N2O2)3 (M=Ti (2); M=V (3)) which further react with TiCl4 or TiCp2(CO)2 yielding the tetrametallic species M(O,O′---C12H6N2O2---N,N′)3(M′Ln)3 (M=V, M′Ln=TiCl4 (4); M=Ti, M′Ln=TiCp2 (5); M=V, M′Ln=TiCp2 (6)). The complex salt [Fe(N,N′---C12H6N2O2)3][PF6]2 (7) has been obtained from iron(II) chloride tetrahydrate and 1 in the presence of NH4PF6. The reaction of 7 with TiCp2(CO)2 affords the tetrametallic derivative [Fe(N,N′---C12H6N2O2---O,O′)3(TiCp2)3][PF6]2 (8). TiCl2(THF)2 reacts with MCp2(O,O′---C12H6N2O2) to give MCp2(O,O′---C12H6N2O2---N,N′)TiCl2 (M=Ti (9); M=V (10)). By reaction of TiCp2(O,O′---C12H6N2O2---N,N′)TiCl2 (9) with C12H6N2O2, the bimetallic derivative TiCp2(O,O′---C12H6N2O2---N,N′)TiCl2(O,O′---C12H6N2O2) (11) has been prepared, which readily adds to TiCl4, to give the trimetallic titanium derivative TiCp2(O,O′---C12H6N2O2---N,N′)TiCl2(O,O′---C12H6N2O2---N,N′)TiCl4 (12). VCp2(O,O′---C12H6N2O2---N,N′)TiCl2 (10) reacts with the tris-chelate iron(II) cation 7 affording the heptametallic cationic complex [Fe(N,N′---C12H6N2O2---O,O′)TiCl2(N,N′---C12H6N2O2---O,O′)VCp2]3 +2 isolated as the hexafluorophosphate 13.  相似文献   

13.
The molecular structure of trans-[Pd(PhC(O)CHP(n-C4H9)3)2Cl2] has been determined via a single crystal X-ray diffraction study: triclinic,P1,a = 8.876(2),b = 10.908(3),c = 11.938(4)Å, = 97.06(2)°, β = 102.79(2)°, γ = 100.51(2)°,V= 1092.1(5)Å3,Z = 1 and R(F) = 4.61%. The phosphorus ylide molecules are bound to the palladium atom through their methine carbon atoms, the overall coordination geometry about the palladium being square planar. The protons in the ortho-positions of the two phenyl group are poised above and below the palladium atom, suggesting that the complex is a precursor of the ortho-metalated complex [Pd(μ-Cl)(C6H4C(O)CHP(n-C4H9)3)]2 synthesized earlier in our laboratory.  相似文献   

14.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

15.
Three new crystalline tin selenide salts have been prepared from the reactions of [PPh4]2[Sn(Se43] in supercritical solvents. The starting material pyrolyzes in supercritical acetonitrile to form [PPh4]4[Sn6Se21] (I), and it also reacts with SnSe in supercritical ammonia leading to a mixture of [PPh4]4[Sn3Se11]2 (II). and [PPh4]2[Sn(Se4)(Se6)2] (III). All three compounds have been characterized by single crystal X-ray diffraction. Crystallographic data: for I, C96H90P4Se21Sn6, space group triclinic, P-1, A = 18.763(3), B = 24.600(4), C = 13.137(1) Å, = 102.63(1), β = 93.66(1), γ = 108.72(1)°, V = 5544(1) Å3, Z = 2, R = 0.0350, RW = 0.0317: for II, C96H80P4Se22Sn6, space group monoclinic P21/c, A = 31.500(4), B = 16.572(3), C = 22.352(3) Å, β = 103.53(1)°, V = 11344(3) Å3, Z = 4, R = 0.0771, RW = 0.0664: for III, C48H40P2Se16Sn, space group monoclinic, C2/c, A = 25.381(2), B = 13.934(4), C = 19.465(3) Å, β = 121.587(8)°, V = 5867(2) Å3, Z = 4, R = 0.0807, RW = 0.0650. One of the compounds, [PPh4]2[Sn(Se4(Se62], is a molecular cluster while the other two complexes [PPh4]4[Sn3Se11]2 and [PPh4]4[Sn6Se21], are one dimensional tin selenide chains. The structures of the two chains are related and consits of tetrahedral and distorted trigonal bipyramidal tin(IV) centers bridged by Se2−, Se22− and Se32− chains.  相似文献   

16.
The reactions of arene–metal complexes (arene = p-cymene, benzene or pentamethylcyclopentadienyl, metal = Ru, Rh or Os), including 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decanephosphine (pta) and chloro co-ligands, with 9-methylguanine, adenine, and a series of nucleosides were studied in water to ascertain the binding modes. The products were characterized by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Tandem mass spectrometry was found to provide excellent information on preferential binding sites. In general, the N7 position on guanine (the most basic site) was found to be the preferred donor atom for coordination to the metal complexes. The X-ray structures of the precursor complexes, [(η5-C10H15)RhCl(pta-Me)2]Cl2, [(η6-C10H14)OsCl(pta)2]Cl, and [(η6-C6H6)OsCl2(CH3CN)], are also reported.  相似文献   

17.
Kinetic results are reported for intramolecular PPh3 substitution reactions of Mo(CO)21-L)(PPh3)2(SO2) to form Mo(CO)22-L)(PPh3)(SO2) (L = DMPE = (Me)2PC2H4P(Me)2 and dppe=Ph2PC2H4PPh2) in THF solvent, and for intermolecular SO2 substitutions in Mo(CO)32-L)(η2-SO2) (L = 2,2′-bipyridine, dppe) with phosphorus ligands in CH2Cl2 solvent. Activation parameters for intramolecular PPh3 substitution reactions: ΔH values are 12.3 kcal/mol for dmpe and 16.7 kcal/mol for dppe; ΔS values are −30.3 cal/mol K for dmpe and −16.4 cal/mol K for dppe. These results are consistent with an intramolecular associative mechanism. Substitutions of SO2 in MO(CO)32-L)(η2-SO2) complexes proceed by both dissociative and associative mechanisms. The facile associative pathways for the reactions are discussed in terms of the ability of SO2 to accept a pair of electrons from the metal, with its bonding transformations of η2-SO2 to η1-pyramidal SO2, maintaining a stable 18-e count for the complex in its reaction transition state. The structure of Mo(CO)2(dmpe)(PPh3)(SO2) was determined crystallographically: P21/c, A=9.311(1), B = 16.344(2), C = 18.830(2) Å, ß=91.04(1)°, V=2865.1(7) Å3, Z=4, R(F)=3.49%.  相似文献   

18.

1. 1. The functional terminal oxidase of the light-anaerobically grown Rhodopseudomonas spheroides cells was found to be the o-type cytochrome, whereas that of the dark-aerobically grown cells was the a-type cytochrome. When the dark-aerobically grown cells were further incubated under a semianaerobic condition in the dark, the content of the o-type cytochrome was increased in these cells, while the synthesis of the a-type cytochrome appeared to be repressed. In Rhodospirillum rubrum cells, grown either aerobically in the dark or anaerobically in the light, cytochrome o was the sole functional terminal oxidase.

2. 2. Reactions with the a-type and o-type cytochromes from Rhodopseudomonas spheroides and also with the o-type cytochrome from Rhodospirillum rubrum were compared using reduced yeast cytochrome c as substrate. The reaction with the a-type cytochrome was far less sensitive to NaN3 and hydroxylamine than those with the o-type cytochromes, whereas all the reactions were inhibited by KCN in apparently the same manner.

Abbreviations: Rps, Rhodopseudomonas; Rsp, Rhodospirillum; DCIP, 2,6-dichlorophenol-indophenol  相似文献   


19.
Low-temperature photodissociation spectra of membranes from the thermophile PS3 reveal cytochromes o and a3. The latter reacts with O2 at −103°C to give a light-insensitive compound(s), but the initial stages of O2 binding to cytochrome o could not be studied under these conditions. Photochemical action spectra identify cytochromes a3 and o, but not a CO-binding c-type cytochrome, as functional terminal oxidases in this bacterium.  相似文献   

20.
Sodium salt of a water-soluble, anionic, and monomeric 1:2 complex of Au(I) with a dianion of thiosalicylic acid TSA2−(Hin2TSA) = o-HS(C6H4)COOH) was first prepared and isolated as colorless needle crystals through a stoichiometric reaction of NaAuCl4:H2TSA:NaOH = 1:4:8 molar ratio in aqueous/EtOH solution. In this reaction, TSA2− ligand has played a role of a reducing agent for the starting Au(III) ion and also of donor ligands coordinating to the reduced Au(I). This compound was characterized by complete elemental analyses, TG/DTA, FT-IR, 2D-NMR (1H-1H COSY, 1H-13C HMBC, and 1H-13C HMQC) spectroscopy, and the molmass measurement based on the cryoscopic method. It was shown that this complex was a monomeric species of Au(I) with a formula of Na3[Au(TSA)2]·5H2O in the solid state, but not a polymeric species even in aqueous solution. A full assignment of seven carbon and four proton resonances in the coordinated TSA2− ligand was achieved by the 2D 1H-13C HMBC NMR technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号