首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
For monitoring chitinase expression during mycoparasitism of Trichoderma harzianum in situ, we constructed strains containing fusions of green fluorescent protein (GFP) to the 5'-regulatory sequences of the T. harzianum nag1 (N-acetyl-beta-d-glucosaminidase-encoding) and ech42 (42-kDa endochitinase-encoding) genes. Confronting these strains with Rhizoctonia solani led to induction of gene expression before (ech42) or after (nag1) physical contact. A 12-kDa cut-off membrane separating the two fungi abolished ech42 expression, indicating that macromolecules are involved in its precontact activation. No ech42 expression was triggered by culture filtrates of R. solani or by placing T. harzianum onto plates previously colonized by R. solani. Instead, high expression occurred upon incubation of T. harzianum with the supernatant of R. solani cell walls digested with culture filtrates or purified endochitinase 42 (CHIT42, encoded by ech42) from T. harzianum. The chitinase inhibitor allosamidin blocked ech42 expression and reduced inhibition of R. solani growth during confrontation. The results indicate that ech42 is expressed before contact of T. harzianum with R. solani and its induction is triggered by soluble chitooligosaccharides produced by constitutive activity of CHIT42 and/or other chitinolytic enzymes.  相似文献   

2.
Mutants of Trichoderma harzianum with altered antibiotic production were isolated using ultraviolet light mutagenesis. These included strains whose activity in a Fusarium oxysporum spore germination assay was greater than twice that of the parental strain and one that had no detectable antifungal activity. Characterisation of extracellular metabolites of these strains using thin-layer chromatography and gas-liquid chromatography showed that the strains with high activity produced only elevated levels of a 6-n-pentyl pyrone, the antibiotic produced by the parental strain, but two new antifungal compounds. One of these has been identified as an isonitrile antibiotic. The nature of the interactions of the mutants with Fusarium oxysporum, Rhizoctonia solani, and Pythium ultimum was examined in an in vitro dual-plating assay using two media. High antibiotic production by two T. harzianum strains, BC10 and BC63, did increase inhibition of hyphal growth of R. solani and P. ultimum, but there was no correlation between increased antibiotic production and colonisation ability. In some cases the increased antibiotic levels appeared to impede colonisation of F. oxysporum and R. solani by the mutants. Slow growth rate also affected colonising ability. The types of interactions showed great variability depending on the nature of the T. harzianum isolate and on the test fungus.  相似文献   

3.
AIMS: To determine the role of fungal metabolites in the desorption of metals. METHODS AND RESULTS: Desorption of Zn from charcoal by three different fungi was compared against metal desorption with reverse osmosis water, a 0.1% Tween 80 solution and a 0.1 mol l(-1) CaCl(2) solution. All three fungal filtrates desorbed three times more Zn than either 0.1% Tween 80 or 0.1 mol l(-1) CaCl(2). Metal chelator production in Trichoderma harzianum and Coriolus versicolor was constitutively expressed while chelator production in Trichoderma reesei was induced by Zn. The presence of Zn inhibited the production of metal chelators by C. versicolor. Only C. versicolor was found to produce oxalic acid (a strong metal chelator). All fungi caused a marked decrease in pH, although this was not enough to explain the increased desorption of the metals by the different fungal filtrates. CONCLUSIONS: Metal chelation via organic acids and proteins are the main mechanisms by which the fungal filtrates increase zinc desorption. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study explain why plants inoculated with T. harzianum T22 take up more metal from soil, than noninoculated plants while metabolites produced by fungi could be used for metal leaching from contaminated soils.  相似文献   

4.
Protoplasts were isolated from Trichoderma harzianum strain PTh18 using lysing enzymes and self-fusion of T. harzianum protoplasts was carried out using polyethylene glycol in STC buffer. The fused protoplasts of T. harzianum were regenerated and 15 self-fusants were selected to study the chitinase production and biocontrol activity. High chitinase activity was measured in the culture filtrates of most of the self-fusants (87%) than the parent. Among the fusants, the strain SFTh8 produced maximum chitinase with a two-fold increase as compared to the parent strain. All the self-fusants exhibited increased antagonistic activity against Rhizoctonia solani than the parent. The crude chitinase preparation of SFTh8 lysed the mycelia of T. harzianum, Trichoderma viride and Trichoderma reesei and released the protoplasts in higher number than the crude chitinase preparation of parent strain PTh18.  相似文献   

5.
AIMS: To isolate endophytic Streptomyces strains from tomato and examine their antimicrobial activity. METHODS: Endophytic Streptomyces strains were isolated using surface-sterilization methods and identified by morphological characteristics. Antimicrobial activities were measured by the agar plate sensitivity method. Antifungal activity in vivo was measured by seedling mortality in infested soils. RESULTS: Twenty-one per cent of endophytic streptomycete isolates produced antibacterial metabolites and 41% produced antifungal metabolites in S medium. Sixty-five per cent of the most frequently isolated strains inhibited the growth of Rhizoctonia solani by the antibiosis assay but only 32% produced metabolites active against R. solani in S medium. Growth promotion and enhanced disease resistance of seedlings inoculated with Streptomyces sp. strain S30 were observed in tomato but not in cucumber seedlings. CONCLUSIONS: Endophytic Streptomyces spp. strains were successfully isolated using stringent methods and strain S30 promoted growth and enhanced resistance to R. solani in tomato seedlings. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic streptomycetes showing antifungal activity in vitro and in vivo may indicate the potential for their use as biocontrol agents particularly of R. solani disease of tomato seedlings.  相似文献   

6.
The production of secondary metabolites by S. nodorum strains was examined in relation to their adaptation to wheat or to barley. Eleven strains of each type previously characterized were tested for the production in culture of (-)-(3R)-mellein (ochracin), (3R)-O-metbylmellein; (-)-(3R,4R)-4-hydroxyniellein, (-)-(3R,4S)-4-hydro-xymellein, mycophenolic acid, septorine, N-methoxy-septorine, N-methoxyseptorinol, and a new compound (=UN).
Mellein was produced by every strain. Both 4-hydro-xymellein isomers were yielded by all wheat-adapted strains and six barley-adapted strains. Most of the strains produced mycophenolic acid. On the other hand the pigmentation of culture filtrates of wheat-adapted strains was pale-yellow whereas the pigmentation of barley-adapted strains was grey-blue. The productions of O-methylmellein, septorine, N-metboxyseptorine and N-methoxyseptorinol were typical for wheat-adapted strains. The detection of UN was restricted to the filtrates of barley-adapted strains. If the pigmentation of filtrates and the production of septorines, UN and O-methyl-mellein are considered the strains fell into two groups. This classification is related to the host adaptation except for one barley-adapted strain that showed characteristics of wheat-adapted strains and one wheat-adapted strain which did not produce septorines.  相似文献   

7.
Aims: Strains of Trichoderma spp. produce numerous bioactive secondary metabolites. The in vitro production and antibiotic activities of the major compounds synthesized by Trichoderma harzianum strains T22 and T39 against Leptosphaeria maculans, Phytophthora cinnamomi and Botrytis cinerea were evaluated. Moreover, the eliciting effect of viable or nonviable biomasses of Rhizoctonia solani, Pythium ultimum or B. cinerea on the in vitro production of these metabolites was also investigated. Methods and Results: T22azaphilone, 1‐hydroxy‐3‐methyl‐anthraquinone, 1,8‐dihydroxy‐3‐methyl‐anthraquinone, T39butenolide, harzianolide, harzianopyridone were purified, characterized and used as standards. In antifungal assays, T22azaphilone and harzianopyridone inhibited the growth of the pathogens tested even at low doses (1–10 μg per plug), while high concentrations of T39butenolide and harzianolide were needed (>100 μg per plug) for inhibition. The in vitro accumulation of these metabolites was quantified by LC/MS. T22azaphilone production was not enhanced by the presence of the tested pathogens, despite its antibiotic activity. On the other hand, the anthraquinones, which showed no pathogen inhibition, were stimulated by the presence of P. ultimum. The production of T39butenolide was significantly enhanced by co‐cultivation with R. solani or B. cinerea. Similarly, viable and nonviable biomasses of R. solani or B. cinerea increased the accumulation of harzianopyridone. Finally, harzianolide was not detected in any of the interactions examined. Conclusions: The secondary metabolites analysed in this study showed different levels of antibiotic activity. Their production in vitro varied in relation to: (i) the specific compound; (ii) the phytopathogen used for the elicitation; (iii) the viability of the elicitor; and (iv) the balance between elicited biosynthesis and biotransformation rates. Significance and Impact of the Study: The use of cultures of phytopathogens to enhance yields of Trichoderma metabolites could improve the production and application of novel biopesticides and biofertilizers based on the active compounds instead of the living microbe. This could have a significant beneficial impact on the management of diseases in crop plants.  相似文献   

8.
AIMS: The aim of the present investigation was to determine the influence of various Fusarium solani strains on the production of nematicidal agent(s) in vitro and biocontrol of Meloidogyne javanica in tomato by Pseudomonas fluorescens strains CHA0 and CHA0/pME3424. METHODS AND RESULTS: Culture filtrates (CF) of P. fluorescens strain CHA0 and its diacetylphloroglucinol-overproducing derivative CHA0/pME3424 caused substantial mortality of M. javanica juveniles in vitro. Bacterial growth medium amended with the growth medium of F. solani repressed the nematicidal activity of the bacteria. Methanol extract of F. solani CF resulting from Czapek's Dox liquid (CDL) medium without zinc amendment repressed the nematicidal activity of the bacteria while the CF obtained from CDL medium amended with zinc did not. Conidial suspension of F. solani strain Fs5 (repressor strain for the biosynthesis of nematicidal compounds in P. fluorescens) reduced biocontrol potential of the bacterial inoculants against M. javanica in tomato while strain Fs3 (non-repressor) did not. CONCLUSIONS: Fusarium solani strains with increased nematicidal activity repress the biosynthesis of nematicidal compounds by P. fluorescens strains in vitro and greatly alter its biocontrol efficacy against root-knot nematode under natural conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium solani strains are distributed worldwide and found in almost all the agricultural fields which suggest that some mycotoxin-producing strains will also be found in almost any soil sample taken. Besides the suppressive effect of these metabolite-producing strains on the production of nematicidal compound(s) critical in biocontrol, F. solani strains may also affect the performance of mycotoxin-sensitive biocontrol bacteria effective against plant-parasitic nematodes.  相似文献   

9.
The soilborne rhizosphere-competent fungal biocontrol agent Trichoderma harzianum isolate Th008 secreted trichodermin (MW = 292) and a small peptide (MW = 876) in culture. These compounds were antagonistic in culture to the mycelial growth of the soilborne fungal pathogen Rhizoctonia solani isolate 2B-12, which is highly virulent to soybean ( Glycine max )seedlings. When 100mg of dried autoclaved mycelial mat of R. solani was added to 200 ml liquid cultures of T. harzianum , the quantity of antimycotic compounds secreted by the latter was 3.5 times greater than that of the antagonist alone. R. solani secreted a coumarin derivative (MW = 313) in liquid culture, which inhibited the mycelial growth of T. harzianum ; however, inhibition of the growth of the antagonist required a greater concentration than that for the antimycotic compounds produced by the antagonist against the pathogen. The inclusion of 100 mg of dried autoclaved mycelial mat of T. harzianum in a 200 ml liquid culture of R. solani did not affect the quantity of the antimycotic compound produced by the pathogen.  相似文献   

10.
The role of the Trichoderma harzianum endochitinase (Ech42) in mycoparasitism was studied by genetically manipulating the gene that encodes Ech42, ech42. We constructed several transgenic T. harzianum strains carrying multiple copies of ech42 and the corresponding gene disruptants. The level of extracellular endochitinase activity when T. harzianum was grown under inducing conditions increased up to 42-fold in multicopy strains as compared with the wild type, whereas gene disruptants exhibited practically no activity. The densities of chitin labeling of Rhizoctonia solani cell walls, after interactions with gene disruptants were not statistically significantly different than the density of chitin labeling after interactions with the wild type. Finally, no major differences in the efficacies of the strains generated as biocontrol agents against R. solani or Sclerotium rolfsii were observed in greenhouse experiments.  相似文献   

11.
We tested Trichoderma harzianum as a biocontrol agent for Rhizoctonia solani AG2-1, using six natural antifungal materials to improve its efficacy. Among the six materials tested, peony (Paeonia suffruticosa) root bark (PRB) showed the strongest antifungal activity against R. solani AG2-1, and was not antagonistic to T. harzianum. Scanning electron microscopy showed that treatment with PRB extract resulted in shortened and deformed R. solani AG2-1 hyphal cells. The control of radish damping-off caused by R. solani AG2-1 was greatly increased by combined treatments of T. harzianum and PRB, as compared with either of the two treatments alone, with the control effect increased from 42.3-51.5% to 71.4-87.6%. The antifungal compound in PRB, which was isolated in chloroform and identified as paeonol by mass spectrometry, 1H NMR, and 13C NMR analyses, inhibited the growth of R. solani AG2-1 but not that of T. harzianum. Thus, PRB powder or extract may be used as a safe additive to T. harzianum to improve the control of the soil borne diseases caused by R. solani AG2-1.  相似文献   

12.
AIMS: To purify and characterize an extracellular alpha-glucosidase from Trichoderma viride capable of inactivating a host-specific phytotoxin, designated RS toxin, produced by the rice sheath blight pathogen, Rhizoctonia solani Kühn. METHODS AND RESULTS: The host-specific RS toxin was purified from both culture filtrates (culture filtrate toxin, CFTox) and R. solani-inoculated rice sheaths (sheath blight toxin, SBTox). Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses of extracellular proteins, purified from a biocontrol fungus T. viride (TvMNT7) grown on SBTox and CFTox separately, were carried out. The antifungal activity of the purified high molecular weight protein (110 kDa) was studied against RS toxin as well as on the sclerotial germination and mycelial growth of R. solani. Enzyme assay and Western blot analysis with the antirabbit TvMNT7 110-kDa protein indicated that the protein was an alpha-glucosidase. The 110-kDa protein was highly specific to RS toxin and its Michaelis-Menten constant value was 0.40 mmol l-1 when p-nitrophenyl alpha-D-glucopyranoside was used as the substrate. The isoelectric point of the protein was 5.2. N-terminal sequencing of the alpha-glucosidase protein showed that its amino acid sequence showed no homology with other known alpha-glucosidases. CONCLUSION: This appears to be the first report of the purification and characterization of an alpha-glucosidase capable of inactivating a host-specific toxin of fungal origin. The alpha-glucosidase is specific to RS toxin and is different from the known alpha-glucosidases. SIGNIFICANCE AND IMPACT OF THE STUDY: As RS toxin could be inactivated by the microbial alpha-glucosidase enzyme, isolation of the gene that codes for the enzyme from T. viride and transfer of the gene to rice plants would lead to enhanced resistance against sheath blight pathogen by inactivation of RS toxin.  相似文献   

13.
The production of secondary metabolite lipopeptides by ice-nucleating Pseudomonas syringae strain 31R1 was investigated. Pseudomonas syringae strain 31R1 is a rifampicin-resistant derivative of P. syringae no. 31 used for the commercial production of snow. It is shown that P. syringae strain 31R1 produces antifungal lipodepsipeptides, syringomycins E and G, and, in addition, a novel and unique lipopeptide, peptin31. Spectroscopic and spectrometric analyses revealed that peptin31 is a linear undecalipopeptide with sequence identities to N- and C-terminal portions but lacking 11 amino acids of known lipodepsipeptide syringopeptin SPPhv. Peptin31 displayed antifungal activities against Rhodotorula pilimanae, Rhizoctonia solani, and Trichoderma harzianum and also hemolytic and antibacterial activities. Extracts of P. syringae strain 31R1 grown in medium with chloride were fungicidal, but not when grown without chloride. The latter extracts lacked peptin 31 and contained des-chloro forms of syringomycins E and G with low antifungal activities. Thus, the three lipopeptides account for the fungicidal properties of P. syringae 31R1 extracts. The occurrence of these bioactive metabolites should be considered when P. syringae no. 31 and its derivatives are used in products for making artificial snow.  相似文献   

14.
AIMS: The aim of the present investigation was to determine the influence of Rhizoctonia solani and its pathogenicity factor on the production of nematicidal agent(s) by Pseudomonas fluorescens strain CHA0 and its GM derivatives in vitro and nematode biocontrol potential by bacterial inoculants in tomato. METHODS AND RESULTS: One (Rs7) of the nine R. solani isolates from infected tomato roots inhibited seedling emergence and caused root rot in tomato. Thin layer chromatography revealed that culture filtrates of two isolates (Rs3 and Rs7) produced brown spots at Rf-values closely similar to synthetic phenylacetic acid (PAA), a phytotoxic factor. Filtrates from isolate Rs7, amended with the growth medium of P. fluorescens, markedly repressed nematicidal activity and PhlA'-'LacZ reporter gene expression of the bacteria in vitro. On the contrary, isolate Rs4 enhanced nematicidal potential of a 2,4-diacetylphloroglucinol overproducing mutant, CHA0/pME3424, of P. fluorescens strain CHA0 in vitro. Therefore, R. solani isolates Rs4 and Rs7 were tested more rigorously for their potential to influence biocontrol effectiveness of the bacterial agents. Methanol extract of the culture filtrates of PAA-producing isolate Rs7 resulting from medium amended with phenylalanine enhanced fungal repression of the production of nematicidal agents by bacteria, while amendments with zinc or molybdenum eliminated such fungal repression, thereby restoring bacterial potential to cause nematode mortality in vitro. A pot experiment was carried out, 3-week-old tomato seedlings were infested with R. solani isolates Rs4 or Rs7 and/or inoculated with Meloidogyne incognita, the root-knot nematode. The infested soil was treated with aqueous cell suspensions (10(8) CFU) of P. fluorescens strain CHA0 or its GM derivatives or left untreated (as a control). Observations taken 45 days after nematode inoculation revealed that, irrespective of the bacterial treatments, galling intensity per gram of fresh tomato roots was markedly higher in soil amended with isolate Rs4 than in Rs7-amended soils. Soil amendments with R. solani and the bacterial antagonists resulted in substantial reductions of the number of galls per gram of root. These results are contradictory to those obtained under in vitro conditions where culture filtrates of PAA-positive Rs7 repressed the production of nematicidal compounds. Plants grown in Rs7-amended soils, with or without bacterial inoculants, had lesser shoot and root weights than plants grown in nonamended or Rs4-amended soils. Moreover, amendments with Rs7 substantially retarded root growth and produced necrotic lesions that reduced the number of entry sites for invasion and subsequent infection by nematodes. Populations of P. fluorescens in the tomato rhizosphere were markedly higher in Rs7-amended soils. CONCLUSIONS: PAA-producing virulent R. solani drastically affects the potential of P. fluorescens to cause death of M. incognita juveniles in vitro and influences bacterial effectiveness to suppress nematodes in tomato roots. SIGNIFICANCE AND IMPACT OF THE STUDY: As most agricultural soils are infested with root-infecting fungi, including R. solani, it is likely that some PAA-producing isolates of the fungus may also be isolated from such soils. The inhibitory effect of PAA-producing R. solani on the biosynthesis of nematicidal agent(s) critical in biocontrol may reduce or even eliminate the effectiveness of fluorescent pseudomonads against root-knot nematodes, both in nursery beds and in field conditions. Introduction of bacterial inoculants, for the control of any plant pathogen, should be avoided in soils infested with PAA-producing R. solani. Alternatively, the agents could be applied together with an appropriate quantity of fungicide or chemicals such as zinc to create an environment more favourable for bacterial biocontrol action.  相似文献   

15.
Many nematode-antagonistic fungi produce secondary metabolites and enzymes that demonstrate toxicity against plant-parasitic nematodes. The objective of this study was to evaluate the effects of fungal culture filtrates of Verticillium lecanii hybrid strains on mature eggs, embryonated eggs (eggs fertilized but without development of juveniles), and second-stage juveniles (J2) of Heterodera glycines and to compare these effects with those of their parental strains. The fungal culture filtrates of certain hybrid strains inhibited egg hatch of mature eggs. Furthermore, the fungal culture filtrates of two hybrid strains, AaF23 and AaF42, exhibited high toxicity against embryonated eggs of H. glycines. However, most of the fungal culture filtrates of V. lecanii did not inactivate J2. These results suggested that enzymes or other active compounds produced by the fungal culture filtrates of V. lecanii exhibit activity against specific stages in the H. glycines life cycle. In addition, based on a visual assessment of the morphological changes in eggs caused by filtrates of each strain, there were differences between the hybrid strains and their respective parental strains with regard to the active substances produced by V. lecanii against the embryonated eggs. As a result of promoting recombination of whole genomes via protoplast fusion, several hybrid strains may have enhanced production of active substances that are different from those produced by their parental strains. It was concluded that natural substances produced by V. lecanii are one of the important factors involved in the suppression of H. glycines damage.  相似文献   

16.
In this review the state of the art of lignocellulose bioconversion by solid substrate fermentation (SSF) is presented. The most important lignocellulolytic fungi and their properties are described, and their application in novel solid state bioreactors with on-line process control is discussed. The most important bioconversion products, biofuels, enzymes, animal feeds, biofertilizers, biopesticides, biopromoters, secondary metabolites, and the economy of their production by SSF is discussed. The use of SSF in the pulp and paper industry and in integrated crop management is illustrated.  相似文献   

17.
In order to identify a specific marker for T. harzianum AS12-2, a strain capable of controlling rice sheath blight caused by Rhizoctonia solani, UP-PCR was performed using five universal primers (UP) both separately and in pairwise combinations. The application of two UP primers resulted in the amplification of unique fragments from the genomic DNA of T. harzianum AS12-2, clearly distinguishing it from other Trichoderma strains. The unique fragments had no significant sequence homology with any other known sequence available in databases. Based on the sequences of the unique fragments, 14 oligonucleotide primers were designed. Two primer sets amplified a fragment of expected size from the DNA of strain T. harzianum AS12-2 but not from any other examined strains belonging to T. harzianum, to other Trichoderma species assayed, or to other common fungi present in paddy fields of Mazandaran province, Iran. In conclusion, SCAR (sequence characterized amplified regions) markers were successfully identified and rapid, reliable tools were provided for the detection of an effective biocontrol Trichoderma strain, which can facilitate studies of its population dynamics and establishment after release into the natural environment.  相似文献   

18.
AIM: To study the antagonistic activity by Pseudomonas fluorescens strain 96.578 on the plant pathogenic fungus Rhizoctonia solani. METHODS AND RESULTS: Strain 96.578 produced a new cyclic lipopeptide, tensin. High tensin production per cell was detected in liquid media with glucose, mannitol or glutamate as growth substrate while fructose, sucrose and asparagine supported low production. Tensin production was nearly constant in media with different initial C levels, while low initial N contents reduced production. When applied to sugar beet seeds, strain 96.578 produced tensin during seed germination. When challenged with strain 96.578 or purified tensin, Rhizoctonia solani reduced radial mycelium extension but increased branching and rosette formation. CONCLUSION: The antagonistic activity of strain 96.578 towards Rhizoctonia solani was caused by tensin. SIGNIFICANCE AND IMPACT OF THE STUDY: When coated onto sugar beet seeds, tensin production by strain 96.578 could be of significant importance for inhibition of mycelial growth and seed infection by Rhizoctonia solani.  相似文献   

19.
A total of 36 UV-induced mutants with altered colony morphology were isolated from strain Trichoderma harzianum T334, a potential biocontrol agent against plant pathogenic fungi with the ability to produce constitutively low levels of chitinases. The level of constitutive beta-1,4-N-acetyl-glucosaminidase production in standing and shaken cultures under non-inductive conditions was tested in mutants and compared to that of the parental strain. About 30% of the mutants showed significantly increased levels of enzyme production, with strain T334 col26a being the best producer. This mutant and the parental strain were subjected to in vitro confrontation assays with plant pathogenic Fusarium culmorum, Pythium debaryanum and Rhizoctonia solani strains. The mutant derivative could be characterized by significantly higher biocontrol index values than the parental strain in each experiment, suggesting, that mutants with improved constitutive extracellular chitinase secretion could be applied for biocontrol purposes against fungal plant pathogens.  相似文献   

20.
AIMS: To determine the influence of soil-borne fungus Trichoderma harzianum on the biocontrol performance of Pseudomonas fluorescens strain CHA0 and its 2,4-diacetylphloroglucinol (DAPG) overproducing derivative CHA0/pME3424 against Meloidogyne javanica. METHODS AND RESULTS: Amendment of the culture filtrate (CF) or methanol extract of the CF of a T. harzianum strain Th6 to P. fluorescens growth medium enhanced the production of nematicidal compound(s) by bacterial inoculants in vitro. In addition, bacteria overwhelmingly expressed phl'-'lacZ reporter gene when the medium was amended with CF of T. harzianum. Pseudomonas fluorescens and T. harzianum applied together in unsterilized sandy loam soil caused greater reduction in nematode population densities in tomato roots. CONCLUSIONS: Trichoderma harzianum improves root-knot nematode biocontrol by the antagonistic rhizobacterium P. fluorescens both in vitro and under glasshouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergistic effect of T. harzianum on the production of nematicidal compound(s) critical in biocontrol may improve the efficacy of biocontrol bacteria against plant-parasitic nematodes. Considering the inconsistent performance of the biocontrol agents under field conditions, application of a mixture of compatible T. harzianum and P. fluorescens would more closely mimic the natural situation and might broaden the spectrum of biocontrol activity with enhanced efficacy and reliability of control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号