首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large-conductance Ca(2+)-activated K(+) (K(Ca)1.1, BK) channel has pivotal roles in the regulation of vascular tone. To clarify the molecular dynamics of BK channels and their functionally coupled protein on the membrane surface, we examined single-molecule imaging of fluorescent-labeled BK subunits in the plasma membrane using total internal reflection fluorescence (TIRF) microscopy. The dynamic mobility of yellow fluorescent protein (YFP)-tagged BKα subunit (BKα-YFP) expressed in human embryo kidney 293 (HEK) cells was detected in TIRF regions at the level of individual channels and their clusters on the plasma membrane with a diffusion coefficient of 6.7 × 10(3) nm(2)/s. When BKα-YFP was coexpressed with cyan fluorescent protein (CFP)-tagged BKβ1 subunit (BKβ1-CFP) in HEK cells, the mobility was reduced by ~50%. Fluorescent image analyses suggest that green fluorescent protein (GFP)-tagged BKα subunit (BKα-GFP) expressed in vascular smooth muscle cells (VSMCs), at low density, preferentially formed a heterotetrameric molecular assembly with native BKα subunits, rather than homotetrameric BKα-GFP. Movement of BKα-YFP in VSMCs (0.29 × 10(3) nm(2)/s) was far more restricted than BKα-YFP/BKβ1-CFP in HEK cells (2.5 × 10(3) nm(2)/s). Actin disruption by pretreatment with cytochalasin D in VSMCs appeared to increase the mobile behavior of BKα-YFP, which was then significantly reduced by addition of jasplakinolide. Most BKα-YFP colocalized with caveolin 1 (Cav1)-CFP in VSMCs, but unexpectedly not frequently in HEK cells. Fluorescence resonance energy transfer analyses showed the direct interaction between BKα-YFP and Cav1-CFP, particularly in VSMCs. These results, obtained by single molecule imaging in living cells, indicate that the dynamics of BKα molecules on the membrane surface are strongly restricted or regulated by its auxiliary β-subunit, cytoskeleton, and direct interaction with Cav1 in VSMCs.  相似文献   

2.
The intermediate-conductance calcium-activated potassium channel (IK1) promotes cell proliferation of numerous cell types including endothelial cells, T lymphocytes, and several cancer cell lines. The mechanism underlying IK1-mediated cell proliferation was examined in human embryonic kidney 293 (HEK293) cells expressing recombinant human IK1 (hIK1) channels. Inhibition of hIK1 with TRAM-34 reduced cell proliferation, while expression of hIK1 in HEK293 cells increased proliferation. When HEK293 cells were transfected with a mutant (GYG/AAA) hIK1 channel, which neither conducts K(+) ions nor promotes Ca(2+) entry, proliferation was increased relative to mock-transfected cells. Furthermore, when HEK293 cells were transfected with a trafficking mutant (L18A/L25A) hIK1 channel, proliferation was also increased relative to control cells. The lack of functional activity of hIK1 mutants at the cell membrane was confirmed by a combination of whole cell patch-clamp electrophysiology and fura-2 imaging to assess store-operated Ca(2+) entry and cell surface immunoprecipitation assays. Moreover, in cells expressing hIK1, inhibition of ERK1/2 and JNK kinases, but not of p38 MAP kinase, reduced cell proliferation. We conclude that functional K(+) efflux at the plasma membrane and the consequent hyperpolarization and enhanced Ca(2+) entry are not necessary for hIK1-induced HEK293 cell proliferation. Rather, our data suggest that hIK1-induced proliferation occurs by a direct interaction with ERK1/2 and JNK signaling pathways.  相似文献   

3.
Large conductance, Ca(2+)-sensitive potassium (BK) channels are critical components of the O(2) signalling cascade in a number of cells, including the carotid body and central neurones. Although the nature of the BK channel O(2) sensor is still unknown, evidence suggests redox modulators might form part of the O(2) sensing channel complex. By metabolising glutathione, gamma-glutamyl transpeptidase (gammaGT) could act as such an O(2) sensor. Western blotting and immunocytochemistry revealed high gammaGT expression in HEK293 cells expressing the alpha- and beta-subunits of human recombinant BK and gammaGT co-immunoprecipitated with BKalpha. Acivicin blockade of gammaGT reversibly inhibited BK channels, suggesting that this BKalpha protein partner contributes to tonic channel activity. However, knock-out of gammaGT using siRNA had no effect on hypoxic BK channel inhibition. Together, these data indicate that gammaGT is a BKalpha protein partner, that its activity regulates BK channels but that it is not the BK O(2) sensor.  相似文献   

4.
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.  相似文献   

5.
Activation of phospholipase C (PLC)-mediated signaling pathways in non-excitable cells causes the release of calcium (Ca2+) from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ influx via plasma membrane Ca2+ channels. The properties and molecular identity of plasma membrane Ca2+ influx channels in non-excitable cells is a focus of intense investigation. In the previous studies we used patch clamp electrophysiology to describe the properties of Ca2+ influx channels in human carcinoma A431 cell lines. Now we extend our studies to human embryonic kidney HEK293 cells. By using a combination of Ca2+ imaging and whole cell and single channel patch clamp recordings we discovered that: 1) HEK293 cells contain four types of plasma membrane Ca2+ influx channels: I(CRAC), Imin, Imax, and I(NS); 2) I(CRAC) channels are highly Ca2+-selective (P(Ca/Cs)>1000) and I(CRAC) single channel conductance is too small for single channel analysis; 3) Imin channels in HEK293 cells display functional properties identical to Imin channels in A431 cells, with single channel conductance of 1.2 pS for divalent cations, 10 pS for monovalent cations, and divalent cation selectivity P(Ba/K)=20; 4) Imin channels in HEK293 cells are activated by InsP3 and inhibited by phosphatidylinositol 4,5-bisphosphate, but store-independent; 5) when compared with Imin, Imax channels have higher conductance for divalent (17 pS) and monovalent (33 pS) cations, but less selective for divalent cations (P(Ba/K)=4), 6) Imax channels in HEK293 cells can be activated by InsP3 or by Ca2+ store depletion; 7) I(NS) channels are non-selective (P(Ba/K)=0.4) and display a single channel conductance of 5 pS; and 8) I(NS) channels are not gated by InsP3 but activated by depletion of intracellular Ca2+ stores. Our findings provide novel information about endogenous Ca2+ channels supporting receptor-operated and store-operated Ca2+ influx pathways in HEK293 cells.  相似文献   

6.
7.
Emerging evidences suggest that Ca2+activated-K+-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10-11-10-3M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2x10-7M-5x10-3M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the cell proliferation induced by hyperkalemia. These findings may have relevance in disorders associated with abnormal K+ ion homeostasis including periodic paralysis and myotonia.  相似文献   

8.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

9.
The recent discoveries of Stim1 and Orai proteins have shed light on the molecular makeup of both the endoplasmic reticulum Ca(2+) sensor and the calcium release-activated calcium (CRAC) channel, respectively. In this study, we investigated the regulation of CRAC channel function by extracellular Ca(2+) for channels composed primarily of Orai1, Orai2, and Orai3, by co-expressing these proteins together with Stim1, as well as the endogenous channels in HEK293 cells. As reported previously, Orai1 or Orai2 resulted in a substantial increase in CRAC current (I(crac)), but Orai3 failed to produce any detectable Ca(2+)-selective currents. However, sodium currents measured in the Orai3-expressing HEK293 cells were significantly larger in current density than Stim1-expressing cells. Moreover, upon switching to divalent free external solutions, Orai3 currents were considerably more stable than Orai1 or Orai2, indicating that Orai3 channels undergo a lesser degree of depotentiation. Additionally, the difference between depotentiation from Ca(2+) and Ba(2+) or Mg(2+) solutions was significantly less for Orai3 than for Orai1 or -2. Nonetheless, the Na(+) currents through Orai1, Orai2, and Orai3, as well as the endogenous store-operated Na(+) currents in HEK293 cells, were all inhibited by extracellular Ca(2+) with a half-maximal concentration of approximately 20 mum. We conclude that Orai1, -2, and -3 channels are similarly inhibited by extracellular Ca(2+), indicating similar affinities for Ca(2+) within the selectivity filter. Orai3 channels appeared to differ from Orai1 and -2 in being somewhat resistant to the process of Ca(2+) depotentiation.  相似文献   

10.
Large conductance, calcium- and voltage-gated potassium (BK) channels are ubiquitous and critical for neuronal function, immunity, and smooth muscle contractility. BK channels are thought to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)) only through phospholipase C (PLC)-generated PIP(2) metabolites that target Ca(2+) stores and protein kinase C and, eventually, the BK channel. Here, we report that PIP(2) activates BK channels independently of PIP(2) metabolites. PIP(2) enhances Ca(2+)-driven gating and alters both open and closed channel distributions without affecting voltage gating and unitary conductance. Recovery from activation was strongly dependent on PIP(2) acyl chain length, with channels exposed to water-soluble diC4 and diC8 showing much faster recovery than those exposed to PIP(2) (diC16). The PIP(2)-channel interaction requires negative charge and the inositol moiety in the phospholipid headgroup, and the sequence RKK in the S6-S7 cytosolic linker of the BK channel-forming (cbv1) subunit. PIP(2)-induced activation is drastically potentiated by accessory beta(1) (but not beta(4)) channel subunits. Moreover, PIP(2) robustly activates BK channels in vascular myocytes, where beta(1) subunits are abundantly expressed, but not in skeletal myocytes, where these subunits are barely detectable. These data demonstrate that the final PIP(2) effect is determined by channel accessory subunits, and such mechanism is subunit specific. In HEK293 cells, cotransfection of cbv1+beta(1) and PI4-kinaseIIalpha robustly activates BK channels, suggesting a role for endogenous PIP(2) in modulating channel activity. Indeed, in membrane patches excised from vascular myocytes, BK channel activity runs down and Mg-ATP recovers it, this recovery being abolished by PIP(2) antibodies applied to the cytosolic membrane surface. Moreover, in intact arterial myocytes under physiological conditions, PLC inhibition on top of blockade of downstream signaling leads to drastic BK channel activation. Finally, pharmacological treatment that raises PIP(2) levels and activates BK channels dilates de-endothelized arteries that regulate cerebral blood flow. These data indicate that endogenous PIP(2) directly activates vascular myocyte BK channels to control vascular tone.  相似文献   

11.
Activation of BK(Ca) channels by direct Ca(2+) binding and membrane depolarization occur via independent and additive molecular processes. The "calcium bowl" domain is critically involved in Ca(2+)-dependent gating, and we have hypothesized that a sequence within this domain may resemble an EF hand motif. Using a homology modeling strategy, it was observed that a single Ca(2+) ion may be coordinated by the oxygen-containing side chains of residues within the calcium bowl (i.e., (912)ELVNDTNVQFLD(923)). To examine these predictions directly, alanine-substituted BK(Ca) channel mutants were expressed in HEK 293 cells and the voltage and Ca(2+) dependence of macroscopic currents were examined in inside-out membrane patches. Over the range of 1-10 microM free Ca(2+), single point mutations (i.e., E912A and D923A) produced rightward shifts in the steady-state conductance-voltage relations, whereas the mutants N918A or Q920A had no effect on Ca(2+)-dependent gating. The double mutant E912A/D923A displayed a synergistic shift in Ca(2+)-sensitive gating, as well as altered kinetics of current activation/deactivation. In the presence of 1, 10, and 80 mM cytosolic Mg(2+), this double mutation significantly reduced the Ca(2+)-induced free energy change associated with channel activation. Finally, mutations that altered sensitivity of the holo-channel to Ca(2+) also reduced direct (45)Ca binding to the calcium bowl domain expressed as a bacterial fusion protein. These findings, along with other recent data, are considered in the context of the calcium bowl's high affinity Ca(2+) sensor and the known properties of EF hands.  相似文献   

12.
2-Amino-4-azaindoles have been identified as a structurally novel class of BK(Ca) channel openers. Their synthesis from 2-chloro-3-nitropyridine is described together with their in vitro properties assessed by 86Rb(+) efflux and whole-cell patch-clamp assays using HEK293 cells stably transfected with the BK(Ca) alpha subunit. In vitro functional characterization of BK(Ca) channel opening activity was also assessed by measurement of relaxation of smooth muscle tissue strips obtained from Landrace pig bladders. The preliminary SAR data indicate the importance of steric bulk around the 2-amino substituent.  相似文献   

13.
14.
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.  相似文献   

15.
Depletion of inositol 1,4,5 trisphosphate-sensitive Ca2+ stores generates a yet unknown signal, which leads to increase in Ca2+ influx in different cell types [J.W. Putney Jr., A model for receptor-regulated calcium entry, Cell Calcium 7 (1986) 1-12]. Here, we describe a mechanism that modulates this store-operated Ca2+ entry (SOC). Ca2+ influx leads to inhibition of protein tyrosine phosphatase 1B (PTP1B) activity in HEK 293 cells [L. Sternfeld, et al., Tyrosine phosphatase PTP1B interacts with TRPV6 in vivo and plays a role in TRPV6-mediated calcium influx in HEK293 cells, Cell Signal 17 (2005) 951-960]. Since Ca2+ does not directly inhibit PTP1B, we assumed an intermediate signal, which links the rise in cytosolic Ca2+ concentration and PTP1B inhibition. We now show that Ca2+ influx is followed by generation of reactive oxygen species (ROS) and that it is reduced in cells preincubated with catalase. Furthermore, Ca2+-dependent inhibition of PTP1B can be abolished in the presence of catalase. H2O2 (100 microM) directly added to cells inhibits PTP1B and leads to increase in Ca2+ influx after store depletion. PP1, an inhibitor of the Src family tyrosine kinases, prevents H2O2-induced Ca2+ influx. Our results show that ROS act as fine tuning modulators of Ca2+ entry. We assume that the Ca2+ influx channel or a protein involved in its regulation remains tyrosine phosphorylated as a consequence of PTP1B inhibition by ROS. This leads to maintained Ca2+ influx in the manner of a positive feedback loop.  相似文献   

16.
The mechanism by which cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize intracellular Ca(2+) stores remains controversial. It is open to question whether cADPR regulates ryanodine receptors (RyRs) directly, as originally proposed, or indirectly by promoting Ca(2+) uptake into the sarco/endoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+)-ATPases. Conversely, although we have proposed that NAADP mobilizes endolysosomal Ca(2+) stores by activating two-pore domain channels (TPCs), others suggest that NAADP directly activates RyRs. We therefore assessed Ca(2+) signals evoked by intracellular dialysis from a patch pipette of cADPR and NAADP into HEK293 cells that stably overexpress either TPC1, TPC2, RyR1, or RyR3. No change in intracellular Ca(2+) concentration was triggered by cADPR in either wild-type HEK293 cells (which are devoid of RyRs) or in cells that stably overexpress TPC1 and TPC2, respectively. By contrast, a marked Ca(2+) transient was triggered by cADPR in HEK293 cells that stably expressed RyR1 and RyR3. The Ca(2+) transient was abolished following depletion of endoplasmic reticulum stores by thapsigargin and block of RyRs by dantrolene but not following depletion of acidic Ca(2+) stores by bafilomycin. By contrast, NAADP failed to evoke a Ca(2+) transient in HEK293 cells that expressed RyR1 or RyR3, but it induced robust Ca(2+) transients in cells that stably overexpressed TPC1 or TPC2 and in a manner that was blocked following depletion of acidic stores by bafilomycin. We conclude that cADPR triggers Ca(2+) release by activating RyRs but not TPCs, whereas NAADP activates TPCs but not RyRs.  相似文献   

17.
Voltage-dependent Ca(2+) channels are heteromultimers of Ca(V)α(1) (pore), Ca(V)β- and Ca(V)α(2)δ-subunits. The stoichiometry of this complex, and whether it is dynamically regulated in intact cells, remains controversial. Fortunately, Ca(V)β-isoforms affect gating differentially, and we chose two extremes (Ca(V)β(1a) and Ca(V)β(2b)) regarding single-channel open probability to address this question. HEK293α(1C) cells expressing the Ca(V)1.2 subunit were transiently transfected with Ca(V)α(2)δ1 alone or with Ca(V)β(1a), Ca(V)β(2b), or (2:1 or 1:1 plasmid ratio) combinations. Both Ca(V)β-subunits increased whole-cell current and shifted the voltage dependence of activation and inactivation to hyperpolarization. Time-dependent inactivation was accelerated by Ca(V)β(1a)-subunits but not by Ca(V)β(2b)-subunits. Mixtures induced intermediate phenotypes. Single channels sometimes switched between periods of low and high open probability. To validate such slow gating behavior, data were segmented in clusters of statistically similar open probability. With Ca(V)β(1a)-subunits alone, channels mostly stayed in clusters (or regimes of alike clusters) of low open probability. Increasing Ca(V)β(2b)-subunits (co-)expressed (1:2, 1:1 ratio or alone) progressively enhanced the frequency and total duration of high open probability clusters and regimes. Our analysis was validated by the inactivation behavior of segmented ensemble averages. Hence, a phenotype consistent with mutually exclusive and dynamically competing binding of different Ca(V)β-subunits is demonstrated in intact cells.  相似文献   

18.
Voltage-gated T-type Ca(2+) channel Ca(v)3.2 (α(1H)) subunit, responsible for T-type Ca(2+) current, is expressed in different tissues and participates in Ca(2+) entry, hormonal secretion, pacemaker activity, and arrhythmia. The precise subcellular localization and regulation of Ca(v)3.2 channels in native cells is unknown. Caveolae containing scaffolding protein caveolin-3 (Cav-3) localize many ion channels, signaling proteins and provide temporal and spatial regulation of intracellular Ca(2+) in different cells. We examined the localization and regulation of the Ca(v)3.2 channels in cardiomyocytes. Immunogold labeling and electron microscopy analysis demonstrated co-localization of the Ca(v)3.2 channel and Cav-3 relative to caveolae in ventricular myocytes. Co-immunoprecipitation from neonatal ventricular myocytes or transiently transfected HEK293 cells demonstrated that Ca(v)3.1 and Ca(v)3.2 channels co-immunoprecipitate with Cav-3. GST pulldown analysis confirmed that the N terminus region of Cav-3 closely interacts with Ca(v)3.2 channels. Whole cell patch clamp analysis demonstrated that co-expression of Cav-3 significantly decreased the peak Ca(v)3.2 current density in HEK293 cells, whereas co-expression of Cav-3 did not alter peak Ca(v)3.1 current density. In neonatal mouse ventricular myocytes, overexpression of Cav-3 inhibited the peak T-type calcium current (I(Ca,T)) and adenovirus (AdCa(v)3.2)-mediated increase in peak Ca(v)3.2 current, but did not affect the L-type current. The protein kinase A-dependent stimulation of I(Ca,T) by 8-Br-cAMP (membrane permeable cAMP analog) was abolished by siRNA directed against Cav-3. Our findings on functional modulation of the Ca(v)3.2 channels by Cav-3 is important for understanding the compartmentalized regulation of Ca(2+) signaling during normal and pathological processes.  相似文献   

19.
BmBKTx1 is a novel short chain toxin purified from the venom of the Asian scorpion Buthus martensi Karsch. It is composed of 31 residues and is structurally related to SK toxins. However, when tested on the cloned rat SK2 channel, it only partially inhibited rSK2 currents, even at a concentration of 1 microm. To screen for other possible targets, BmBKTx1 was then tested on isolated metathoracic dorsal unpaired median neurons of Locusta migratoria, in which a wide variety of ion channels are expressed. The results suggested that BmBKTx1 could specifically block voltage-gated Ca(2+)-activated K(+) currents (BK-type). This was confirmed by testing the BmBKTx1 effect on the alpha subunits of BK channels of the cockroach (pSlo), fruit fly (dSlo), and human (hSlo), heterologously expressed in HEK293 cells. The IC(50) for channel blocking by BmBKTx1 was 82 nm for pSlo and 194 nm for dSlo. Interestingly, BmBKTx1 hardly affected hSlo currents, even at concentrations as high as 10 microm, suggesting that the toxin might be insect specific. In contrast to most other scorpion BK blockers that also act on the Kv1.3 channel, BmBKTx1 did not affect this channel as well as other Kv channels. These results show that BmBKTx1 is a novel kind of blocker of BK-type Ca(2+)-activated K(+) channels. As the first reported toxin active on the Drosophila Slo channel dSlo, it will also greatly facilitate studying the physiological role of BK channels in this model organism.  相似文献   

20.
The transient receptor potential M2 channel (TRPM2) is the Ca(2+)-permeable cation channel controlled by cellular redox status via β-NAD(+) and ADP-ribose (ADPR). TRPM2 activity has been reported to underlie susceptibility to cell death and biological processes such as inflammatory cell migration and insulin secretion. However, little is known about the intracellular mechanisms that regulate oxidative stress-induced cell death via TRPM2. We report here a molecular and functional interaction between the TRPM2 channel and EF-hand motif-containing protein EFHC1, whose mutation causes juvenile myoclonic epilepsy (JME) via mechanisms including neuronal apoptosis. In situ hybridization analysis demonstrates TRPM2 and EFHC1 are coexpressed in hippocampal neurons and ventricle cells, while immunoprecipitation analysis demonstrates physical interaction of the N- and C-terminal cytoplasmic regions of TRPM2 with the EFHC1 protein. Coexpression of EFHC1 significantly potentiates hydrogen peroxide (H(2)O(2))- and ADPR-induced Ca(2+) responses and cationic currents via recombinant TRPM2 in HEK293 cells. Furthermore, EFHC1 enhances TRPM2-conferred susceptibility of HEK293 cells to H(2)O(2)-induced cell death, which is reversed by JME mutations. These results reveal a positive regulatory action of EFHC1 on TRPM2 activity, suggesting that TRPM2 contributes to the expression of JME phenotypes by mediating disruptive effects of JME mutations of EFHC1 on biological processes including cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号