首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substitution of iron for cobalt in the monomeric insect hemoglobin CTT (Chironomus thummi thummi) III does not alter the Bohr effect for O2-binding. The cobalt substitution in this hemoglobin allows us to identify not only the O-O and Co-O2 stretching mode but also the Co-O-O bending mode by resonance Raman spectroscopy. The assignments were made via 16O2/18O2 isotope exchange. The modes associated with the Co-O-O moiety are pH-dependent. These pH-induced changes of the resonance Raman spectra are correlated with the t = r conformation transition. At high pH (high-affinity state) two unperturbed O-O stretching modes are observed at 1,068 cm-1 (major component) and 1,093 cm-1 (minor component) for the 18O2 complex. These frequencies correspond to split modes at 1,107 cm-1 and 1,136 cm-1 and an unperturbed mode at approximately 1,153 cm-1 for the 16O2 complex. At low pH (low-affinity state) the minor component becomes the major component and vice versa. The Co-O2 stretching frequency varies for approximately 520 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) indicating a stronger (hence shorter) Co-O2 bond in the high-affinity state. On the other hand, the O-O bond is weakened upon the conversion of the low- to the high-affinity state. The Co-O-O bending mode changes from 390 cm-1 (pH 9.5) to 374 cm-1 (pH 5.5). In the deoxy form the resonance Raman spectra are essentially pH-insensitive except for a vinyl mode at 414 cm-1 (pH 5.5), which is shifted to 416 cm-1 (pH 5.5).  相似文献   

2.
We investigated structural and functional properties of bovine cytochrome P450 steroid 21-hydroxylase (P450c21), which catalyzes hydroxylation at C-21 of progesterone and 17alpha-hydroxyprogesterone. The uncoupled H(2)O(2) formation was higher in the hydroxylation of progesterone (26% of NADPH consumed) than that of 17alpha-hydroxyprogesterone (15% of NADPH consumed), indicating that 17alpha-hydroxyprogesterone can better facilitate the O-O bond scission. In relation to this, it is noted that the O-O stretching mode (nu(O-O)) of the oxygen complex of P450c21 was sensitive to the substrate; the progesterone- or 17alpha-hydroxyprogesterone-bound enzyme gave single (at 1137 cm(-1)) or split nu(O-O) bands (at 1124 and 1138 cm(-1)), respectively, demonstrating the presence of two forms for the latter. In contrast to nu(O-O), no corresponding difference was observed for the Fe-O(2) stretching mode between two different substrate-bound forms. The Fe-S(Cys) stretching mode in the ferric state was also identical (349 cm(-1)) for each substrate-bound form, suggesting that modulation through the axial thiolate by the substrate is unlikely. Therefore, it is deduced that the hydroxyl group at C-17 of 17alpha-hydroxyprogesterone forms a hydrogen bond with the terminal oxygen atom of the FeOO complex in one form, yielding a lower nu(O-O) frequency with higher reactivity for O-O cleavage, whereas the other form in which the substrate does not provide a hydrogen bond to the oxygen ligand is essentially the same between the two kinds of substrates. In the hydrogen-bonded species, the substrate changes the geometry of the FeOO moiety, thereby performing the hydroxylation reaction more effectively in 17alpha-hydroxyprogesterone than in progesterone.  相似文献   

3.
We report the characterization by resonance Raman spectroscopy of the oxygenated complex (Fe(II)O(2)) of nitric-oxide synthases of Staphylococcus aureus (saNOS) and Bacillus subtilis (bsNOS) saturated with N(omega)-hydroxy-l-arginine. The frequencies of the nu(Fe-O) and nu(O-O) modes were 530 and 1135 cm(-), respectively, in both the presence and absence of tetrahydrobiopterin. On the basis of a comparison of these frequencies with those of saNOS and bsNOS saturated with l-arginine (nu(Fe-O) at 517 cm(-1) and nu(O-O) at 1123 cm(-1)) and those of substrate-free saNOS (nu(Fe-O) at 517 and nu(O-O) at 1135 cm(-1)) (Chartier, F. J. M., Blais, S. P., and Couture, M. (2006) J. Biol. Chem. 281, 9953-9962), we propose two models that account for the frequency shift of nu(Fe-O) (but not nu(O-O)) upon N(omega)-hydroxy-l-arginine binding as well as the frequency shift of nu(O-O) (but not nu(Fe-O)) upon l-arginine binding. The implications of these substrate-specific interactions with respect to catalysis by NOSs are discussed.  相似文献   

4.
HmuO, a heme oxygenase of Corynebacterium diphtheriae, catalyzes degradation of heme using the same mechanism as the mammalian enzyme. The oxy form of HmuO, the precursor of the catalytically active ferric hydroperoxo species, has been characterized by ligand binding kinetics, resonance Raman spectroscopy, and x-ray crystallography. The oxygen association and dissociation rate constants are 5 microm(-1) s(-1) and 0.22 s(-1), respectively, yielding an O(2) affinity of 21 microm(-1), which is approximately 20 times greater than that of mammalian myoglobins. However, the affinity of HmuO for CO is only 3-4-fold greater than that for mammalian myoglobins, implying the presence of strong hydrogen bonding interactions in the distal pocket of HmuO that preferentially favor O(2) binding. Resonance Raman spectra show that the Fe-O(2) vibrations are tightly coupled to porphyrin vibrations, indicating the highly bent Fe-O-O geometry that is characteristic of the oxy forms of heme oxygenases. In the crystal structure of the oxy form the Fe-O-O angle is 110 degrees, the O-O bond is pointed toward the heme alpha-meso-carbon by direct steric interactions with Gly-135 and Gly-139, and hydrogen bonds occur between the bound O(2) and the amide nitrogen of Gly-139 and a distal pocket water molecule, which is a part of an extended hydrogen bonding network that provides the solvent protons required for oxygen activation. In addition, the O-O bond is orthogonal to the plane of the proximal imidazole side chain, which facilitates hydroxylation of the porphyrin alpha-meso-carbon by preventing premature O-O bond cleavage.  相似文献   

5.
6.
Density functional theory (DFT) calculations are performed on thiolate bound hydroperoxide complexes. O-O and Fe-O cleavage reaction coordinates, relevant to the active sites of cytochrome P450 and superoxide reductase enzymes, were investigated for both high and low spin states and for cis and trans orientations of the thiolate ligand with respect to the hydroperoxide ligand. The results indicate that the presence of a thiolate ligand produces significant elongation of the Fe-O bond and reduction of Fe-O vibrational frequency. While the fate of the O-O cleavage reaction is not significantly altered, the presence of a thiolate induces a heterolytic Fe-O cleavage irrespective of the spin state and orientation which is very different from results obtained with a trans ammine ligand.  相似文献   

7.
Chemical and spectroscopic consequences of allosteric interactions for ligand binding to sipunculid (Phascolopsis gouldii) and brachiopod (Lingula reevii) hemerythrins (Hrs) have been investigated. Possible allosteric effectors for homotropic effects in sipunculid Hrs have been examined, but only reduction in ligand affinity is observed without cooperativity. In contrast to sipunculid Hr, L. reevii Hr binds O2 cooperatively in the pH range 7-8 and exhibits a Bohr effect. Spectroscopic comparisons of the sipunculid and brachiopod Hrs show no significant differences in the active site structures; therefore, modulation of oxygen affinity is attributable to effects linking the site to quaternary structural changes in the octamer. Oxygen equilibria can be fit with a conformational model incorporating a minimum of three states, tensed (T), relaxed (R), and an R-T hybrid. Resonance Raman spectra of L. reevii oxyHr show a shift in the peroxo stretching frequency when the pH is lowered from pH 7.7 (predominantly R oxyHr) to pH 6.3 (a mixture of R, T, and R-T hybrid), but P. gouldii Hr does not have a frequency shift under the same conditions. In contrast to hemoglobins, ligand binding to the deoxy and met forms is noncooperative for brachiopod (and sipunculid) Hrs. It is thus suggested that conformational changes in the protein are linked to the oxidation state change that accompanies oxygenation of the coupled binuclear iron site (deoxy [FeIIFeII]----oxy [FeIIIFeIII]). The total allosteric energy expended in oxygenation is about 1.4 kcal/mol, and such a shift is possible in the relaxed-tense conversion with relatively limited constraints of the iron coordination environment via the protein quaternary structure. The mechanism of cooperativity in the binuclear copper oxygen carrier hemocyanin is discussed in light of these results.  相似文献   

8.
We examine the issue of ferryl protonation in heme proteins. An analysis of the results obtained from X-ray crystallography, resonance Raman spectroscopy, and extended X-ray absorption spectroscopy (EXAFS) is presented. Fe-O bond distances obtained from all three techniques are compared using Badger's rule. The long Fe-O bond lengths found in the ferryl crystal structures of myoglobin, cytochrome c peroxidase, horseradish peroxidase, and catalase deviate substantially from the values predict by Badger's rule, while the oxo-like distances obtained from EXAFS measurements are in good agreement with the empirical formula. Density functional calculations, which suggest that M?ssbauer spectroscopy can be used to determine ferryl protonation states, are presented. Our calculations indicate that the quadrupole splitting (DeltaE(Q)) changes significantly upon ferryl protonation. New resonance Raman data for horse-heart myoglobin compound II (Mb-II, pH 4.5) are also presented. An Fe-O stretching frequency of 790cm(-1) (shifting to 754cm(-1) with (18)O substitution) was obtained. This frequency provides a Badger distance of r(Fe-O)=1.66A. This distance is in agreement with the 1.69A Fe-O bond distance obtained from EXAFS measurements but is significantly shorter than the 1.93A bond found in the crystal structure of Mb-II (pH 5.2). In light of the available evidence, we conclude that the ferryl forms of myoglobin (pKa4), horseradish peroxidase (pKa4), cytochrome c peroxidase (pKa4), and catalase (pKa7) are not basic. They are authentic Fe(IV)oxos with Fe-O bonds on the order of 1.65A.  相似文献   

9.
Reported are the X-ray crystal structures of recombinant Phascolopsis gouldii methemerythrin (1.8-A resolution) and the structure of an O2-binding-pocket mutant, L98Y methemerythrin (2.1-A resolution). The L98Y hemerythrin (Hr) has a greatly enhanced O2 affinity, a slower O2 dissociation rate, a larger solvent deuterium isotope effect on this rate, and a greater resistance to autoxidation relative to the wild-type protein. The crystal structures show that the hydrophobic binding pocket of Hr can accommodate substitution of a leucyl by a tyrosyl side chain with relatively minor structural rearrangements. UV/vis and resonance Raman spectra show that in solution L98Y methemerythrin contains a mixture of two diiron site structures differing by the absence or presence of an Fe(III)-coordinated phenolate. However, in the crystal, only one L98Y diiron site structure is seen, in which the Y98 hydroxyl is not a ligand, but instead forms a hydrogen bond to a terminal hydroxo/aqua ligand to the nearest iron. Based on this crystal structure, we propose that in the oxy form of L98Y hemerythrin the non-polar nature of the binding pocket favors localization of the Y98 hydroxyl near the O2 binding site, where it can donate a hydrogen bond to the hydroperoxo ligand. The stabilizing Y98OH-O2H-interaction would account for all of the altered O2 binding properties of L98Y Hr listed above.  相似文献   

10.
Auto-oxidation of human adult hemoglobin and Siphonosoma cumanense and Lingula unguis hemerythrins were investigated in the presence and absence of perturbants. In the presence of urea, there were no drastic increases in auto-oxidation rates for the three proteins. In contrast, thiocyanate and laurate enhanced the auto-oxidation rates remarkably. In the presence of thiol reagents such as PCMB and NEM, auto-oxidation rates were enhanced with dissociation into subunit, but not enhanced so much with SH-modification only. Thus oligomerization is probably necessary to protect auto-oxidation.  相似文献   

11.
S Han  Y C Ching  D L Rousseau 《Biochemistry》1990,29(6):1380-1384
The reaction of dioxygen with mixed-valence cytochrome c oxidase was followed in a rapid-mixing continuous-flow apparatus. The optical absorption difference spectrum and a kinetic analysis confirm the presence of the primary oxygen intermediate in the 0-100-microseconds time window. The resonance Raman spectrum of the iron-dioxygen stretching mode (568 cm-1) supplies evidence that the degree of electron transfer from the iron atom to the dioxygen is similar to that in oxy complexes of other heme proteins. Thus, the Fe-O2 bond does not display any unique structural features that could account for the rapid reduction of dioxygen to water. Furthermore, the frequency of the iron-dioxygen stretching mode is the same as that of the primary intermediate in the fully reduced enzyme, indicating that the oxidation state of cytochrome a plays no role in controlling the initial properties of the oxygen binding site.  相似文献   

12.
J H Zhang  D M Kurtz 《Biochemistry》1991,30(38):9121-9125
Reported are results on the subunit composition of octameric hemerythrin (Hr) from the brachiopod Lingula reevii. Unlike most other Hrs, L. reevii Hr shows cooperativity in O2 binding. Purified L. reevii Hr was found to consist of two different subunits in approximately equimolar proportions. These two subunits differ in molecular weight by approximately 1000. Amino acid sequence data for the first 24 residues of the two subunits, labeled alpha and beta, show 70% identity with each other. Comparisons to amino acid sequences of other Hrs show approximately 50% identity in the first 24 residues and that both the alpha and beta subunits of L. reevii Hr have one residue deleted at their amino termini. Very recently, one other Hr, that from the brachiopod Lingula unguis, was also shown to contain equimolar proportions of two different subunits [Satake, K., Yugi, M., Kamo, M., Kihara, H., & Tsugita, A. (1990) Protein Seq. Data Anal. 3, 1-5], and this Hr also shows cooperativity in O2 binding. An alpha 4 beta 4 octamer is, therefore, proposed to be a common feature of those Hrs that show such cooperativity. Likely arrangements of alpha and beta subunits within an alpha 4 beta 4 octamer having the same configuration of subunits as that in other octameric Hrs are proposed. The most probable arrangements can be readily derived from physically reasonable restrictions on the types of intersubunit interactions and on transmission of allosteric effects.  相似文献   

13.
Resonance Raman spectroscopy has been employed to detect the iron-proximal histidine stretching mode in deoxyhemoglobins from insect larvae of Chironomus thummi thummi (CTT). With the excitation of 413.1 nm, we observe a sharp and intense line in the 220-224 cm-1 region. The assignment of this line to the Fe-N epsilon (His) stretching mode was made on the basis of a 3-cm-1 shift upon 57Fe/54Fe isotope substitution. The Fe-N epsilon (His) vibration is used to monitor the possible changes in the Fe-N epsilon (His) bond strength (hence bone length) in the deoxy state of the monomeric (CTT I, III, and IV) and dimeric (CTT II) insect hemoglobins. As these hemoglobins differ in O2 affinity, off-rate and on-rate constants, and in the Bohr effect, they are excellent model systems for investigating the mechanism of protein control of the heme reactivity. Some of these hemoglobins (CTT III, IV, and II) are allosteric, exhibiting two interconvertible conformational states with high and low O2 affinity at high and low pH, respectively. The Fe-N epsilon (His) stretching frequency does not correlate with the O2 affinity, the on-rate and the off-rate constants for different hemoglobins, for different conformational states, and for modified hemoglobins with different heme peripheral groups. This vibrational mode is insensitive to deuteration of the heme vinyl groups. It is important to note that the Fe-N epsilon (His) bonds in the high pH (high-affinity) and the low pH (low-affinity) states are identical. This implies that the O2 molecule, prior to binding, "sees" identical binding sites. Thus, the difference in free energy changes upon O2 binding is manifested only in the oxy form.  相似文献   

14.
The reduction by dithionite ion (in excess) of methemerythrin-anion adducts, Hr+X-, to deoxyhemerythrin, Hr degree, has been examined at 25 degrees and pH 6.3 and 8.2. The results accord with the scheme: S2O42- in equilibrium 2SO2- rapid Hr+X- in equilibrium Hr++X- k-1, k1 Hr++SO2- leads to PRODUCT k2 with X- = Br-, HCO2-, CNO-, and F-, k2[SO2-] greater than k1[X-], and the pseudo first-order rate constant, kobs (= k-1), is independent of [X-] and [S2O42-]. Only with X- = NCS- is k2[SO2-] approximately k1[X-] and kobs = a[S2O42-]1/2 (b[NCS-] + [S2OR2-]1/2)-1. Values at pH 6.3 of k-1 (sec-1) and k1 (M-1 sec-1), obtained by anation and anion displacement reactions, are 2.3 x 10(-3), 1.6 x 10(-2) (Br-); 1.5 x 10(-3), 1.2 x 10(-2) (HCO2-); 1.3 x 10(-4), 0.52 (CNO-) and approximately 2 x 10(-4), 3.3 x 10(-3) (CN-, pH 7.0). Values of k-1 from reduction and displacement methods are in good agreement with each other. The value of k2 (1.6 x 10(5) M-1 sec-1, pH 6.3) in somewhat smaller than that for reduction of the met form of hemoproteins. There is only a small effect of pH on rates. Direct reduction of Hr+CN- does not occur, in contrast with Mb+CN-.  相似文献   

15.
Dioxygen stretching (voo) Raman band was observed for the oxy form of Pseudomonas putida cytochrome P-450 (P-450cam) generated at room temperature under catalytic conditions, that is, in the presence of D-camphor, beta-NADH, putidaredoxin, and putidaredoxin reductase, by using the mixed flow transient Raman apparatus. At the same time the visible absorption spectra were monitored for the transient species. It was found that the voo frequency is little altered by binding of putidaredoxin to P-450cam, although the reduction rate of the oxy form becomes faster. Another intermediate with an oxygen isotope-sensitive band was not found in a time region until 2 s after mixing of the reduced enzyme with oxygen.  相似文献   

16.
The oxygen dissociation constants from Fe subunits in the half-ligated intermediate states of Fe-Co hybrid hemoglobins, alpha(Fe-O2)2 beta(Co)2 and alpha(Co)2 beta(Fe-O2)2, have been determined as functions of pH, temperature and inositol hexaphosphate. The oxygen dissociation rates from alpha(Fe-O2)2 beta(Co)2 are estimated to be more than 1300 s-1 for the deoxy quaternary state (T-state) and less than 3 s-1 for the oxy quaternary state (R-state) at 15 degrees C in 50 mM-Tris or Bis-Tris buffer containing 0.1 M-Cl-, while those of alpha(Co)2 beta(Fe-O2)2 are more than 180 s-1 and less than 5 s-1 for the T and R-states, respectively. The pH dependence of the oxygen dissociation rate from Fe subunits is large enough to be accounted for by the R-T transition, and implies that those half-ligated intermediate hybrids mainly exist in the R-state at pH 8.8, and in the T-state at pH 6.6, while other studies indicated that the half-ligated hybrids are essentially in the R-state at pH 7. Large activation energies of the oxygen dissociation process of 19 to 31 kcal/mol determined from the temperature dependence suggest that the process is entropy-driven.  相似文献   

17.
The infrared spectra of the carbomonoxy derivatives of the hemoglobin components I and IV from trout have been measured in the CO stretching frequency region using a high resolution infrared spectrometer. The CO stretching frequency of Hb I CO is very close to that of carbomonoxy human hemoglobin and is pH-independent. In contrast, the CO stretching frequency of Hb IV CO is higher and shows a small but significant pH dependence in the range 6.2-7.8. These results point to a decreased strength of the iron-CO bond in Hb IV CO at low pH, in agreement with the conclusions drawn from the reported difference spectra of Hb IV CO as a function of pH.  相似文献   

18.
Resonance Raman spectroscopy has been used to investigate the allosteric control mechanism for O2 binding in a cobalt-substituted dimeric insect hemoglobin (CTT II), which exhibits a large Bohr effect due to a pH-induced transition between two ligand affinity states. Substitution of cobalt for iron in CTT II does not modify the Bohr effect, but permits the resonance enhancement (hence the detection) of Raman lines corresponding to the vibrations of the axial ligand-cobalt bonds. Using 16O2/18O2 isotope substitution the O-O and Co-O2 stretching and the Co-O-O bending mode have been assigned to the two affinity states of this hemoglobin: v (O-O) changes from 1152 cm-1 (pH 5.5; t conformation) to about 1125 cm-1 (pH 9.5, r conformation), v (Co-O2) from 512 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) and delta (Co-O-O) from 378 cm-1 (pH 5.5) to 390 cm-1 (pH 9.5). The Co-N epsilon (His) stretching mode has also been detected changing from 313 cm-1 (pH 5.5) to 307 cm-1 (pH 9.5). For the first time, reciprocal behaviour between the Co-N epsilon and Co-O2 bonds and between the Co-O2 and the O-O bonds in an allosteric hemoglobin are demonstrated. Furthermore, the pH sensitivity of a vinyl bending mode in the range of 411-415 cm-1 has been investigated and shown also to reflect the t in equilibrium with r conformation transition.  相似文献   

19.
Structures of met and azidomet hemerythrin at 1.66 A resolution   总被引:3,自引:0,他引:3  
The crystallographic refinement of met and azidomet hemerythrin has been carried out at 1.66 A resolution in an attempt to characterize precisely the binuclear iron center in this protein. Restrained least-squares refinement has produced molecular models giving R-values of 18.9% for met (65,683 reflections from 10 A to 1.66 A) and 17.6% for azidomet hemerythrin (68,747 reflections from 10.0 A to 1.66 A). The protein structure in each derivative is very similar to that of myohemerythrin. The mu-oxo bridged iron center differs between the two forms. The complex in met hemerythrin is asymmetric with the bridging oxygen closer to one of the iron atoms while the complex in azidomet hemerythrin is symmetric. After investigations of the effects of correlation in the refinement, we believe this difference between the two complexes is associated with chemical differences and is not a refinement artefact.  相似文献   

20.
Two-component signal transduction systems regulate numerous important physiological functions in bacteria. In this study we have identified, cloned, overexpressed, and characterized a dimeric full-length heme-bound (heme:protein, 1:1 stoichiometry) globin-coupled histidine kinase (AfGcHK) from Anaeromyxobacter sp. strain Fw109-5 for the first time. The Fe(III), Fe(II)-O(2), and Fe(II)-CO complexes of the protein displayed autophosphorylation activity, whereas the Fe(II) complex had no significant activity. A H99A mutant lost heme binding ability, suggesting that this residue is the heme proximal ligand. Moreover, His-183 was proposed as the autophosphorylation site based on the finding that the H183A mutant protein was not phosphorylated. The phosphate group of autophosphorylated AfGcHK was transferred to Asp-52 and Asp-169 of a response regulator, as confirmed from site-directed mutagenesis experiments. Based on the amino acid sequences and crystal structures of other globin-coupled oxygen sensor enzymes, Tyr-45 was assumed to be the O(2) binding site at the heme distal side. The O(2) dissociation rate constant, 0.10 s(-1), was substantially increased up to 8.0 s(-1) upon Y45L mutation. The resonance Raman frequencies representing ν(Fe-O2) (559 cm(-1)) and ν(O-O) (1149 cm(-1)) of the Fe(II)-O(2) complex of Y45F mutant AfGcHK were distinct from those of the wild-type protein (ν(Fe-O2), 557 cm(-1); ν(O-O), 1141 cm(-1)), supporting the proposal that Tyr-45 is located at the distal side and forms hydrogen bonds with the oxygen molecule bound to the Fe(II) complex. Thus, we have successfully identified and characterized a novel heme-based globin-coupled oxygen sensor histidine kinase, AfGcHK, in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号