首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Blood-forming hematopoietic stem cells (HSCs) ensure production of all mature blood cells during homeostatic and regenerative hematopoiesis. Proliferation, cell cycle regulation, and quiescence are key processes involved in this function, and in a recent issue of Cancer Cell, show that HSC quiescence is actively regulated by specific molecular mechanisms that appear to distinguish normal HSC maintenance from HSC responses to hematologic injury.  相似文献   

3.

Background

Adenocarcinoma in situ (AIS) is a pre-invasive lesion in the lung and a subtype of lung adenocarcinoma. The patients with AIS can be cured by resecting the lesion completely. In contrast, the patients with invasive lung adenocarcinoma have very poor 5-year survival rate. AIS can develop into invasive lung adenocarcinoma. The investigation and comparison of AIS and invasive lung adenocarcinoma at the genomic level can deepen our understanding of the mechanisms underlying lung cancer development.

Results

In this study, we identified 61 lung adenocarcinoma (LUAD) invasive-specific differentially expressed genes, including nine long non-coding RNAs (lncRNAs) based on RNA sequencing techniques (RNA-seq) data from normal, AIS, and invasive tissue samples. These genes displayed concordant differential expression (DE) patterns in the independent stage III LUAD tissues obtained from The Cancer Genome Atlas (TCGA) RNA-seq dataset. For individual invasive-specific genes, we constructed subnetworks using the Genetic Algorithm (GA) based on protein-protein interactions, protein-DNA interactions and lncRNA regulations. A total of 19 core subnetworks that consisted of invasive-specific genes and at least one putative lung cancer driver gene were identified by our study. Functional analysis of the core subnetworks revealed their enrichment in known pathways and biological progresses responsible for tumor growth and invasion, including the VEGF signaling pathway and the negative regulation of cell growth.

Conclusions

Our comparison analysis of invasive cases, normal and AIS uncovered critical genes that involved in the LUAD invasion progression. Furthermore, the GA-based network method revealed gene clusters that may function in the pathways contributing to tumor invasion. The interactions between differentially expressed genes and putative driver genes identified through the network analysis can offer new targets for preventing the cancer invasion and potentially increase the survival rate for cancer patients.
  相似文献   

4.

Background

Lysinibacillus sphaericus (formerly named Bacillus sphaericus) is incapable of polysaccharide utilization and some isolates produce active insecticidal proteins against mosquito larvae. Its taxonomic status was changed to the genus Lysinibacillus in 2007 with some other organisms previously regarded as members of Bacillus. However, this classification is mainly based on physiology and phenotype and there is limited genomic information to support it.

Results

In this study, four genomes of L. sphaericus were sequenced and compared with those of 24 representative strains belonging to Lysinibacillus and Bacillus. The results show that Lysinibacillus strains are phylogenetically related based on the genome sequences and composition of core genes. Comparison of gene function indicates the major difference between Lysinibacillus and the two Bacillus species is related to metabolism and cell wall/membrane biogenesis. Although L. sphaericus mosquitocidal isolates are highly conserved, other Lysinibacillus strains display a large heterogeneity. It was observed that mosquitocidal toxin genes in L. sphaericus were in close proximity to genome islands (GIs) and mobile genetic elements (MGEs). Furthermore, different copies and varying genomic location of the GIs containing binA/binB was observed amongst the different isolates. In addition, a plasmid highly similar to pBsph, but lacking the GI containing binA/binB, was found in L. sphaericus SSII-1.

Conclusions

Our results confirm the taxonomy of the new genus Lysinibacillus at the genome level and suggest a new species for mosquito-toxic L. sphaericus. Based on our findings, we hypothesize that (1) Lysinibacillus strains evolved from a common ancestor and the mosquitocidal L. sphaericus toxin genes were acquired by horizontal gene transfer (HGT), and (2) capture and loss of plasmids occurs in the population, which plays an important role in the transmission of binA/binB.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1359-x) contains supplementary material, which is available to authorized users.Keyword: Lysinibacillus, Bacillus, Lysinibacillus sphaericus, Genome, Phylogeny  相似文献   

5.
A number of medical disorders, including Alzheimer's disease and type II diabetes, is characterised by the deposition of amyloid fibrils in tissue. The insolubility and size of the fibrils has largely precluded the determination of their structures at high resolution. Studies probing the stability of amyloid fibrils can reveal which non-covalent interactions are important in the formation and maintenance of the fibril structure. In particular, we review here the use of high hydrostatic pressure and high temperature as perturbation techniques. In general, small aggregates formed early in the assembly process can be dissociated by high pressure, but mature amyloid fibrils are highly pressure stable. This finding suggests that a temporal transition occurs during which side chain packing and hydrogen bond formation are optimised, whereas the hydrophobic effect and electrostatic interactions play a dominant role in the early stages of the aggregation. High temperatures, however, can disrupt most aggregates. Though the observed stability of amyloid fibrils is not unique to these structures, the notion that amyloid fibrils can represent the global minimum in free energy is supported by this type of investigations. Some implications regarding the nature of toxic species, associated with at least many of the amyloid disorders, and recently proposed structural models are discussed.  相似文献   

6.
Embryonic stem cells have potential differentiation ability into a large variety of cell lineages and proved to be an effective therapeutic modality. However, prolonged in vitro and ex-vivo expansions impair embryonic stem cells multipotentiality, and thereby limit their clinical application. In the past few years, research collected attempts to explore new insights into the molecular mechanisms participate in the stemness capacity of embryonic stem cells. Along with these comments, modalities and strategies with the potential to maintain embryonic stem cells multipotentiality are of great interest. In this review, the authors attempted to discuss the pathways participating in the preservation of embryonic stem cells multipotentiality and emphasized the novel strategies that help to harness regenerative potential.  相似文献   

7.
8.
Solutions to the nonlinear Poisson-Boltzmann equation were used to obtain the electrostatic potentials of RNA molecules that have known three-dimensional structures. The results are described in terms of isopotential contours and surface electrostatic potential maps. Both representations have unexpected features: 'cavities' within isopotential contours and areas of enhanced negative potential on molecular surfaces. Intriguingly, the sites of unusual electrostatic features correspond to functionally important regions, suggesting that electrostatic properties play a key role in RNA recognition and stabilization. These calculations reveal that the electrostatic potentials generated by RNA molecules have a variety of functionally important characteristics that cannot be discerned by simple visual inspection of the molecular structure.  相似文献   

9.
10.
We introduce a non‐contact approach to microprint multiple types of feeder cells in a microarray format using immiscible aqueous solutions of two biopolymers. Droplets of cell suspension in the denser aqueous phase are printed on a substrate residing within a bath of the immersion aqueous phase. Due to their affinity to the denser phase, cells remain localized within the drops and adhere to regions of the substrate underneath the drops. We show the utility of this technology for creating duplex heterocellular stem cell niches by printing two different support cell types on a gel surface and overlaying them with mouse embryonic stem cells (mESCs). As desired, the type of printed support cell spatially direct the fate of overlaid mESCs. Interestingly, we found that interspaced mESCs colonies on differentiation‐inducing feeder cells show enhanced neuronal differentiation and give rise to dense networks of neurons. This cell printing technology provides unprecedented capabilities to efficiently identify the role of various feeder cells in guiding the fate of stem cells. Biotechnol. Bioeng. 2011;108: 2509–2516. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
12.
Research on human embryonic stem cells (hESCs) has attracted much attention given their great potential for tissue regenerative therapy and fundamental developmental biology studies. Yet, there is still limited understanding of how mechanical signals in the local cellular microenvironment of hESCs regulate their fate decisions. Here, we applied a microfabricated micromechanical platform to investigate the mechanoresponsive behaviors of hESCs. We demonstrated that hESCs are mechanosensitive, and they could increase their cytoskeleton contractility with matrix rigidity. Furthermore, rigid substrates supported maintenance of pluripotency of hESCs. Matrix mechanics-mediated cytoskeleton contractility might be functionally correlated with E-cadherin expressions in cell-cell contacts and thus involved in fate decisions of hESCs. Our results highlighted the important functional link between matrix rigidity, cellular mechanics, and pluripotency of hESCs and provided a novel approach to characterize and understand mechanotransduction and its involvement in hESC function.  相似文献   

13.
The identification, purification, and characterization of cancer stem cells holds tremendous promise for improving the treatment of cancer. Mounting evidence is demonstrating that only certain tumor cells (i.e. the cancer stem cells) can give rise to tumors when injected and that these purified cell populations generate heterogeneous tumors. While the cell of origin is still not determined definitively, specific molecular markers for populations containing these cancer stem cells have been found for leukemia, brain cancer, and breast cancer, among others. Systems approaches, particularly molecular profiling, have proven to be of great utility for cancer diagnosis and characterization. These approaches also hold significant promise for identifying distinctive properties of the cancer stem cells, and progress is already being made.  相似文献   

14.
Previous reports have shown that culturing mouse embryonic stem (mES) cells at different oxygen tensions originated different cell proliferation patterns and commitment stages depending on which signaling pathways are activated or inhibited to support the pluripotency state. Herein we provide new insights into the mechanisms by which oxygen is influencing mES cell self-renewal and pluripotency. A multifactorial approach was developed to rationally evaluate the singular and interactive control of MEK/ERK pathway, GSK-3 inhibition, and LIF/STAT3 signaling at physiological and non-physiological oxygen tensions. Collectively, our methodology revealed a significant role of GSK-3-mediated signaling towards maintenance of mES cell pluripotency at lower O(2) tensions. Given the central role of this signaling pathway, future studies will need to focus on the downstream mechanisms involved in ES cell self-renewal under such conditions, and ultimately how these findings impact human models of pluripotency.  相似文献   

15.
16.
Leishmania alternates between two main morphological forms in its life cycle: intracellular amastigotes in the mammalian host and motile promastigotes in the sandfly vector. Several different forms of promastigote can be recognised in sandfly infections. The first promastigote forms, which are found in the sandfly in the bloodmeal phase, are multiplicative procyclic promastigotes. These differentiate into nectomonad promastigotes, which are a non-dividing migratory stage moving from the posterior to the anterior midgut. When nectomonad promastigotes arrive at the anterior midgut they differentiate into leptomonad forms, a newly named life cycle stage, which resume replication. Leptomonad promastigotes, which are found in the anterior midgut, are the developmental precursors of the metacyclic promastigotes, the mammal-infective stages. Leptomonad forms also produce promastigote secretory gel, a substance that plays a key role in transmission by forming a physical obstruction in the gut, forcing the sandfly to regurgitate metacyclic promastigotes during bloodfeeding.  相似文献   

17.
18.
The ErbB family of four receptor tyrosine kinases occupies a central role in a wide variety of biological processes from neuronal development to breast cancer. New information continues to expand their biologic significance and to unravel the molecular mechanisms that underlie the signaling capacity of these receptors. Here, we review several aspects of ErbB receptor physiology for which new and significant information is available. These include ligand-dependent receptor dimerization and kinase activation, which is a prerequisite for all subsequent growth factor-dependent cell responses. We also address novel roles of receptor fragments in signaling, trafficking to intracellular sites, such as the nucleus, and ErbB roles in non-cancer disease processes, including schizophrenia, chronic renal disease, hypertension, and the cellular entry of infectious pathogens.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号